机械加工中获得零件加工精度的方法
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
第一章△m<0的制造过程主要指切削加工。
(1)主运动:切下金属所必须的最主要的运动。
(2)进给运动:不断地把金属层投入切削的运动。
齿面加工齿轮加工方法:无屑加工:热轧、冷轧、压铸、注塑、粉末冶金。
切削加工:成形法、展成法。
复杂曲面加工1)仿形铣:2)数控铣:磨削加工特点:1. 属精加工,尺寸精度IT7~IT5,Ra值0.8~0.2m2. 能加工硬度很高的工件;3。
磨削温度高;4。
磨削的径向力大;第二章1、切削运动金属切削加工:通过机床提供的切削运动和动力,使刀具和工件产生相对运动(即切削运动),从而切除工件上多余的材料,以获得合格零件的加工过程.(1)主运动:切下金属所必须的最主要的运动。
(2)进给运动:不断地把金属层投入切削的运动。
2、切削要素已加工表面:已被切去部分多余金属而形成的新表面。
待加工表面:即将被切除金属层的表面.加工表面(或称过渡表面):切削刃正在切削的表面。
切削用量三要素:1)切削速度V:2)进给量f:3)背吃刀量(切削深度)a p:3.切削层几何参素:(1)切削厚度ac (hD)(2)切削宽度aw (bD)-沿加工表面度量的切削层尺寸。
(3)切削面积Ac (hD)-切削层垂直于切削速度截面内的面积。
二、刀具角度:(图+角度)1)基面Pr:2)切削平面Ps:3)正交平面Po:道具分类:1.整体车刀;2.焊接车刀;3。
机夹车刀;4。
可转位车刀;5.成形车刀与焊接车刀比较,可转位车刀的优点:1)刀具使用寿命长;2)生产率高;3)有利于推广新技术、新工艺;4)有利于降低刀具成本;麻花钻的工作部分:6面+1横刃+2主切削刃+2副切削刃+4刀尖。
麻花钻的缺点:1)主切削刃上前角不等;2)横刃长且为大负前角,切削条件差;3)排屑、断屑、散热困难。
钻、扩、铰孔的工艺特点比较(书P21 手抄表格PPT 2-45)拉刀特点:1)生产率高;2)加工质量高;(一般为IT8IT7,Ra2。
5 1.25μm)3)加工范围广;4)刀具磨损缓慢,寿命长;5)机床结构简单,操作方便;6)拉刀的设计、制造复杂,价格昂贵。
机械加工中尺寸精度的测量方法试切法试切法是通过“试切-测量-调整-再试切”的操作流程,反复开展,直到到达要求的尺寸精度为止。
先从加工表面上试切出一个很小的部分,对这部分的尺寸开展测量。
接下来,根据测量结果和加工要求,对刀具的切削刃与工件相对的位置开展适当地调整。
然后再试切,再测量。
经过如此往复的两三次试切和测量之后,当被加工工件的尺寸到达要求后,再切削整个待加工表面。
例如,箱体孔系的试镜加工就应用了试切法测量尺寸精度。
采用试切法测量尺寸精度不需要复杂的装置,而且可以到达一个很高的精度值。
但这种方法的缺点是工序比较复杂,需要开展多次的调整、试切、测量和计算,这样做效率较低,而且费时费力。
再有,这种方法对于工人的技术水平和计量器具的精度有严重的依赖,质量不够稳定,所以往往只适用于较小批量的生产。
试切法中有一种特殊的类型,称为配作。
配作是以已经加工好的工件尺寸为基准,对另一个或者多个相配的工件组合在一起开展加工。
对被加工工件的尺寸须要到达的要求,是以与已加工工件的配合要求为准的。
调整法调整法是利用样件或标准件,如机床上的定程装置、对刀装置或是预先调整好的刀架,修正机床、夹具、刀具和工件之间的准确相对位置,使之到达需要的尺寸精度,然后再以此标准对一批工件开展加工的方法。
因为尺寸已经在加工之前调整到位,所以加工时不再需要开展试切,并在一批零件的加工过程中保持不变。
例如,采用铳床夹具时,刀具的位置靠对刀块确定。
相比于试切法,调整法拥有更加稳定的加工精度和更高的生产率。
这种方法对机床操作员工的要求不是很高,但是对机床调整员工的要求比较高,因此,调整法常用于零件的成批生产和大量生产。
在机床上按照已经事先确定的刻度盘刻度进刀,然后再开展切削,这也是调整法的一种类型。
这种方法需要在大批量生产之前,先采用试切法,确定刻度盘上的刻度。
定尺寸法定尺寸法是用刀具的相应尺寸来保证工件被加工部位尺寸精度的方法。
它开展加工所使用的刀具,如较刀、扩孔钻、钻头等,都具有非常标准的尺寸精度,利用该刀具的尺寸来决定加工面的尺寸,以保证工件被加工部位可以得到较高的精度。
机械加工中工件尺寸精度测量的5大方法1.比较测量法:比较测量法是一种常见且简单的尺寸测量方法,适用于工件的外径、内径等直径尺寸的测量。
该方法主要基于对比的原理,使用已知尺寸的模具或测量工具与待测工件进行对比测量。
常用的比较测量工具有卡尺、千分尺、游标卡尺等。
比较测量法具有操作简便、成本低廉的优点,但准确度较低。
2.坐标测量法:坐标测量法是一种应用最广泛的尺寸测量方法之一、它利用测量机床等设备,将工件放置于坐标系中,通过测量机床的坐标轴和传感器实现工件尺寸的测量。
坐标测量法适用于复杂工件尺寸的测量,具有高精度和高灵活性等优点。
3.光学测量法:光学测量法利用光学原理,通过光学传感器或测量仪器对工件尺寸进行测量。
光学测量法适用于形状复杂的工件,如曲面、曲线等。
常用的光学测量仪器有投影仪、显微镜、激光跟踪仪等。
光学测量法具有高精度、非接触、能够获取多个尺寸和形状参数等优点。
4.探触测量法:探触测量法是一种通过机械探针对工件进行接触式测量的方法。
常见的探触测量法包括测微仪、测针、激光测距仪等。
探触测量法适用于表面形状复杂或无法用其他测量方法测量的工件。
它具有测量精度高、重复性好和能够获取多个尺寸参数等优点。
5.三坐标测量法:三坐标测量法是一种先进的工件尺寸测量方法,通过三坐标测量机对工件进行测量,能够快速地获取工件各个尺寸参数。
三坐标测量法适用于高精度工件尺寸测量,具有高精度、快速、自动化程度高等优点。
总结来说,机械加工中的工件尺寸精度测量方法有比较测量法、坐标测量法、光学测量法、探触测量法和三坐标测量法。
根据工件的形状、尺寸和精度要求,选择合适的测量方法可以保证工件的质量和精度。
二、填空(30分)1。
机械加工中,加工阶段划分为(粗加工)、(半精加工)、(精加工)、(光整加工)。
2.达到装配精度的方法有(互换法)、(调整法)、( 修配法)。
3。
加工精度包括(尺寸)、(形状)、(位置)三方面的内容。
4。
定位误差由两部分组成,其基准不重合误差是由(定位基准)与(工序基准)不重合造成的,它的大小等于(两基准间尺寸)的公差值.5.圆偏心夹紧机构中,偏心轮的自锁条件是(),其中各符号的意义是(D 为圆偏心盘的直径;e为偏心量).6.机床主轴的回转误差分为(轴向跳动)、(径向跳动)、(角度摆动).7.机械加工中获得工件形状精度的方法有(轨迹法)、(成型法)、(展成法)等几种。
8。
机床导轨在工件加工表面(法线)方向的直线度误差对加工精度影响大,而在(切线)方向的直线度误差对加工精度影响小。
9.选择精基准应遵循以下四个原则,分别是:(基准重合)、(基准统一)、(互为基准)、( 自为基准)。
10.夹具对刀元件的作用是确定( 刀具)对(工件)的正确位置。
11。
划分工序的主要依据是( 工作地点不变)和工作是否连续完成.二、填空(20分)1。
机械加工中获得尺寸精度的方法有(试切法)、( 调整法)、(定尺寸刀具法)、( 自动控制法).2。
基准位移误差是( 定位)基准相对于(起始)基准发生位移造成的(工序)基准在加工尺寸方向上的最大变动量。
3.分组选配法装配对零件的( 制造精度)只要求可行,而可获得很高的装配精度。
4。
镗模上采用双镗套导向时,镗杆与镗床主轴必须(浮动)连接。
5.工艺系统是由(机床)、(夹具)、( 刀具)、(工件)构成的完整系统.6。
为减少毛坯形状造成的误差复映,可采用如下三种方法,分别是:(提高毛坯制造精度)(提高工艺系统刚度)、(多次加工).7。
生产类型为( 单件小批量)生产时,极少采用夹具,一般用划线及试切法达到加工精度要求。
8.工艺系统热变形和刀具磨损都属于工艺系统的(动态)误差,对工件加工误差而言,造成(变值)系统性误差。
机械--基础--练习一一、填空题1.获得零件尺寸精度的方法有试切法、定尺寸刀具法、调整法和自动控制法。
2.加工细长轴时,由刀具热变形引起的工件误差属于变值系统性误差。
3.基准位移误差是定位基准相对于起始基准发生位移造成的工序基准在加工尺寸方向上的最大变动量。
4.工序尺寸的公差带一般取入体方向,而毛坯尺寸的公差带一般取双向分布。
5.为减少毛坯形状造成的误差复映,可用如下三种方法,分布是:增大系统刚度,减少毛坯误差,多次加工。
6.安装是指定位和夹紧过程的总和。
7.钻削时,主运动是钻头的旋转运动,进给运动是钻头的轴向移动,铣削时,铣刀的旋转运动是主运动,工件的直线移动是进给移动。
8.主切削刃是指刀具前刀面与主后刀面的交线。
9.总切削力可分解主切削力、径向力、轴向力三个分力。
10.切削热来源于切削层金属的弹、塑性变形和切屑与刀具间的摩擦。
二、选择题1.箱体类零件常采用( ② )作为统一精基准。
①.一面一孔②.一面两孔③两面一孔④两面两孔2.经济加工精度是在( ④ )条件下所能保证的加工精度和表面粗糙度①最不利②最佳状态③最小成本④正常加工3.铜合金7.级精度外圆表面加工通常采用,( ③ )的加工路线①粗车. ②.粗车-半精车③粗车-半精车-精车④粗车-半精车-精磨.4.淬火钢7级精度外圆表面常采用的加工路线是( ④ )①粗车-半精车-精车②.粗车-半精车-精车-金刚石车③粗车-半精车-粗磨④.粗车-半精车-粗磨-精磨5.铸铁箱体上Ф120H7孔常采用的加工路线是( ① )①粗镗-半精镗-精镗②.粗镗-半精镗-铰-.③粗性-半精镜-粗磨④.粗镗-半精镗-粗磨-精磨.6.为改善材料切削性能迸行的热赴理工序(如退火、正火),常安排在( ① )进行。
①切削加工之前②磨削加工之前③切削加工之后④粗加工后、精加工前。
7.工序余量公差等于( ① )①上道工序尺寸公差与本道工序尺寸公差之和②上道工序尺寸公差与本道工序尺寸公差之差.③上道工序尺寸公差与本道工序尺寸公差之和的二分之一④上道工序尺寸公差与本道工序尺寸公差之差的二分之一。
机械加工中获得零件加工精度的方法
【摘要】本文对机械加工过程中如何获得零件加工的精度进行了讨论,并分析了多种影响零件加工质量的因素,希望可以减少生产过程中不必要的麻烦,并且对如何使工件的加工质量达到要求,同时还能保证生产效率进行了介绍。
【关键词】机械加工;零件加工;精度随着科学技术的飞速发展和市场竞争日益激烈,现代企业在高目标和低成本的追求过程中,对零件制造的基本要求就是要做到多、快、好、省。
其中“好”的含义包括不断提高零件的质量,提高其使用效能与使用寿命,最大限度地消灭废品,降低次品率,提高零件的合格率。
因为零件的质量直接影响着机器的性能、寿命、效率、可靠性等指标,是保证机器质量的基础,而零件的制造质量,是依靠其毛坯的制造方法、机械加工、热处理以及表面处理等工艺来保证的。
因此,在零件制造的各个环节都要始终把保证质量放在首位。
1.对加工精度和加工误差的分析
加工精度是指零件加工后的实际几何参数与图纸规定的理想几何参数符合的程度,这种相符合的程度越高,加工精度也越高。
在加工中,由于各种因素的影响,实际上不可能将零件的每一个几何参数加工的与理想几何参数完全相符,总会产生一些偏离,这种偏离,就是加工误差。
实际上,只要零件的加上误差不超出零件图上按零件的设计要求所规定的公差,就可以说保证了零件的加工精度要求。
由此可见,“加工精度”和“加工误差”这两个概念是从两个侧面来评定零件几何参数这个同一事物的。
加工精度的低和高是通过加工误差的大和小来表示的。
所以,保证和提高加工精度的问题,实际上就是限制和减小加工误差的问题。
2.如何获得加工精度
由于在加工过程中有很多因素影响加工精度,所以同一种加工方法在不同的工作条件下所能达到的精度是不同的。
如果盲目追求加工精度,就会降低生产效率,增加加工成本。
所以,我们在保证加工质量的前提下,应尽量达到提高效率,降低生产成本的目的。
加工精度可以分为尺寸精度、形状精度和位置精度,因此,加工精度的高、低是以尺寸公差、形状公差和位置公差来衡量的。
2.1零件尺寸的精度方法
零件尺寸的加工方法首先包括试切法,就是先试切出很小部分加工表面,测量试切所得的尺寸,按照加工要求适当调刀具切削刃相对工件的位置,再试切,再测量,如此经过两三次试切和测量,当被加工尺寸达到要求后,再切削整个待加工表面。
其次是调整法,就是预先用样件或标准件调整好机床、夹具、刀具和工件的准确相对位置,用以保证工件的尺寸精度,并在一批零件加工过程中尺寸保持不变,这就是调整法。
还有定尺寸法,即用刀具的相应尺寸来保证工件被加工部位尺寸的方法,它是利用标准尺寸的刀具加工,加工面的尺寸由刀具尺寸决
定,即用具有一定的尺寸精度的刀具来保证工件被加工部位的精度。
最后是自动控制法,即在加工过程中,通过由尺寸测量装置、动力进给装置和控制机构等组成的自动控制系统,使加工过程中的尺寸测量、刀具的补偿调整和切削加工等一系列工作自动完成,从而自动获得所要求尺寸精度的一种加工方法。
2.2获得形状精度的方法
获得形状精度的方法首先包括轨迹法,这种加工方法是利用刀尖运动的轨迹来形成被加工表面的形状的,普通的车削、铣削、刨削和磨削等均属于刀尖轨迹法,用这种方法得到的形状精度主要取决于成形运动的精度。
另外是成形法,通过利用成形刀具的几何形状来代替机床的某些成形运动而获得加工表面形状的。
如成形车削、铣削、磨削等,成形法所获得的形状精度主要取决于刀刃的形状。
还有展成法,就是利用刀具和工件作展成运动所形成的包络面来得到加工表面的形状,这种方法所获得的形状精度主要取决于刀刃的形状精度和展成运动精度。
2.3获得位置精度方法
机械加工中,被加工表面对其他表面位置精度的获得,主要取决工件的装夹。
直接找正装夹法是用百分表、划线盘或目测直接在机床上找正工件位置的装夹方法。
划线找正装夹法是先在毛坯上按照零件图划出中心线、对称线和各待加工表面的加工线,然后将工件装上机床,按照划好的线找正工件在机床上的装夹位置,这种装夹方法生产率低,精度低,且对工人技术水平要求高,一般用于单件小批生产中加工复杂而笨重的零件,或毛坯尺寸公差大而无法直接用夹具装夹的场合。
最后是用夹具装夹,夹具是按照被加工工序要求专门设计的,夹具上的定位元件能使工件相对于机床与刀具迅速占有正确位置,不需找正就能保证工件的装夹定位精度,用夹具装夹生产率高,定位精度高,但需要设计、制造专用夹具,广泛用于成批及大量生产。
3.数控工艺对零件加工精度的影响
自1952 年世界上第一台数控铣床产生以来,高精度化就成为数控技术发展追求的目标。
随着现代制造技术的发展,数控机床越来越普及,与普通机床相比,数控机床在控制系统、伺服驱动、机械结构等方面发生了具大变化。
数控机床采用计算机数字控制,各坐标轴采用闭环或半闭环伺服驱动,机械传动链变短,机械部件在消隙、减磨等方面进行了很多改进,因此,数控机床具有加工精度高、生产效率高、产品质量稳定、加工过程柔性好、加工性能强等特点。
数控编程对加工精度的影响主要来自编程原点的确定、数据处理、轨迹拟合、加工路线选择等方面。
首先是编程原点选择对加工精度的影响,数控编程首先遇到的问题就是确定编程原点,编程坐标系一般是编程人员根据零件加工特点和零件图纸确定的。
编
程原点的选择直接影响零件的加工精度,确定编程坐标系最根本的原则是编程基准、设计基准、工艺基准统,这样可最大限度地减少尺寸公差换算所引起的误差。
另外是编程时数据处理对加工精度的影响,数控编程时的数据处理对轮廓轨迹的加工精度有直接影响,其中比较重要的因素是未知编程节点的计算以及编程尺寸公差带的换算。
还有加工路线对加工精度的影响,加工路线是编程的重要内容之一,加工路线对加工精度及加工效率影响很大。
接下来是插补运算对加工精度的影响,插补运算对加工精度的影响取决于系统的插补方式,经济型数控系统多采用脉冲增量法,标准型数控系统则多采用数据采样法及软件、硬件相配合的两级插补法,但无论哪种插补方法都会产生累积误差,当累计误差达到一定值时,会使机床产生移动和定位误差,影响加工精度。
最后是轨迹拟合误差对加工精度的影响,数控机床在进行非圆曲线加工时是利用小直线段或小圆弧段生成加工轨迹的拟合曲线,因为一般数控系统只具备直线和指定平面内圆弧插补功能,当加工轨迹为非圆曲线时,只能用直线和圆弧去逼近。
非圆曲线轨迹的拟合常用等间距、等弦长、等误差法,其中等误差法可以在保证拟合精度的同时,提高加工效率。
非圆曲线轨迹的拟合必定带来拟合误差,这里最重要的是控制拟合误差小于工件的允许误差,必要时要经过严格的计算。
4.结束语
综上所述,本文对机械加工过程中的零件精度加工的方法进行了分析和讨论,还对数控技术对零件精度加工的影响进行了总结。
事实上,在机械加工中,误差是不可避免的,加工过程中不管采用那种加工方法,只要精心操作,细心调整,并选用合适的切削参数进行加工,都能使加工精度得到较大的提高,相信随着我国机械加工工艺的不断提高,在不久的将来就能建立基础工程的数据库,提高数控加工效率,最终获得质量精度合格的零件。
【参考文献】
[1]张全.机械加工工艺对零件加工精度的影响[J].工具技术,2007(08).
[2]于新梅.编制机械加工工艺规程的几点心得[J].经济技术协作信息,2008(31).
[3]秦云,赵超峰.机械加工中获得零件加工精度的方法[J].中国科技信息,2009(15).。