多边形的外角和公式
- 格式:docx
- 大小:14.59 KB
- 文档页数:1
多边形外角和公式推导过程多边形是数学中常见的图形之一,它由多条线段组成,形成了闭合的图形。
在多边形中,每一个内角和外角都有其对应的定义和计算方法。
其中,外角是指由多边形的一条边和其相邻的一个内角所夹的角度。
本文将深入探讨多边形的外角及其计算方法。
1. 基本定义在多边形中,每个顶点处都会形成一个内角和一个外角,由于多边形是闭合图形,所以每个外角之和等于360度。
具体来说,如果在多边形的一个顶点上,我们顺时针旋转射线,那么所经过的角度就是外角。
如果在一个顶点上旋转射线遇到了一条边,那么旋转方向必须重新做一次左拐或右拐,即逆时针旋转或顺时针旋转180度。
2. 公式推导我们可以通过对多边形的内角和外角关系进行研究,来推导出多边形外角的计算公式。
假设在多边形中有n个顶点,那么这个多边形中的内角和为180×(n-2)度。
同时,根据前文所述,多边形中的外角之和为360度。
因此我们可以得到以下公式:内角和= 180×(n-2)外角和 = 360每个外角 = 外角和÷ n将外角和代入公式中,我们可以得到:每个外角= 360 ÷ n这就是多边形外角的计算公式。
利用这个公式,我们可以轻松地计算出多边形中每个外角的大小。
3. 小结多边形是一种重要的几何图形,在数学和实际生活中都有广泛的应用。
每个多边形的内角和外角都有其对应的定义和计算方法。
通过对多边形内角和外角的关系进行研究,我们可以推导出多边形外角的计算公式。
这个公式不仅为数学研究提供了便利,同时也可以在实际生活中的设计和建筑等领域中得到应用。
多边形的外角和例题讲解(1)公式:多边形的外角和等于360°.(2)探究过程:如图,以六边形为例.①外角和:在每个顶点处各取一个外角,即∠1,∠2,∠3,∠4,∠5,∠6,它们的和为外角和.②因为同顶点处的一个内角和外角互为邻补角,所以六边形内、外角和等于180°×6=1 080°,所以∠1+∠2+∠3+∠4+∠5+∠6=1 080°-180°×(6-2)=360°.③n边形外角和=n×180°-(n-2)×180°=360°.(3)拓展理解:①多边形的外角和是一个恒值,即任何多边形的外角和都是360°,与边数无关.②多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处取一个外角的和.解技巧多边形的内角与相邻外角的关系的运用同顶点的每一个内角和外角互为邻补角是解决含内、外角问题的关键,是内、外角转换的纽带.【例1】填空:(1)一个多边形每个外角都是60°,这个多边形是__________边形,它的内角和是__________度,外角和是__________度;(2)多边形边数每增加一条,它的内角和会增加__________,外角和增加__________.解析:(1)因为每个外角都是60°,所以360°÷60°=6,所以是六边形.根据内角和公式计算出内角和是720°,外角和是恒值为360°(也可以由每个外角都是60°,得每个内角都是120°,进而得到内角和是720°);(2)多边形边数每增加一条,它的内角和会增加180°,但外角和不变.多边形外角、外角和公式的应用多边形外角和是360°,它是一个恒值,不论多边形是几边形,它的外角和都是360°,与边数无关,所以对于普通多边形,根据多边形外角和无法判断多边形的边数,因此多边形外角很少单独考查,它一般应用于正多边形中或各角都相等时的情况,因为正多边形的每一个内角都相等,所以正多边形的每一个外角也都相等,因此只要知道正多边形中任一个外角的度数就能求出边数,或知道外角的个数也能求出每一个外角的度数,进而能求出内角度数和内角和的度数.同顶点的外角和内角互为邻补角,所以多边形外角和内角又是相互联系的,知道内角能求外角,知道外角也能求内角,它们之间能相互转换.破疑点多边形外角和与外角的关系多边形的外角和与多边形所有外角的和不是一回事,多边形的外角和是每个顶点处各取一个外角的和,是360°,而多边形所有外角的和是360°的2倍,是720°,这点要注意.【例2】如图所示,已知∠ABE=138°,∠BCF=98°,∠CDG=69°,则∠DAB=__________.解析:方法一:根据同顶点的外角和内角互为邻补角,求出已知角的邻补角.根据四边形内角和为360°,求出∠A;方法二:根据四边形外角和为360°,求出与∠A同顶点的邻补角(A点处的外角),再求出∠A.答案:125°【例3】如图,在四边形ABCD中,∠1,∠2分别是∠BCD和∠BAD的邻补角,且∠B+∠ADC=140°,则∠1+∠2等于().A.140°B.40°C.260°D.不能确定解析:方法一:因为四边形内角和是360°,且∠B+∠ADC=140°,所以∠DAB+∠DCB=220°,∠1+∠2+∠DAB+∠DCB=180°×2,所以∠1+∠2=360°-220°=140°;方法二:可求出与∠B,∠ADC同顶点的两外角和为220°,根据四边形外角和是360°,得出∠1+∠2=360°-220°=140°;方法三:连接BD,根据三角形一个外角等于和它不相邻的两内角和,求出∠1+∠2的度数.答案:A【例4】一个多边形的每一个内角都等于144°,求这个多边形的边数.分析:方法一:可设这个多边形的边数为n,那么内角和就是(n-2)×180°,因为每一个内角都是144°,所以内角和为144°×n,根据“表示同一个量的两个式子相等”列方程解出;方法二:因为每一个内角都等于144°,所以每一个外角都是36°.根据多边形外角和为360°,用360°÷36°=10,也可以得出这个多边形为十边形.解:设这个多边形的边数为n,则(n-2)×180°=n×144°,解得n=10.答:这个多边形的边数为10.。
计算正多边形的内角和和外角之和正多边形是指所有边相等、所有角相等的多边形。
在这篇文章中,我们将探讨如何计算正多边形的内角和和外角之和。
一、正多边形的内角和为了计算正多边形的内角和,我们首先需要了解一个公式:正多边形的内角和公式,也被称为欧拉公式。
根据欧拉公式,正多边形的内角和等于(边数-2)×180度。
例如,一个正三角形的内角和为(3-2)×180度=180度;一个正四边形的内角和为(4-2)×180度=360度;一个正五边形的内角和为(5-2)×180度=540度,以此类推。
二、正多边形的外角和正多边形的外角是指每个角与其相邻的内角的补角。
一般情况下,我们求解外角和时候会用到以下公式:正多边形的外角和等于360度。
根据这个公式,不论正多边形的边数是多少,其外角和都等于360度。
三、计算示例让我们通过一些示例来计算正多边形的内角和和外角和。
1. 计算一个正七边形的内角和:根据欧拉公式,正七边形的内角和为(7-2)×180度=900度。
2. 计算一个正六边形的内角和:根据欧拉公式,正六边形的内角和为(6-2)×180度=720度。
3. 计算一个正五边形的内角和和外角和:根据欧拉公式,正五边形的内角和为(5-2)×180度=540度。
根据正多边形的外角和公式,正五边形的外角和为360度。
四、总结在本文中,我们探讨了如何计算正多边形的内角和和外角和。
根据欧拉公式,我们可以通过正多边形的边数来计算其内角和。
而根据外角和公式,不论正多边形的边数是多少,其外角和都等于360度。
这个知识点在几何学中具有重要的意义,可用于解决各种涉及正多边形的问题。
理解正多边形的内角和和外角和的计算方法,将为我们在学术和实际应用中提供帮助。
正多边形的内角和外角正多边形是初中数学中的一个重要概念,它具有许多有趣的特性。
其中之一就是正多边形的内角和外角的关系。
在本文中,我将为大家详细介绍正多边形的内角和外角的性质和计算方法。
一、正多边形是指所有边相等、所有内角相等的多边形。
在正多边形中,每个内角都相等,记为α,每个外角也相等,记为β。
我们可以通过以下公式计算正多边形的内角和外角:内角和:S = (n - 2) × 180°外角和:T = n × 180° - S其中,n代表正多边形的边数。
根据这两个公式,我们可以得出以下结论:1. 内角和:正多边形的内角和等于(n - 2) × 180°。
这个公式的推导可以通过将正多边形分割成n个三角形,然后计算每个三角形的内角和得到。
例如,一个正五边形的内角和为(5 - 2) × 180° = 540°。
2. 外角和:正多边形的外角和等于n × 180° - 内角和。
这个公式的推导可以通过将正多边形的内角和与每个内角的补角相加得到。
例如,一个正五边形的外角和为5 × 180° - 540° = 900°。
二、内角和和外角和的性质正多边形的内角和和外角和具有一些重要的性质,我们可以通过以下例子来说明:例子1:考虑一个正六边形,每个内角为120°。
根据内角和的公式,我们可以计算出内角和为(6 - 2) × 180° = 720°。
根据外角和的公式,我们可以计算出外角和为6 × 180° - 720° = 720°。
可以看出,正六边形的内角和和外角和相等。
例子2:考虑一个正四边形,每个内角为90°。
根据内角和的公式,我们可以计算出内角和为(4 - 2) × 180° = 360°。
多边形的内角和外角计算多边形是几何学中的重要概念,它由若干条边和相应的顶点组成。
在研究多边形的性质时,我们经常会遇到内角和外角的计算问题。
本文将介绍多边形内角和外角的定义和计算方法。
一、多边形的内角和外角定义多边形的内角是指由多边形的两条边所夹角度,而外角是指多边形内一条边的延长线和下一条边所夹角度。
二、多边形内角和外角的计算方法1. 内角的计算方法:对于n边形,内角和的计算公式为:(n-2)×180°。
例如,三角形的内角和为(3-2)×180°=180°,四边形的内角和为(4-2)×180°=360°。
2. 外角的计算方法:外角和的计算公式为360°。
每个外角可通过360°除以n来得到。
例如,对于正五边形,每个外角为360°/5=72°。
三、多边形内角和外角的举例说明1. 三角形的内角和:三角形是最简单的多边形,由三条边和三个顶点组成。
根据前述计算方法,三角形的内角和为180°。
2. 四边形的内角和:四边形是常见的多边形,例如矩形、正方形和平行四边形等。
根据前述计算方法,四边形的内角和为360°。
3. 五边形的内角和和外角:五边形是一种五边形多边形,常见的有正五边形和不规则五边形。
根据前述计算方法,五边形的内角和为540°,每个外角为72°。
四、多边形内角和外角计算的意义1. 内角和:多边形的内角和是多边形几何性质的重要指标,它能反映出多边形的形状和结构。
通过计算多边形的内角和,我们可以判断多边形是凸多边形还是凹多边形,并进一步研究多边形的各种性质和规律。
2. 外角和:多边形的外角和也是多边形几何性质的重要指标,它与内角和之间存在着一定的数学关系。
通过计算多边形的外角和,我们可以推导出内角和与外角和的关系公式,并应用于解决复杂的多边形计算问题。
正多边形的内角与外角的角度计算公式正多边形是指所有边和内角均相等的多边形,其中最常见的正多边形是三角形、四边形、五边形、六边形等。
在正多边形中,内角和外角可以通过一些计算公式来确定。
一、正多边形的内角计算公式对于一个正n边形(n为正整数,n≥3),我们可以通过以下公式来计算每个内角的度数:每个内角度数 = (n - 2) × 180° / n其中,n - 2表示正多边形的顶点数减去2,180°为直角,n为正多边形的边数。
举例来说,对于一个三角形(即正3边形),根据公式可得每个内角的度数为:每个内角度数 = (3 - 2) × 180° / 3 = 60°同理,对于一个正五边形,每个内角的度数为:每个内角度数 = (5 - 2) × 180° / 5 = 108°二、正多边形的外角计算公式正多边形的外角是指从多边形的一个顶点出发,与其相邻的两条边所组成的角。
通常情况下,正多边形的每个外角的度数是一样的。
我们可以通过以下公式计算正多边形的每个外角的度数:每个外角度数 = 360° / n其中,360°为一个圆的角度,n为正多边形的边数。
仍以三角形和五边形为例,根据计算公式,我们可以得到三角形每个外角的度数为:每个外角度数 = 360° / 3 = 120°对于五边形,每个外角的度数为:每个外角度数 = 360° / 5 = 72°通过上述的计算公式,我们可以很方便地计算出正多边形的每个内角和外角的度数。
这些公式不仅方便了我们在理论上的计算,也可以帮助我们更好地理解和描述正多边形的特性。
总结:正多边形的内角和外角计算公式为:每个内角度数 = (n - 2) × 180° / n每个外角度数 = 360° / n其中,n为正多边形的边数。
多边形的内角和与外角和的关系在我们的日常生活中,很少有形状是一个简单的正方形或长方形的东西。
相反,我们更经常遇到的是有许多条边和角的形状,这些形状被称为多边形。
了解多边形的内角和与外角和的关系非常重要,因为这可以帮助我们更好地理解和处理这些形状。
内角和和外角和的概念首先,我们需要了解一些术语。
一个多边形是一个由三条或更多边组成的形状。
顶点是相邻的两条边的端点。
内角是多边形中的一个角,内角和是多边形内所有角的度数和。
外角是多边形内与内角相邻的角之一和外侧相邻直线的夹角,即外角等于与之相对的内角。
内角和公式多边形的内角和可以通过几种方式计算。
对于一个n边形,内角和的公式为:sum = (n-2) * 180°这个公式的意思是,将n边形划分成n-2个三角形,每个三角形的内角和为180度,所以n边形的内角和就等于(n-2)乘以180度。
对于一个三角形,它只有三个内角,所以它的内角和是固定的,为180度。
外角和公式现在我们来看看如何计算多边形的外角和。
对于一个n边形,外角和的公式为:sum = 360°也就是说,多边形的外角和总是恒定的,为360度。
这是因为每一个内角都有一个相对的外角,而所有外角相加的结果等于一个完整的圆的角度,即360度。
例如,一个四边形的内角和是360度,而外角和也是360度。
任何非直线多边形的外角和也都是360度。
内角和和外角和的关系既然我们已经知道了如何计算多边形的内角和和外角和,那么它们之间的关系是什么呢?事实上,多边形的内角和和外角和之间存在一个重要的关系。
对于任何一个n边形,它的内角和和外角和之间满足以下公式:内角和 + 外角和 = (n * 180°)换句话说,多边形的内角和和外角和的和总是等于n乘以180度。
例如,一个四边形的内角和为360度,其外角和也为360度。
因此,它们的总和为720度,也就是4乘以180度。
理解多边形的内角和与外角和的关系可以帮助我们更好地理解和计算多边形的角度,特别是当涉及到更复杂的多边形时。
什么是多边形的内角和外角和?
多边形是指由多个线段连接而成的封闭图形。
每个多边形都由一系列顶点和边组成。
在多边形中,内角和外角是两个重要的概念。
下面将分别介绍多边形的内角和外角的定义、性质和计算方法。
1. 多边形的内角:
多边形的内角是指多边形内部两条相邻边所夹的角度。
在一个n边形中,内角的总和等于(n-2) * 180°。
具体地,每个内角的度数可以通过以下公式计算:
内角度数= (n-2) * 180° / n
多边形的内角性质:
-内角和定理:在一个n边形中,内角的和等于(n-2) * 180°。
-内角的平均值:在一个n边形中,每个内角的平均值等于(n-2) * 180° / n。
2. 多边形的外角:
多边形的外角是指多边形内部一条边的延长线与另一条边所夹的角度。
在一个n边形中,外角的总和等于360°。
具体地,每个外角的度数可以通过以下公式计算:
外角度数= 360° / n
多边形的外角性质:
-外角和定理:在一个n边形中,外角的和等于360°。
-外角与内角关系:在一个n边形中,外角和对应的内角之和等于180°。
多边形的内角和外角计算方法:
-已知内角求外角:通过内角和定理,可以根据内角的个数计算外角的度数。
-已知外角求内角:通过外角和定理,可以根据外角的个数计算内角的度数。
通过掌握多边形的内角和外角的定义、性质和计算方法,我们可以在几何中计算多边形的内角和外角,并在实际问题中应用这些概念进行推导和解题。
多边形的内角和与外角和多边形是指由若干个边和角组成的图形,在数学中占据着重要的地位。
多边形的内角和与外角和是探究多边形性质的重要内容之一。
一、多边形的基本概念多边形是由连续的直线段组成的封闭图形。
根据边的数量,可以将多边形分为三角形、四边形、五边形等不同类别。
而每个多边形都由不同数量的内角和外角组成。
二、多边形的内角和多边形的内角和指的是多边形内部所有角度的总和。
对于n边形(n≥3),其内角和的计算公式可表示为:(n-2)×180°。
举个例子,对于三角形来说,n=3,根据内角和计算公式可知,内角和为(3-2)×180°=180°。
三、多边形的外角和多边形的外角和指的是多边形外部所有角度的总和。
对于n边形(n≥3),其外角和的计算公式可表示为:360°。
继续以三角形为例,根据外角和的计算公式可知,外角和为360°。
在了解了内角和和外角和的概念之后,我们可以进一步探究它们之间的关系。
四、内角和与外角和的关系对于任意一个多边形而言,其内角和和外角和之间存在着特殊的关系:内角和 + 外角和 = 360°。
这个结论可以通过数学推导得到,也可以通过多边形的图形表示进行观察验证。
举个例子,我们以四边形为例。
四边形的内角和计算公式为(4-2)×180°=360°,外角和为360°。
将内角和和外角和相加,可以得到360°+360°=720°。
由此可见,无论是三角形、四边形,还是更多边形,它们的内角和与外角和的和都是360°。
结论:多边形的内角和与外角和是数学中重要的概念。
对于任意n边形来说,其内角和为(n-2)×180°,外角和为360°。
并且内角和与外角和的和始终为360°。
通过研究多边形的内角和与外角和,我们不仅能够更深入地了解多边形的性质,也能够在解决相关问题时运用这些概念和公式。
多边形的内角和外角多边形是几何学中常见的图形,由多个直线边构成,每个角由相邻两条边所夹。
本文将介绍多边形的内角和外角的性质和计算方法。
1. 多边形的内角和外角性质内角:指多边形内部两条边所夹的角度。
一般来说,n 边形(n边形是指有n条边的多边形)的内角和为 (n-2) * 180度。
例如,三角形的内角和为 (3-2) * 180 = 180度,四边形的内角和为 (4-2) * 180 = 360度。
外角:指多边形内部一条边的延长线与相邻边所夹的角度。
多边形的外角和等于360度,即各个外角的和等于360度。
这意味着每个外角都相等。
例如,三角形的外角和为360度,四边形的外角和也为360度。
2. 多边形内角和计算方法当已知多边形的边数 n 时,内角和可以通过以下公式计算:内角和= (n-2) * 180度。
举例:- 三角形的内角和 = (3-2) * 180度 = 180度- 四边形的内角和 = (4-2) * 180度 = 360度3. 多边形外角的计算方法多边形的外角和始终等于360度,即每个外角的度数相等。
当已知多边形的边数n 时,每个外角的度数可以通过以下公式计算:外角度数 = 360度 / n。
举例:- 三角形的外角度数 = 360度 / 3 = 120度- 四边形的外角度数 = 360度 / 4 = 90度4. 多边形内角和外角的应用多边形的内角和外角的性质在许多几何问题中有重要的应用。
- 在计算多边形的内角和时,我们可以通过已知内角和求解未知内角的方法来确定多边形内部的角度分布,从而帮助计算各种几何问题。
- 外角和的知识可以帮助我们计算多边形中某个顶点的外角度数,从而在解决几何问题时提供有效的信息。
5. 总结多边形的内角和是 (n-2) * 180度,每个内角的度数与多边形的边数n 有关。
多边形的外角和为360度,每个外角的度数等于 360度 / n。
多边形的内角和外角的性质和计算方法是解决几何问题中重要的基础知识。
多边形的内角和定理与外角和定理多边形是几何学中的基本概念之一,它有着丰富的性质和定理。
其中包括内角和定理与外角和定理,它们对于理解多边形的性质和计算其角度非常重要。
本文将详细介绍多边形的内角和定理与外角和定理,并讨论其应用。
一、多边形的内角和定理内角是指多边形内部的角度,内角和定理描述了多边形内角的和与多边形的边数之间的关系。
对于n边形(n≥3),其内角和可以用以下公式表示:内角和 = (n - 2) × 180°其中,n是多边形的边数。
这个公式的直观解释是,将多边形分割成n-2个三角形,而每个三角形的内角和是180°,所以将它们相加即可得到多边形的内角和。
举个例子,对于三角形来说,它是一个3边形,根据公式可知,其内角和 = (3 - 2) × 180° = 180°,这符合我们对三角形的认识。
同样,对于四边形,它是一个4边形,根据公式可知,其内角和 = (4 - 2) × 180°= 360°,这也符合我们对四边形的认识。
除了上述公式之外,内角和定理还有一个重要的推论,即每个内角的平均值。
对于n边形来说,每个内角的平均值可以通过以下公式计算:每个内角的平均值 = 内角和 / n这个公式的意义在于,它告诉我们每个内角的平均值与多边形的内角和和边数有关。
通过计算平均值,我们可以更好地了解多边形内角的分布情况。
二、多边形的外角和定理外角是指一个多边形的某个顶点与其相邻两条边所组成的角度,外角和定理描述了多边形外角的和与360°之间的关系。
对于n边形(n≥3),其外角和等于360°。
这个定理的证明可以通过以下推理:对于任意一个多边形,我们可以通过从一个顶点出发,沿着多边形的边逐个计算外角,并将它们相加。
当我们绕着多边形的所有顶点一圈后,会回到起点,此时所有外角的和为360°。
举个例子,对于三角形来说,它是一个3边形,根据外角和定理可知,其外角和等于360°,这说明三角形的外角和为一个圆周。
正多边形的性质与计算正多边形是指所有边长相等且所有内角相等的多边形。
在数学中,正多边形具有一些独特的性质和计算方法。
本文将介绍正多边形的性质并探讨如何计算其面积和周长。
一、正多边形的性质1. 内角和公式对于正多边形来说,内角的和可以通过以下公式进行计算:内角和= (n - 2) × 180°,其中n表示正多边形的边数。
由于所有内角相等,因此每个内角的度数等于内角和除以边数:每个内角的度数 = 内角和 ÷ n。
2. 外角和公式正多边形的外角和公式为360°,即所有外角的度数之和等于360°。
因此,每个外角的度数等于360°除以边数:每个外角的度数 = 360° ÷ n。
3. 中心角度数对于正多边形来说,中心角等于每个内角的度数。
由于正多边形的内角相等,因此每个中心角的度数也相等。
4. 对称性正多边形具有多个对称轴,每个对称轴可以将正多边形对分为两个完全对称的部分。
正多边形的对称轴个数等于其边数。
二、正多边形的计算1. 面积计算计算正多边形的面积需要知道边长和边数。
正多边形可以划分为n个等边三角形,其中n为边数。
通过知道正多边形的边长L,我们可以计算出正三角形的高h,然后应用正三角形的面积公式来计算正多边形的面积S:面积S = n × (L × h) ÷ 2。
2. 周长计算正多边形的周长等于边长乘以边数,即周长P = L × n。
举例来说,如果给定一个正五边形的边长为5cm,我们可以按照以下方式计算其面积和周长:首先,计算正五边形的高,由于正五边形被划分为5个等边三角形,每个三角形的底边长度等于正五边形的边长,而高则等于正五边形边长的一半乘以三角形的内角余弦值。
通过计算可得正五边形的高为 h =5 × cos(36°/2) ≈ 4.045cm。
其次,根据面积公式 S = n × (L × h) ÷ 2,将边长和高代入公式得到正五边形的面积为S = 5 × (5 × 4.045) ÷ 2 ≈ 50.562cm²。
DB OC A ② C O A BD ③ 多边形的内角和及外角和知识体系:1.多边形的定义:在平面内,由若干条不在同一条直线上的线段;首尾顺次相接组成的封闭图形叫做多边形,在多边形中,组成多边形的各条线段叫做多边形的边,每相邻两条边的公共点叫做多边形的顶点,连接不相邻两个顶点的线段叫做多边形的对角线.2.多边形的内角和:n 边形的内角和=(n -2)180°.3.正多边形:在平面内,内角都相等,边也相等的多边形叫做正多边形.4.多边形的外角:多边形内角的一边与另一边的反向延长线所组成的角,叫做这个多边形的外角.在多边形的每个顶点处取这个多边形的一个外角,它们 的和叫做多边形的外角和,多边形的外角和都等于360°.5.过n 边形的一个顶点共有(n -3)条对角线,n 边形共有(3)2n n 条对角线. 6.过n 边形的一个顶点将n 边形分成(n -2)个三角形.题型体系:例1.正n 边形的内角和等于1080°,那么这个正n 边形的边数n=______解:8 点拨:主要考查n 边形的内角和公式.例2.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?(1)为了更直观的发现问题,我们不 妨先在特殊的四边形――平行四边形中,研究这个问题:已知:在平行四边形ABCD 中,O 是对角线BD 上任意一点(如图①);求证:S △OBC ·S △OAD =S △OAE ·S △OCD .(2)有了(1)中的探索过程作参照,你一定能类比出在一般四边形(如图②)中,解决问题的办法了吧!填写结论并写出证明过程。
已知:在四边形ABCD 中,O 是对角线BD 上任意一点(如图②)求证:_________________。
掌握多边形的内角和外角和公式在数学中,多边形是指由线段组成的闭合图形,它的边界由多个直线段连接而成。
多边形是几何学中的基础概念之一,它们有着独特的性质和特征。
本文将讨论多边形内角和外角的概念以及它们的计算公式。
一、多边形的内角和外角多边形的内角是指多边形内部的角度,而外角是指多边形的一条边的延长线与相邻边所形成的角度。
内角和外角是多边形的基本属性,它们的和与多边形的边数相关。
二、多边形内角的和公式对于一个n边形(n≥3),其内角和可以用以下公式来计算:内角和 = (n - 2) × 180°这个公式可以通过以下的思路来理解:在一个n边形中,我们可以通过一条对角线将它分解为n-2个三角形。
而对于每个三角形,其内角和为180°。
因此,整个多边形的内角和就是(n-2) × 180°。
举个例子,对于一个三角形(3边形),根据公式可知其内角和为(3-2) × 180° = 180°。
对于一个四边形(四边形),内角和为(4-2) × 180°= 360°。
同理,对于五边形(五边形),内角和为(5-2) × 180° = 540°。
以此类推。
三、多边形外角的和公式多边形的外角和也可以通过一个简单的公式来计算。
对于一个n边形(n≥3),其外角和可以用以下公式表示:外角和 = 360°这是因为,无论多边形的边数是多少,其外角和始终为360°。
可以这样理解:对于一个多边形,其每个外角加上其相应的内角总和为180°(即外角加上内角等于180°)。
因为多边形的内角和是固定的,所以外角和为360°。
举个例子,对于一个三角形,其外角和为360°。
同样地,对于四边形、五边形等各类多边形,外角和也都是360°。
四、实例应用掌握多边形内角和外角的计算公式对于解决各类与多边形相关的问题非常重要。
已知多边形外角和求边数公式
多边形外角和求边数的关系可以通过以下公式表示:多边形的外
角和等于360度。
具体而言,如果一个多边形具有n个边,则它的每个外角度数为360度除以n。
换句话说,每个外角的度数等于360度除以多边形的边数。
这个公式可以帮助我们计算出多边形的边数,只要我们知道多边
形的每个外角的度数。
例如,如果我们知道一个多边形的每个外角度
数为60度,则可以使用360度除以60度,得出该多边形具有6个边。
这个公式在数学和几何学中非常有用,可以用来解决各种与多边
形边数和外角相关的问题。
多边形内外角和的计算公式多边形是指由若干条边和相应的顶点组成的几何图形。
在数学中,我们常常关注多边形的内外角和,也就是所有内角和所有外角的总和。
本文将介绍多边形内外角和的计算公式。
让我们从最简单的多边形开始,也就是三角形。
三角形是由三条边和三个顶点组成的多边形。
根据三角形的性质,三角形的内角和为180度。
这意味着三角形的三个内角之和为180度。
例如,一个三角形的三个内角分别为60度、70度和50度,那么它们的和为180度。
接下来,我们来考虑四边形,也就是由四条边和四个顶点组成的多边形。
四边形可以分为不同的类型,如矩形、正方形、菱形等。
对于任意四边形,我们可以通过将其分割为两个三角形来计算其内角和。
例如,一个四边形的内角分别为90度、90度、60度和120度,我们可以将它分割为两个三角形,其中一个三角形的内角和为180度,另一个三角形的内角和为240度。
所以,这个四边形的内角和为180度加240度,即420度。
对于五边形、六边形等多边形,我们可以采用类似的方法来计算其内角和。
将多边形分割为若干个三角形,然后计算每个三角形的内角和,最后将它们相加即可得到多边形的内角和。
例如,一个五边形可以分割为三个三角形,如果这三个三角形的内角分别为80度、90度、100度,那么这个五边形的内角和就是80度加90度加100度,即270度。
外角是指多边形内角的补角,也就是与内角相邻的角。
多边形的外角和等于360度。
这是由于多边形的内角和加外角和等于360度,而多边形的内角和已经确定了,所以外角和也就确定了。
例如,一个五边形的内角和为270度,那么外角和就是360度减去270度,即90度。
我们可以得出多边形内外角和的计算公式:内角和加外角和等于360度。
根据这个公式,我们可以计算任意多边形的内外角和。
只需要将多边形分割为若干个三角形,计算每个三角形的内角和,然后将它们相加即可得到多边形的内角和。
再用360度减去内角和,就可以得到多边形的外角和。