第三章 贝叶斯估计
- 格式:ppt
- 大小:864.50 KB
- 文档页数:50
贝叶斯估计与贝叶斯决策的概念贝叶斯估计和贝叶斯决策是概率论中重要的两个概念,它们在处理不确定性问题和统计推断中扮演着重要角色。
本文将介绍贝叶斯估计和贝叶斯决策的概念、原理以及应用。
一、贝叶斯估计贝叶斯估计是指在给定观测数据的条件下,利用贝叶斯定理来估计未知参数的方法。
在贝叶斯估计中,我们引入了先验概率和似然函数,并通过贝叶斯定理来更新我们对参数的估计。
贝叶斯估计的基本原理可以用以下公式表示:P(θ|X) = P(X|θ) * P(θ) / P(X)其中,P(θ|X) 表示在给定观测数据 X 的条件下,参数θ 的后验概率;P(X|θ) 是参数θ 给定观测数据 X 的似然函数;P(θ) 是参数θ 的先验概率;P(X) 是观测数据的边缘概率。
在贝叶斯估计中,先验概率可以通过领域知识或历史数据来确定,而似然函数则可以通过对观测数据的建模来获得。
通过不断地更新先验概率,我们可以得到后验概率,并将其作为参数的估计值。
贝叶斯估计在许多领域都有广泛的应用,例如机器学习、统计推断、信号处理等。
它能够有效地利用已知信息和数据,对未知参数进行准确的估计。
二、贝叶斯决策贝叶斯决策是一种基于贝叶斯准则的决策方法,它在已知观测数据的条件下,寻找一个决策规则来使得期望损失最小化。
贝叶斯决策的目标是选择一个最优的决策,使得在给定观测数据的条件下,使得期望损失最小。
贝叶斯决策的基本原理可以用以下公式表示:d* = argminΣL(d, a) * P(a|X)其中,d* 是最优决策,ΣL(d, a) 是决策 d 对于观测数据 X 情况下的期望损失,P(a|X) 是在观测数据 X 条件下决策 a 的后验概率。
贝叶斯决策需要利用先验概率和条件概率来对可能的决策进行评估,并选择最优的决策。
它能够充分考虑不确定性和风险,从而在决策问题中展现出优越性。
贝叶斯决策在许多实际问题中都有广泛的应用,例如医学诊断、金融风险评估、无人驾驶等。
通过考虑不确定性和风险,贝叶斯决策可以帮助我们做出最优的决策,提高决策的准确性和效果。
信号的参数估计一般指参数在观测时间内不随时间变化,故是静态估计。
若被估计参量是随机过程或非随机的未知过称,则称为波形估计或状态估计,波形估计或状态估计是动态估计。
3。
2贝叶斯估计贝叶斯估计是基于后验概率分布(posterior distribution)的一类估计方法,其中后验概率分布中采用了先验信息(prior information )。
所谓先验信息,是指已知待估计参数的概率密度函数0()p θ,不管θ是随机变变量或是未知的固定常数。
而后验概率分布具有下面的形式,00()(|)(),1(|)()p c p X p c p X p d θθθθθθ*==⎰.注意两点:1,0()p θ不必满足标准化条件,即0()1p d θθ=⎰,但是0()p θ必须是非负的,并且0102()()p p θθ代表似真比(ratio of plausibility ),若0102()()1p p θθ>,则说明在1θ和2θ两个值之间我们更倾向于1θ为真值;2,()p θ*实际上就是(|)p X θ,是通过试验得到数据X 以后θ的概率密度函数,仅当()1p d θθ=⎰时有明确的含义.下面讨论中,()p θ代表0()p θ,(|)p X θ代表()p θ*。
类似于信号检测中的问题,贝叶斯估计在参数估计中对于不同的估计结果赋予了不同的代价值,然后求解平均代价最小的情况。
估计误差为θθ-,我们只关心估计误差的代价,于是代价函数()()c c θθθ-=,是估计误差的单变量函数。
典型的代价函数有三种:⑴ 平方型()2()c θθθ=-,它强调了大误差的影响 ⑵ 绝对值()c θθθ=-,给出了代价随估计误差成比例增长 ⑶ 均匀型()10c θεθεθε>⎧=⎨⎩-<<这种代价函数给出了估计误差绝对值大于某个值时,代价等于常数,而估计误差绝对值小于某个值时,代价等于零.在贝叶斯估计中,要求估计误差引起的代价的平均值最小。
贝叶斯估计与贝叶斯学习贝叶斯估计是概率密度估计的一种参数估计,它将参数估计看成随机变量,它需要根据观测数据及参数鲜艳概率对其进行估计。
一贝叶斯估计(1)贝叶斯估计贝叶斯估计的本质是通过贝叶斯决策得到参数θ的最优估计,使总期望风险最小。
设()p θ是待估计参数θ的先验概率密度,且θ取值与样本集1{,,}n x x X =有关,设样本的取值空间d E ,参数取值空间Θ,ˆ(,)λθθ是ˆθ作为θ的估计量时的损失函数,本节我们取2ˆˆ(,)()λθθθθ=-。
则此时的总期望风险为: ˆ(,)()(),d E R p x p x d dx λθθθθΘ=⎰⎰定义样本x 下的条件风险为:ˆˆ()(,)(),R x p x d θλθθθθΘ=⎰则有: ˆ()(),d E R R x p x dx θ=⎰又ˆ()R x θ非负,则又贝叶斯决策知求R 最小即求ˆ()R x θ最小,即: ˆargmin (),R x θθ*=可求得最优估计:().p x d θθθθ*Θ=⎰(2)贝叶斯估计步骤总结1. 获得θ的先验分布()p θ;已知x 的密度分布()p x θ得样本集的联合分布:1()();Nn n p p x θθ=X =∏由贝叶斯公式得θ的后验分布:()()();()()p X p p X p X p d θθθθθθΘ=⎰得到θ的最优估计:().p x d θθθθ*Θ=⎰(3)样本概率密度函数()p x X 估计我们是在假设样本概率密度已知下对参数进行估计的,由贝叶斯估计步骤3可以直接得到样本概率密度函数估计:()()().p x X p x p X d θθθΘ=⎰ 对上式可以理解为:()p x X 在所有可能参数下取值下样本概率密度的加权平均,权值为θ的后验概率。
二贝叶斯学习贝叶斯学习本质是参数值随着样本增多趋近于真实值的过程。
对于贝叶斯学习由下面过程得到:记样本集为NX ,其中N 代表样本集内样本的个数。