洛必达法则和泰勒公式的区别与联系
- 格式:docx
- 大小:36.60 KB
- 文档页数:1
洛必达法则泰勒公式一、洛必达法则在第一章第七节中我们曾经讨论过无穷小的比较问题,并且已经知道两个无穷小之比的极限可能存在,也可能不存在,既使它存在也不能用商的极限运算法则去求解.而由无穷大与无穷小的关系知,无穷大之比的极限问题也是如此.在数学上,通常把无穷小之比的极限和无穷大之比的极限称为未定式,并分别简记为和.由于在讨论上述未定式的极限时,不能应用商的极限运算法则,这或多或少地都会给未定式极限的讨论带来一定的困难.今天在这里我们应用导数的理论推出一种既简便又重要的未定式极限的计算方法,并着重讨论当时,型未定式极限的计算,关于这种情形有以下定理.定理1设(1)当时,函数及都趋于零;(2)在点的某去心邻域内,及都存在,且;(3)存在(或为无穷大),则.也就是说,当存在时,也存在,且等于;当为无穷大时,也是无穷大.这种在一定条件下,通过分子分母分别求导,再求极限来确定未定式极限的方法称为洛必达(L' Hospita 1)法则.下面我们给出定理1的严格证明:分析由于上述定理的结论是把函数的问题转化为其导数的问题,显然应考虑微分中值定理.再由分子和分母是两个不同的函数,因此应考虑应用柯西中值定理.证因为求极限与及的取值无关,所以可以假定.于是由条件(1)和(2)知,及在点的某一邻域内是连续的.设是这邻域内一点,则在以及为端点的区间上,函数和满足柯西中值定理的条件,因此在和之间至少存在一点,使得等式(在与之间)成立.对上式两端求时的极限,注意到时,贝叽又因为极限存在(或为无穷大),所以.故定理1成立.注若仍为型未定式,且此时和能满足定理1中和所要满足的条件,则可以继续使用洛必达法则先确定,从而确定和,即.且这种情况可以继续依此类推.例1求.分析当时,分子分母的极限皆为零,故属于型不定式,可考虑应用洛必达法则.解、注最后一个求极限的函数在处是连续的.例2求.解、注例2中我们连续应用了两次洛必达法则.例3求.解、例4求、解、注(1)在例4中,如果我们不提出分母中的非零因子,则在应用洛必达法则时需要计算导数,从而使运算复杂化.因此,在应用洛必达法则求极限时,特别要注意通过提取因子,作等价无穷小代换,利用两个重要极限的结果等方法,使运算尽可能地得到简化.课后请同学们自己学习教材136页上的例10・(2)例4中的极限已不是未定式,不能对它应用洛必达法则,否则要导致错误的结果.以后在应用洛必达法则时应特别注意,不是未定式,不能应用洛必达法则.对于时的未定式有以下定理.定理2设(1)当时,函数及都趋于零;(2)当时,与都存在,且;(3)存在(或为无穷大),则.同样地, 对于(或)时的未定式,也有相应的洛必达法则.定理3设(1)当(或)时,函数及都趋于无穷大;(2)在点的某去心邻域内(或当时),及都存在,且;(3)存在(或为无穷大),则.例5求、解、例6求、解、事实上,例6中的不是正整数而是任何正数其极限仍为零.注由例5和例6可见,当时,函数都是无穷大,但三个函数增大的“速度”是不一样的,最快,其次是,最慢的是.除了和型未定式外,还有型的未定式.这些未定式可转化为或型的未定式来计算,下面我们通过实例来加以说明.例7求.分析因为,,所以是型未定式.又因为,.而是型未定式,是型未定式,所以型未定式可以转化为或型未定式去计算.解、例8 求.分析因为,,所以是型未定式.又因为.而是型未定式,所以上述型未定式可以转化为型未定式来计算•解.注讨论型未定式的极限,一般都是通过提取公因式或通分的方法把函数由和的形式转化为商的形式,然后再去讨论.例9求、分析这是一个幕指函数求极限的问题,由于,所以是一个型未定式.又因为,而是型未定式,所以上述型未定式可以转化为或型未定式来计算.解、例10求.分析由于,,所以是一个型未定式.又因为,而是型未定式,所以上述型未定式可以转化为或型未定式来计算.解、由于,所以.例11求、分析由于,,所以是一个型未定式.又因为,而是型未定式,所以上述型未定式可以转化为或型未定式来计算.解.由于,所以、型未定式向或型未定式的转化可形式地表示为:或;(或);(或);(或)・最后我们指出,洛必达法则是求未定式极限的一种方法.当定理的条件满足时,所求的极限当然存在(或为),但当定理的条件不满足时,所求极限不一定不存在.也就是说,当不存在时(无穷大的情况除外),仍可能存在,见下面的例题.例12 求、解这是一个型未定式,我们有.由于上式右端极限不存在,所以未定式的极限不能用洛必达法则去求,但不能据此断定极限不存在.这时我们需要另辟新径,重新考虑这个极限・・由此可见极限是存在的.二、泰勒公式把一个复杂的问题转化为一个简单的问题去研究是我们研究复杂问题时经常采用的方法,那么对于一个复杂的函数,为了便于研究,我们也希望用一些简单的函数来近似表达.说到简单函数,我们想到了用多项式表示的函数,它的运算非常简单.那么是否任意一个函数都可以用多项式去近似表达呢?关于这个问题我们曾经在微分近似计算中讨论过.设函数在点的某个邻域内可导,且,则在该邻域内.用上述的一次多项式去近似表达函数存在两点不足:(1)精确度不高,它所产生的误差仅是比高阶的无穷小;(2)用它做近似计算时,不能具体估算出误差大小.因此,在一些精度要求较高且要求估计误差的问题中,上述近似表达是满足不了要求的.这时我们就想,是否可以找到一个关于的更高次多项式去近似地表达函数,从而使误差变得更小呢?这就是下面我们要解决的问题.设函数在含有的某个开区间内具有直到阶的导数,并设用于近似表达函数的多项式为、(1)既然我们要用去近似地表达,自然要求在处的函数值及它的直到阶的导数在处的值依次与,相等,即,,…,・这样我们就得到了如下个等式,,,・・・,,即,,,…,.将所求得的多项式的系数,,…,代入(1)式,得、(2)下面的泰勒(Taylor)中值定理告诉我们,多项式(2)就是我们要找的多项式,并且用它去近似表达函数f(x),其误差的确变小了.泰勒中值定理若函数f(x)在含有x的某个开区间(a,b)内具有直到(n+1)阶的导数,则对任意x, 有f(x)二、(3)其中,(4)这里是在与之间的某个值.由(2)式和(3) 式知,,现在只要证明(介于与之间)即可•证由假设知,在内具有直到阶的导数,且、函数与在以及为端点的区间上满足柯西中值定理的条件,故有(介于与之间)、同样,函数与在以及为端点的区间上也满足柯西中值定理的条件,故有(介于与之间)、继续对函数与在以及为端点的区间上应用柯西中值定理,如此做下去,经过次应用柯西中值定理后,得(介于与之间,因而也在与之间)、定理证毕.泰勒中值定理告诉我们,以多项式近似表达函数时,其误差为.如果对某个固定的,当时,,则有误差估计式,及.由此可见,当时,误差是比高阶的无穷小,即(5)上述结果表明,多项式的次数越大,越小,用去近似表达的误差就越小,是比高阶的无穷小,并且误差是可估计的.泰勒公式不仅在近似计算中有着广泛的应用,而且它在级数理论和数值计算中也起着重要的作用,同学们一定要深刻地理解它.到此我们所提出的问题就解决了.多项式(2)称为函数按的專展开的次泰勒多项式,公式(3)称为按的幕展开的带有拉格朗日型余项的阶泰勒公式,而的表达式(4)称为拉格朗日型余项.当时,泰勒公式变成拉格朗日中值公式(介于与之间).因此,泰勒中值定理是拉格朗日中值定理的推广.在不需要余项的精确表达式时,阶泰勒公式也可写成、(6 )的表达式(5)称为佩亚诺(Peano)型余项,公式(6)称为按的幕展开的带有佩亚诺型余项的阶泰勒公式.在泰勒公式(3)中,如果取,则在0与之间.因此可令,从而泰勒公式变成简单的形式,即所谓带有拉格朗日型余项的麦克劳林(Mac 1 aurin)公式、(7)在泰勒公式(6)中,若取,则带有佩亚诺型余项的麦克劳林公式为、(8)由(7)和(8)可得近似公式、(9)误差估计式相应地变成、(10)例1写出函数的带有拉格朗日型余项的阶麦克劳林公式.解因为,所以.把这些值代入公式(7),并注意到,便得、由这个公式可知,若把用它的次泰勒多项式近似地表达为,则所产生的误差为、如果取,则无理数的近似式为,其误差.当时,可算出,其误差不超过.例2求的带有拉格朗日型余项的阶麦克劳林公式.解因为,,,・・・,,所以,,,,・・・,它们顺序循环地取四个数,,,,于是令,按公式(7)得,其中.如果取,则得近似公式,这时误差为、如果分别取和,则可得的次和次近似和,其误差的绝对值依次不超过和.以上三个近似多项式及正弦函数的图形见图4.由图4可见,当时,近似多项式的次数越高,其向函数逼近的速度就越快,这就是泰勒公式的精髓.类似地,我们还可以求出函数和的带有拉格朗日型余项的麦克劳林公式:其中;,其中;,其中.由以上带有拉格朗日型余项的麦克劳林公式,可很容易的得到相应地带有佩亚诺型余项的麦克劳林公式,请同学们课后自己写出来.以上这些常见函数的麦克劳林公式要求同学们一定要熟记,以便在今后使用时方便.例3利用带有佩亚诺型余项的麦克劳林公式,求极限.分析利用带有佩亚诺型余项的麦克劳林公式求极限,就是把极限中所涉及到的不是关于的多项式的函数,都用麦克劳林公式来表示,然后求其极限.在利用麦克劳林公式计算极限时,自变量的变化过程一定得是趋于零,否则保证不了麦克劳林公式对原始函数的良好近似.在本问题中,由于分式的分母,因此我们只需要将分子中的和分别用带有佩亚诺型余项的三阶麦克劳林公式表示即可,其中,.为什么和要展成三阶麦克劳林公式,而不展成其它阶的麦克劳林公式呢?这是因为用麦克劳林公式将分子展成关于的多项式后,分子分母中的最高次幕一定要相等,以便运算.这一点同学们今后一定要注意.解其中仍是比高阶的无穷小,因为.总结由于两个多项式之比的极限比较容易计算,所以人们经常利用泰勒公式把两个复杂函数之比的极限问题转化为多项式之比的极限问题.。
泰勒公式和洛必达洛必达准则泰勒公式的本质以及展开原则泰勒公式泰勒的两个中值定理本质是近似而展开的项数如果越多则近似的越准确按照泰勒公式展开原则(本质)可以得到就极限过程中常用的几个公式可以观察出基本都展开到三阶因为在求极限时一般展开到三阶就是够用的但是也可以往后展开使用原则在乘除位置时,使用等阶无穷小即可在加减位置要用泰勒公式1在加减位置,分子分母保证同阶找到全部的同阶量不可以漏项2以前后不能抵消的最低次幂 作为展开同阶标准(1和2基于这个原则为基础)3上下同阶会产生问题的时候就会用到这个泰勒公式和等价无穷小的关系例题经典!1这个题目告诉了我们泰勒公式和等价无穷小的使用模型这个题目有很多无穷小量(红笔花圈的都是 )建立模型解题2这是一个0/0型的极限并且观察到分母是一个二阶量所以自然要将分子展开到二阶量,而2x+已经是幂函数了所以不需要将这部分式子展开只需要将ln部分展开x2将ln部分展开需要利用到泰勒公式的推广 ln(1+x)可以展开ln(1+□)当□也是趋于0时也可以展开更经典!!3分析为了上下同阶那么肯定是对sinx这一部分共同展开到三阶e x1上面两个例题都是简单对单独一项的本体展开而这里是对A*B(乘法模型)中A和B都展开,得到三阶量有两种情况A和B各自的阶数只有这两种情况而 根据的1为为了得到全部的的三阶量那么一定要乘到sin的三阶量sinx的x为为了得到全部的三阶量那么一定要乘到的二阶量e x x0x1e x总结:遇到A*B定泰勒展开各自阶数,我们应当用A中的最低阶确定B的需要展开到的最高阶,再用B中的最低阶确定A的需要展开到的最高阶交叉定展开阶法根据1的步骤2解题过程4难于所有考研真题,只要你搞懂了这道题,并且写的比较规范(不多写,不漏写)你就彻底懂了泰勒展开 ()5分析麦克劳林公式如果将泰勒公式中取0便得到了最常用的“麦克劳林公式”x0如果是带有拉格朗日余项的麦克劳林公式就是此时误差项估计式就变成泰勒公式和洛必达比较 近似速度远大于降阶速度 若仍然用上面引例,我们用泰勒展开的话所以求极限的题目中泰勒公式会比洛必达更有优势一些。
内容概要课后习题全解习题3-1★1.下列函数在给定区间上是否满足罗尔定理的所有条件?如满足,请求出满足定理的数值ξ。
(1)]511[32)(2.,,x x x f ---=;(2)]30[3)(,,x x x f -=。
知识点:罗尔中值定理。
思路:根据罗尔定理的条件和结论,求解方程0)(/=ξf ,得到的根ξ便为所求。
解:(1)∵32)(2--=x x x f 在]511[.,-上连续,在)5.1,1(-内可导,且0)51()1(==-.f f ,∴32)(2--=x x x f 在]511[.,-上满足罗尔定理的条件。
令()410f ξξ'=-=得)511(41.,ξ-∈=即为所求。
(2)∵x x x f -=3)(在]30[,上连续,在)30(,内可导,且0)3()0(==f f , ∴x x x f -=3)(在]30[,上满足罗尔定理的条件。
令()0f ξ'==,得)30(2,ξ∈=即为所求。
★2.验证拉格朗日中值定理对函数25423-+-=x x x y 在区间]10[,上的正确性。
知识点:拉格朗日中值定理。
思路:根据拉格朗日中值定理的条件和结论,求解方程(1)(0)()10f f f ξ-'=-,若得到的根]10[,ξ∈则可验证定理的正确性。
解:∵32()452y f x x x x ==-+-在]10[,连续,在)10(,内可导,∴25423-+-=x x x y 在区间]10[,上满足拉格朗日中值定理的条件。
又2)0(2)1(-=-=,f f ,2()12101f x x x '=-+,∴要使(1)(0)()010f f f ξ-'==-,只要:(01),ξ=,∴(01),ξ∃=,使(1)(0)()10f f f ξ-'=-,验证完毕。
★3.已知函数4)(x x f =在区间]21[,上满足拉格朗日中值定理的条件,试求满足定理的ξ。
洛必达法则泰勒公式f(x)=f(a)+f'(a)(x-a)/1!+f''(a)(x-a)²/2!+f'''(a)(x-a)³/3!+...其中,f(x)是要计算的函数,a是展开点,f'(a)表示函数在a点的一阶导数,f''(a)表示函数在a点的二阶导数,以此类推。
通过使用洛必达法则,我们可以通过计算泰勒级数的前n项来近似计算函数在a点附近的值。
1.洛必达法则只适用于形如0/0或无穷大/无穷大形式的极限计算。
当计算极限时遇到这种情况,可以尝试使用洛必达法则来简化计算。
2.如果一个函数在特定点a处连续,并且它的导数在该点附近存在且有定义,那么这个函数在该点处的极限等于导数在该点的值。
也就是说,如果f(a)=g(a)=0,且f'(a)和g'(a)存在(有限或无穷大),那么f(x)/g(x)的极限为f'(a)/g'(a)。
3.洛必达法则可以迭代使用,即可以多次应用洛必达法则来计算复杂的极限。
如果一个极限形式无法直接应用洛必达法则,可以通过迭代运用洛必达法则来简化极限的计算。
4.使用洛必达法则需要注意,由于洛必达法则只是一种近似方法,所以在使用洛必达法则计算极限时,结果可能只是一个近似值,并不是一个准确的值。
因此,在进行极限计算时,需要将结果验证过程中的任何近似值与准确值进行比较。
洛必达法则的应用广泛,特别是在微积分和数学分析中。
通过洛必达法则,我们可以在计算函数的极限时,通过近似的方式得到一个接近准确值的结果。
因此,洛必达法则被认为是一种非常有用的数学工具,对于解决复杂的极限计算问题有着重要的作用。
洛必达公式+泰勒公式+柯西中值定理+罗尔定理洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求解。
②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(Taylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.)/n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
洛必达法则的公式泰勒-洛必达法则是一个重要的物理定律,由英国物理学家泰勒-洛必达在19年首先提出。
该定律用来解释一个简单机械系统中液体和空气之间的力学运动。
该定律表述为:动能守恒定律,指运动系统中的动能保持不变。
这就意味着,动能受到外部力的作用下不变,同时,系统中物体之间可能存在非位能作用,比如离心力和空气阻力。
泰勒-洛必达法则将物体之定义为在任何时间t中可能改变的变量的函数的总和。
这个变量就是泰勒-洛必达公式的乘数,用符号P表示。
而等号右边就是物体的动能,也就是所谓的“动能定律”。
通过定义上述的变量和动能的定义,我们可以得到泰勒-洛必达公式的表达形式:P =K+V+U其中,K是物体的动能,V是物体的动量,U是物体的位能。
K受到外部力的作用,永远是恒定的。
V和U受物体本身减速和空气阻力的影响,随时间改变而改变。
因此,总而言之,注意动能定律总是保持不变,即:K+V+U = constant泰勒-洛必达法则是一个重要的物理定律,既能够解释物体的运动,又能够说明物体的动能是一个恒定的值,受到外部力的作用才会改变。
在机械系统的研究中,它也被广泛使用,以揭示物体在不同力学系统中的运动表现。
因此,泰勒-洛必达法则是一个重要的物理定律,不仅仅被用于物理研究,也可以用于其他领域,比如力学分析,系统分析和计算机科学中。
总而言之,泰勒-洛必达法则是一个重要的物理定律,用于诠释力学系统中的动能定律,其公式表达形式为:P=K+V+U,这就意味着动能守恒定律,其位能和动能定义的变量就成为泰勒-洛必达公式的乘数。
它的重要性和杰出性在于可以有效地推导出物体在力学运动中的行为,从而解释物体之间的相互关系和规律,为人们提供了一种有效的分析和理解物理现象的方法。
洛必达法则与泰勒公式一、洛必达法则 定义:若函数和满足下列条件: ⑴,;⑵在点的某去心邻域内两者都可导,且;⑶(可为实数,也可为±∞或),则适用对象:,型未定式。
(其它类型未定式:,,,,等,可通过简单变换而转化为,型未定式。
注意:不能在数列形式下直接用洛必达法则,因为对于离散变量是无法求导数的。
但此时有形式类近的斯托尔兹-切萨罗定理(Stolz -Ces àrotheorem )作为替代。
求极限. 1ln lim 1+--→x x x x x x求极限求极限求极限211)1(ln lim 111)1(ln lim 2211-=-++=--+=→→x xx x x xx x xx x x x 解:.1lim21100x x ex-→0!50lim 50lim lim lim ,1t t 49t 50t 50t 2=====+∞→=+∞→+∞→+∞→-+∞→t t t tee t e t e t x则原式可化为解:令.)4cos 2(sin lim x x xx +→∞2001)14cos 2(sin 010)1(2)4sin 42cos 2(lim 14cos 2sin lim lim )4cos 2(sin lim 13(,01e t tt t et t e u x t t t tt t t tt v u v ==-=-+=+==→=→→-+→→-故原式又因为原式种方法)得见求极限的则由公式解:令.cos sin 1lim 20x x xx -+→二、泰勒公式泰勒公式是求数学极限的重要技术性工具,我们要将以下几个重要函数的泰勒公式熟稔于心注:对以上公式进行处理,可得到一组“差函数”的等价无穷小替34cos 24lim sin 24lim cos 12lim cos sin 1cos sin 1lim0022020=+=+=-+=-+++=→→→→x x x xx x x x x x x x x x x x x x )(解:原式)0(→x )(!2)1(1)1()(!31!211)(3121)1ln()(31arctan )(61arcsin )(31tan )(!41!211cos )(61sin 2233233233333344233x o x x x x o x x x e x o x x x x x o x x x x o x x x x o x x x x o x x x x o x x x x+-++=+++++=++-=++-=++=++=++-=+-=αααα换式:如求极限 解:原式原式又即原式求极限. 解:等(,(同理有(,则如),061~arcsin )031~tan )061~sin )(61sin 33333→-→-→-+=-x x x x x x x x x x x x x o x x x .)1tan (lim 2n n nn →∞01,lim 1tanln 2→==∞→nt e nn n n 令3tan 21tan 2lim lim lim tan lnt t t t t teee n n t t tn --∞→∞→∞→===)(31tan 33t o t t t ++=31)(31lim tan lim 333=-++=-∞→∞→t tt o t t t t t n n 31=)]1ln()1([lim 220ax a xx a x +--→)()(21)1ln(2x o ax ax ax +-=+求极限 解令利用展开式可得故原式= 求极限 解:方法一;洛必达法则21)2121(lim ))]()(21)(1([lim )]1ln()1([lim 24302220220=-+=+---=+--=→→→x a a x a x o ax ax a x x a ax a x x a x x x 原式)(lim 656656x x x x x --++∞→故时,于是,当,0t x ,1+→+∞→=tx ])1()1[(t1)(6161656656t t x x x x --+=--+)(1)1(t o t t ++=+αα)(611)1(),(611)1(6161t o t t t o t t +-=-++=+31)(31lim ])1()1[(t 1lim 061610=+=--+==→→t t o t t t t t .)1ln(sin 1tan 1lim 20xx x xx x -++-+→方法二;泰勒公式2121lim )111(2lim ))1(ln(221lim ))1(ln(2)cos tanx(1lim sin 1tan 11)1ln(sin tanx lim 0020020-=-+=-+=-+=-+-=+++⋅-+-=→→→→→xx x x x xx x x x xx x x x x x x x x x 原式21)(21(221lim))(21(221lim)(21)1ln())1(ln(221lim ))1(ln(2)cos tanx(1lim sin 1tan 11)1ln(sin tanx lim 222022202220020-=+-=-+-=+-=+-+=-+-=+++⋅-+-=→→→→→)原式得由原式x o x x x x o x x x x o x x x x x xx x x x xx x x x x x x x x x上篇练习题答案讲解1、求极限 解:方法一;洛必达法则方法二;利用公式求极限 解求极限.,,2,1i ,0,)(lim i 21n a na a a xnx nx x n =>+++∞→其中nx nx x nxn x x n xn x x n xn x nx xn a a a a a a a a a a a a n na a a x n n a a a 212122112121}ln ln ln lim exp{)}ln(lim exp{)(lim =++++++⋅=+++=+++→∞→∞→∞型)∞-=1}()1ex p{(v u u v nn xn x x n x nxx n xn xnxx n a a a a a a x na a a xnn a a a n a a a 2121212121}exp{ln }lim exp{)1(lim exp{)(lim ==-+++=-+++=+++∞→∞→∞→.)111(lim 2nn nn ++∞→.)}1n 1(lim exp{原式=2en n n =+⋅∞→.,,,,lim 1均为正整数其中q p n m xx x x qpn mx --→解:)()(11111111lim lim lim 111111111111111p q mn m n pq qp n m xq x p xn x m x x x x x x x x q p n m x qpnm x q p n mx --=--=--=--=------→→→。
极限的计算方法洛必达法则和泰勒展开洛必达法则和泰勒展开是数学中极限的计算方法,它们在求解复杂函数的极限问题时非常有用。
本文将详细介绍这两种计算方法的原理和应用。
一、洛必达法则洛必达法则是一种计算不定型极限的方法,它是由17世纪法国数学家洛必达提出的。
当我们计算一个函数的极限时,如果得到的是0/0或无穷大/无穷大的形式,就可以运用洛必达法则来求解。
洛必达法则的思想是利用两个函数的导数之商来逼近函数的极限,具体步骤如下:1. 若极限形式为0/0或无穷大/无穷大,先对分子函数和分母函数分别求导;2. 如果导数的极限存在,即可得到原极限的结果。
如果导数的极限不存在,或者求导后的函数仍然为0/0或无穷大/无穷大的形式,就可以继续使用洛必达法则。
以下是一个应用洛必达法则求解极限的示例:设函数f(x) = (sinx - x)/x^3,求lim(x→0) f(x)的极限。
解:首先对函数f(x)分子分母求导,得到f'(x) = (cosx - 1)/x^3 - 3sinx/x^4。
然后计算极限lim(x→0) f'(x),仍然得到0/0的形式。
再次对f'(x)进行求导,得到f''(x) = (-2sinx - 9cosx)/x^4 +12sinx/x^5。
继续计算极限lim(x→0) f''(x),仍然得到0/0的形式。
最后再对f''(x)求导,得到f'''(x) = (-16sinx - 4cosx)/x^5 -60cosx/x^6。
继续计算极限lim(x→0) f'''(x),得到极限值为-4/3。
因此,lim(x→0) f(x)的极限为-4/3。
二、泰勒展开泰勒展开是一种将函数在某点附近进行多项式逼近的方法。
根据泰勒定理,如果一个函数在某点处存在各阶导数,则可以用一个多项式逼近该函数。
泰勒展开的公式如下:f(x) = f(a) + f'(a)(x - a)/1! + f''(a)(x - a)^2/2! + ... + f^n(a)(x - a)^n/n! + R_n(x)其中,f(a)表示函数在点a处的函数值,f^(n)(a)表示函数在点a 处的n阶导数,R_n(x)为余项。
第六章微分中值定理及其应用2 泰勒公式(讲义)一、带有佩亚诺型余项的泰勒公式若f在x0可导,则有f(x)=f(x0)+f’(x0)(x-x0)+o(x-x0).即在点x0附近,用f(x0)+f’(x0)(x-x0)逼近函数f(x)时,其误差为(x-x0)的高阶无穷小量.若要求误差为o((x-x0)n),可参考n次多项式:P n(x)=a0+a1 (x-x0)+a2(x-x0)2+…+a n(x-x0)n. 则P n(x0)=a0;P n’(x0)=a1;P n”(x0)=2!a2;…;P n(n)(x0)=n!a n. 即a0=P n(x0);a1=P n ′(x0)1!;a2=P n′′(x0)2!;…;a n=P n(n)(x0)n!.若f在点x0存在直到n阶的导数,则由这些导数构造的n次多项式:T n(x)=f(x0)+f′(x0)1!(x-x0)+f′′(x0)2!(x-x0)2+…+f(n)(x0)n!(x-x0)n,称为函数f在点x0处的泰勒多项式,T n(x)的各项系数f(k)(x0)k!(k=1,2,…,n)称为泰勒系数。
f(x)与其泰勒多项式T n(x)在点x0有相同的函数值和直至n阶导数值,即f(k)(x0)=T n(k)(x0), k=0,1,2,…,n.定理6.8:若f在x0存在直到n阶的导数,则有f(x)=T n(x)+o((x-x0)n),即f(x)=f(x0)+f′(x0)1!(x-x0)+f′′(x0)2!(x-x0)2+…+f(n)(x0)n!(x-x0)n+o((x-x0)n).证:记R n(x)=f(x)-T n(x),Q n(x)=(x-x0)n,则R n (x 0)=R n ’(x 0)=…R n (n)(x 0)=0;Q n (x 0)=Q n ’(x 0) =…=Q n n-1(x 0)=0,Q n (n)(x 0)=n!. ∵f (n)(x 0)存在,∴在x 0的某邻域U(x 0)内f 存在(n-1)阶导函数f (n-1)(x). 根据洛必达法则:limx→x 0R n (x)Q n (x)=limx→x 0R n ′(x)Q n ′(x)=…=limx→x 0R n (n−1)(x)Q n(n−1)(x)=limx→x 0f (n−1)(x )−f (n−1)(x 0)−f (n )(x 0)(x−x 0)n!(x−x 0)=1n!lim x→x 0[f (n−1)(x )−f (n−1)(x 0)x−x 0−f (n )(x 0)]=0.∴R n (x)=f(x)-T n (x)=o (Q n (x))=o ((x-x 0)n ),即f(x)=T n (x)+o ((x-x 0)n ) f(x)=f(x 0)+ f ′(x 0)1!(x-x 0)+f ′′(x 0)2!(x-x 0)2+…+f (n)(x 0)n!(x-x 0)n +o ((x-x 0)n ). (泰勒公式)注:1、R n (x)=f(x)-T n (x)称为泰勒公式的余项,形如o ((x-x 0)n )的余项称为佩亚诺型余项。
洛必达法则和泰勒展开的应用洛必达法则(L'Hôpital's Rule)和泰勒展开(Taylor Expansion)是微积分中两个重要的概念和工具,它们在数学和物理学等领域中有着广泛的应用。
本文将探讨洛必达法则和泰勒展开的应用,并介绍它们在实际问题中的具体运用。
一、洛必达法则的应用洛必达法则是解决极限计算中一类不定型形式的常用方法。
当一个函数的极限计算遇到$\frac{0}{0}$或$\frac{\infty}{\infty}$这样的不定型形式时,可以使用洛必达法则来简化计算过程。
例如,计算函数$f(x)=\frac{\sin(x)}{x}$在$x\to0$时的极限。
直接代入$x=0$得到$\frac{0}{0}$,无法直接求解。
使用洛必达法则,我们对分子和分母同时求导,得到$f'(x)=\frac{\cos(x)}{1}$。
再次代入$x=0$,得到$f'(0)=1$。
因此,原函数$f(x)$在$x\to0$时的极限为1。
洛必达法则的应用还包括解决幂函数的极限、指数函数的极限以及对数函数的极限等。
在实际问题中,通过使用洛必达法则,可以简化复杂函数的极限计算,提高求解效率。
二、泰勒展开的应用泰勒展开是将一个函数表示为多项式的形式,通过取多项式的有限项,可以近似地计算原函数在某点附近的取值。
泰勒展开的应用广泛,包括求解函数的近似值、确定函数的性质以及解决微分方程等。
例如,计算函数$f(x)=\sin(x)$在$x=0$处的近似值。
我们将$f(x)$在$x=0$处展开成泰勒级数:$$f(x)=f(0)+f'(0)x+\frac{f''(0)}{2!}x^2+\frac{f'''(0)}{3!}x^3+...$$由于$f(0)=0$,且$f'(x)=\cos(x)$,$f''(x)=-\sin(x)$,$f'''(x)=-\cos(x)$,可以得到:$$f(x)=\sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-...$$将$x=0.5$代入泰勒级数中,可以得到$\sin(0.5)$的近似值。
导数极限知识总结——仅作了解切忌深究一.洛必达法则是什么(鄙人觉得高中数学神器)洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
在导数问题的3)问中通常会出现形似f(x)g(x)的式子,而一般会出现求其导数,极值,甚至是某一点极限的问题,洛必达法则就是解决这一类而且不能用普通导数解决的问题。
引入:试求lim x→1x 3−3x+2x 3−x 2−x+1试求 xx xx x sin sin lim+-∞→显而易见,这两个极限在以往的算法中一个是00式,一个则是∞∞,无法求导,这时就需要用到高端大气上档次的洛必达法则了。
1.使用条件定理1 若函数)(x f 与函数)(x g 满足下列条件: (1)在a 的某去心邻域)(x v 内可导,且0)('≠x g (2)0)(lim 0=+→x f a x 0)(lim 0=+→x g a x(3)A x g x f a x =+→)(')('lim 0则A x g x f x g x f a x a x ==+→+→)(')('lim )()(lim 00(包括A 为无穷大的情形)定理2 若函数)(x f 和)(x g 满足下列条件 (1)在a 的某去心邻域)(x v 内可导,且0)('≠x g (2)∞=+→)(lim 0x f a x ∞=+→)(lim 0x g a x(3)A x g x f a x =+→)(')('lim则A x g x f x g x f a x a x ==+→+→)(')('lim )()(lim 00(包括A 为无穷大的情形)此外法则所述极限过程对下述六类极限过程均适用:-∞→+∞→∞→→→→-+x x x x x x x x x ,,,,,000。
简而言之,当满足00或 ∞∞的不定式时,A x g x f x g x f a x a x ==+→+→)(')('lim )()(lim0000PS :一次求导不行仍未不定式,则多次求导 于是上面的两个式子可以这样解例一.lim x→1x 3−3x+2x 3−x 2−x+1 = lim x→13x 2−33x 2−2x−1=lim x→16x−2=2例二.1)sin sin (lim cos 1cos 1lim sin sin lim-=-=+-=+-∞→∞→∞→xxx x x x x x x x x (此为错解)事实上,1sin 1sin 1lim sin sin lim =+-=+-∞→∞→xxx xx x x x x x (正解),这里为了说明问题,才使用上面的解法,这里也可以看出,寻找最为简便的解题方法才是正确解题的关键。
洛必达法则和泰勒公式的区别与联系
洛必达法则和泰勒公式都是数学中的重要定理,用于求解函数的极限问题。
它们的区别和联系如下:
1. 区别:
- 洛必达法则(L'Hôpital's rule)用于解决形如"0/0"或者"∞/∞"的不定式极限问题。
它利用了两个函数在某个点处的导数的极限与函数值的极限之间的关系,从而求解极限。
洛必达法则适用的情况有限,只能用于求解特定类型的不定式极限问题。
- 泰勒公式(Taylor series)是一种用多项式逼近函数的方法。
它将一个光滑的函数表示为无限多个项相加的形式,每个项都是函数在某个点处的导数与对应的阶乘之积,从而近似表示函数在这个点附近的行为。
泰勒公式适用的范围更广,可以用于近似计算各种函数的值。
2. 联系:
- 虽然洛必达法则和泰勒公式解决的问题类型不同,但它们的原理都基于导数的性质。
洛必达法则依赖于函数的导数极限,而泰勒公式则利用了函数在某个点处的导数来近似该点附近的函数值。
- 在某些情况下,洛必达法则和泰勒公式可以结合使用。
例如,当计算某个函数在某个点处的极限时,可以先利用洛必达法则求出该点的导数极限,再利用泰勒公式对函数进行近似,从而求得极限值。
总之,洛必达法则和泰勒公式是数学中常用的工具,它们在求解函数的极限问题中有各自的用途和优势。