六年级相遇和追及问题(含答案)
- 格式:docx
- 大小:1.54 MB
- 文档页数:35
追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2、理清两大关系:时间关系、位移关系。
3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。
5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。
.相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= _________ 分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _________ 分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________ 分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________ 分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________ )秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________ 分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________ 点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________ .9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________ 圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________ 分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________ 分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm 的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________ 次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
一.一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。
解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。
方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。
等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km ,骑自行车的人的速度是每小时10.8km 。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x=_________分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_________分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________)秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________.9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
小升初数学专题第4讲行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。
同时也是小学专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。
(一) 典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里: =⨯路程和速度和相遇时间; =⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。
(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。
追及问题相遇问题举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。
我们可以依次求出甲、乙每次到达A 点或B 点的时间。
为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。
折线示意图能将整个行程过程比较清晰的呈现出来:例如AD 表示的是,甲从A 地出发运动到B 地的过程,其中D 点对应的时间为1小时,表示甲第一次到达B 点的时间为1小时,BF 表示乙从B 地出发到达A 地的过程,F 点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD 与BF 相交于C 点,对应甲、乙的第一次相遇事件,同样的G 点对应是甲、乙的第二次相遇事件。
一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。
⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
一、相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。
⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题 能够利用柳卡图、比例解决多次相遇和追及问题相遇和追及问题一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 2倍。
解:如下图所示,因为每次相遇都共行一个来回,所用时间相等,所以乙车两次相遇走的路程相等,即2AC CB =,推知23AC AB =.第一次相遇时,甲走了43AB BC AB +=,乙走了23AC AB =,所以甲车速度是乙车的2倍。
【答案】2倍【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
小学数学《行程问题之相遇与追击》练习题(含答案)内容概括我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(V)和路程岳)这三个基本量,它们之间的关系如下:(1)速度X时间;路程可简记为:s = Vt(2)路程+速度:时间可简记为:t = s + v(3)路程+时间:速度可简记为:V = s + t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和X相遇时间=路程和S和二v和t追及问题:速度差X追及时间=路程差S差二v差t对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!相遇问题【例1】两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?【例2】大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发, 小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【例3】甲乙两车同时从A、B两地出发相向而行,6小时相遇.相遇后甲车继续行驶4小时到达B地.乙车每小时行30千米,A、B两地相距多少千米?【例4】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?【例5】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【例6】甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后, 再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?【例7】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.追击问题【例8】龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米?【例9】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?【例10】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?【例11】两名运动员在湖的周围环形道上练习长跑。
. . .. ..相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x=_________分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_________分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________)秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________.9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。
追及与相遇问题练习(含答案)一、多选题(本大题共5小题,共20.0分)1. 在一个大雾天,一辆小汽车以的速度行驶在平直的公路上,突然发现正前方处有一辆大卡车以的速度同方向匀速行驶,汽车司机立即刹车,忽略司机的反应时间,后卡车也开始刹车,从汽车司机开始刹车时计时,两者的图象如图所示,下列说法正确的是( )A. 小汽车与大卡车一定没有追尾B. 由于在减速时大卡车的加速度大小小于小汽车的加速度大小,导致两车在时追尾C. 两车没有追尾,两车最近距离为D. 两车没有追尾,并且两车都停下时相距2. 两物体均沿轴正方向从静止开始做匀变速直线运动,时刻两物体同时出发,物体的位置随速率平方的变化关系如图甲所示,物体的位置随运动时间的变化关系如图乙所示,则( )A. 物体的加速度大小为B. 时,两物体相距C. 内物体的平均速度大小为D. 两物体相遇时,物体的速度是物体速度的倍3. 甲乙两车在一平直道路上同向运动,其图象如图所示,图中和的面积分别为和,初始时,甲车在乙车前方处( )A. 若,两车不会相遇B. 若,两车相遇次C. 若,两车相遇次D. 若,两车相遇次4. ,两辆汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方随位置的变化规律如图所示,下列判断正确的是( )A. 汽车的加速度大小为B. 汽车、在处的速度大小为C. 从开始到汽车停止前,当时、相距最远D. 从开始到汽车停止前,当时、相距最远二、计算题(本大题共5小题,共50.0分)5. 一辆值勤的警车停在公路边,当警员发现从他旁边以的速度匀速直线行驶的货车有违章行为时,决定前去追赶,经过后警车启动,并以的加速度做匀加速直线运动,试问:警车在追赶货车的过程中,两车间的最大距离是多少若警车能达到的最大速度是,达到最大速度后以该速度匀速运动,则警车启动后要多长时间才能追上货车6. 一辆汽车以的速度在平直公路上行驶,制动后要经过才能停下来。
现在该汽车正以的速度在平直公路上行驶,突然发现正前方处停有一辆摩托车,汽车司机经的反应时间后,立即采取制动措施,汽车开始制动的同时摩托车以的加速度加速启动。
追及和相遇问题一、追及相遇问题中常用的临界条件:⑴速度小者追速度大者(在减速),追上前两个物体距离两个物体_____________时,有最大距离;⑵速度大者(减速)追赶速度小者,追上前两个物体距离在两个物体__________时,有最小距离. 即必须在此之前追上,否则就不能追上.(3)恰好不相撞,恰好相撞的临界条件:_______________________________三、闯关训练1.如图所示是A、B两物体从同一地点出发,沿相同的方向做直线运动的v-t图象,由图象可知 ( )A.A比B早出发5 s B.第15 s末A、B速度相等C.前15 s内A的位移比B的位移大50 m D.第20 s末A、B位移之差为25 m2.a、b两物体从同一位置沿同一直线运动,它们的速度图像如图所示,下列说法正确的是 ( )A.a、b加速时,物体a的加速度大于物体b的加速度υ/(m·s−1)B.20秒时,a、b两物体相距最远C.60秒时,物体a在物体b的前方D.40秒时,a、b两物体速度相等,相距200 m3.A、B两车沿同一直线向同一方向运动,A车的速度vA=4 m/s,B车的速度vB=10 m/s.当B车运动至A车前方7m处时,B车以a=2 m/s2的加速度开始做匀减速运动,从该时刻开始计时,则A车追上B车需要多长时间?在A车追上B车之前,二者之间的最大距离是多少?4.公共汽车从车站开出以4 m/s的速度沿平直公路行驶,2 s后一辆摩托车从同一车站开出匀加速追赶,加速度为2 m/s2,试问:(1)摩托车出发后,经多少时间追上汽车?(2)摩托车追上汽车时,离出发处多远?(3)摩托车追上汽车前,两者最大距离是多少?5.汽车A在红绿灯前停住,绿灯亮起时起动,以0.4 m/s2的加速度做匀加速运动,经过30 s后以该时刻的速度做匀速直线运动.设在绿灯亮的同时,汽车B以8 m/s的速度从A车旁边驶过,且一直以相同的速度做匀速直线运动,运动方向与A车相同,则从绿灯亮时开始()A.A车在加速过程中与B车相遇B.A、B相遇时速度相同C.相遇时A车做匀速运动D.两车不可能再次相遇6.同一直线上的A、B两质点,相距s,它们向同一方向沿直线运动(相遇时互不影响各自的运动),A做速度为v的匀速直线运动,B从此时刻起做加速度为a、初速度为零的匀加速直线运动.若A在B前,两者可相遇几次?若B在A前,两者最多可相遇几次?7.一列货车以28.8 km/h的速度在平直铁路上运行,由于调度失误,在后面600 m处有一列快车以72 km/h的速度向它靠近.快车司机发觉后立即合上制动器,但快车要滑行2000 m才停止.试判断两车是否会相碰8.一列火车以v1的速度直线行驶,司机忽然发现在正前方同一轨道上距车为s处有另一辆火车正沿着同一方向以较小速度v2做匀速运动,于是他立即刹车,为使两车不致相撞,则a应满足什么9.从同一地点以30 m/s的速度先后竖直上抛两个物体,抛出时间相差2 s,不计空气阻力,两物体将在何处何时相遇?。
漫画释义五年级寒假时钟问题五年级春季比例法解行程问题六年级暑期多次相遇与追及六年级秋季变速问题六年级寒假行程模块综合选讲总结多次相遇与追及的规律,利用比例、线段图、柳卡图解决多次相遇与追及问题知识站牌人与人的相遇是一种缘不管是擦肩而过,还是一次美丽的邂逅,都是一种缘缘会让来自不同世界的人走到一起例如今天我们是来自不同学校的同学,汇集到一起来学而思学习,这就是缘分,而且我们已是多次相遇,恰巧今天又要学习多次相遇与追及问题,那该是多大的缘分呀!缘是一个经历了心灵的过程,在这个过程里有些东西不仅仅是灵魂的一种体验,而且还是精神上的一种拥有为了这来之不易的缘分,让我们一起进入今天的课程,体会那精神上的享受!1.理解多次相遇与追及的规律,并能运用相应规律解决行程相关的问题2.掌握用柳卡图解决多次相遇与追及问题的技巧,体会柳卡图与线段图在解决行程问题中的联系与区别一、往返相遇问题的重要结论:设一个全程中甲走的路程为M ,乙走的路程为N ⑴甲乙二人从两端出发的直线型多次相遇问题:⑵同一出发点的直线型多次相遇问题二、柳卡图柳卡图实质上是中学学习的S -T 图的变形,即出现两条横轴(时间),纵轴(路程)忽略在画柳卡图时,最好是先画一个人往返于两地间的路线,并标注到达两地的时刻,接着再画另一人所走路线并标注到达两地的时刻,相交点即相遇地点,最后再利用几何中沙漏模型解决相关问题相遇次数甲乙共走的路程和甲共走的路程乙共走的路程11M N 233M 3N 355M 5N …………n21n -(21)n M-(21)n N-相遇次数甲乙共走的路程和甲共走的路程乙共走的路程122M 2N 244M 4N 366M 6N …………n2n2nM2nN经典精讲教学目标课堂引入1小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【分析】从家到学校的路程:15230⨯=(千米),回来的时间30103÷=(小时).2两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米甲、乙两车相遇时,用了___小时【分析】根据相遇公式知道相遇时间是:255÷(45+40)=255÷85=3(小时),3两列火车从相距480千米的两城相向而行,甲列车每小时行40千米,乙列车每小时行42千米,5小时后,甲、乙两车还相距多少千米?【分析】两车的相距路程减去5小时两车共行的路程,就得到了两车还相距的路程:480(4042)548041070-+⨯=-=(千米).4甲、乙二人同时从相距10千米的两地出发,同向而行,甲每小时行6千米,乙每小时行4千米,经过几小时甲追上乙?【分析】10÷(6—4)=5(小时)5A 、B 两地相距28千米,甲乙两车同时分别从A 、B 两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车?【分析】28÷(32-25)=28÷7=4(小时)6①同样的路程,甲乙的速度比为3:2,则甲乙的时间之比为____;②同样的时间,甲乙的速度比为3:2,则甲乙走的路程之比为____;③同样的速度,甲乙用的时间比为3:2,则甲乙走的路程之比为_____.【分析】①2:3②3:2③3:2模块一:多次相遇的认识例1:求全程个数例2:柳卡图的认识模块二:多次相遇与追及规律的应用例3、例4:两次相遇与追及的应用例5:多次相遇与追及的规律运用例题思路知识回顾甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?(学案对应:学案1)【分析】方法一:10分钟两人共跑了(3+2)⨯60⨯10=3000米3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1,3,5,7,…,29共15次.方法二:第一次两个人相遇需要100÷(3+2)=20(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一共相遇:(10⨯60-20)÷40+1=15.5(次),即为15次.【想想练练】小明和小红两人在长100米的直线跑道上来回跑步,做体能训练,小明的速度为6米/秒,小红的速度为4米/秒.他们同时从跑道两端出发,连续跑了12分钟.在这段时间内,他们迎面相遇了多少次?【分析】第一次相遇时,两人共跑完了一个全程,所用时间为:1006410÷+=()(秒).此后,两人每相遇一次,就要合跑2倍的跑道长,也就是每20秒相遇一次,除去第一次的10秒,两人共跑了126010710⨯-=(秒).求出710秒内两人相遇的次数再加上第一次相遇,就是相遇的总次数.列式计算为:1006410÷+=()(秒),(126010)(102)3510⨯-÷⨯= ,共相遇35136+=(次).注:解决问题的关键是弄清他们首次相遇以及以后每次相遇两人合跑的路程长.如图,甲、乙两人在相距70米的甲乙两端同时出发来回步行,甲的速度和乙的速度之比为3:4,他们相遇的地点分别用A 、B 、…、G 表示,问:(1)A 点到甲地的距离为米;(2)B 点到甲地的距离:B 点到乙地的距离=:;(3)C 点到乙地的距离为米;(4)F 点到G 点的距离为米(提示:F 点到甲地的距离减去G 点到甲地的距离)【分析】(1)30米;(2)5:2;(3)60米;(4)20米D甲2420164242118151296甲、乙两车分别从,A B 两地同时出发相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,两车相遇后继续行进,各自达到B 、A 两地后,立即沿原路返回.已知两车第二次相遇的地点距第一次相遇的地点是50千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.(学案对应:学案2)【分析】方法一:线段图,根据题意甲乙速度比是3:2,因此可以设全程为5份,画图如下:(甲走的用实线表示,乙走的用虚线表示)因此甲、乙两地间的距离是5025125÷⨯=(千米)方法二:柳卡图,由于甲乙速度比是3:2,因此甲乙各走一个全程所用的时间比是2:3,画图如下(甲走的用实线表示,乙走的用虚线表示)因此甲、乙两地间的距离是3150()12555÷-=(千米)【想想练练】甲、乙两人同时从A 、B 两地同时出发,甲的速度是乙的速度的1.5倍,到达对方出发点后立即返回,如果第一次相遇点和第二次相遇点相距300米,那么,A 、B 两地的距离为__米.【分析】方法一:将,A B 间等分为5份,甲每走3份乙走2份,甲、乙相遇情况如下图:,A B 两地的距离为30025750=÷⨯(米).方法二:利用柳卡图,甲乙两人的速度比是3:2,因此走完一个全程所用时间的比是2:3,利用相似知识得CD 间对应的分率是312555-=,,A B 两地的距离为23007505÷=(米).FED CA 062AB乙BA(A 版(1)~(2))⑴甲、乙两车同时从A 、B 两地相对驶,各自达到B 、A 两地后,立即沿距离是千米⑵甲、乙两车同时从A 、B 两地相对驶,各自达到B 、A 两地后,立即沿距离是千米⑶甲、乙两车同时从A 、B 两地相对驶,各自达到B 、A 两地后,立即沿时,距A 地千米⑷如图,A 、B 是圆的直径的两端次相遇,C 离A 点80米;在4法国数学家柳卡·斯图射影几何与微分几何都作出了世界各国的许多著名数学家“最困难”的题目:“某轮船也有一艘轮船从纽约开往哈佛条航线上问今天中午从哈佛开船从对面开来?”问题提出后讨与激烈的争论,但直到会议称为“柳卡趣题”下面介绍的是柳卡·斯图姆给如下图:地相对开出,两车第一次在距A 地30千米处相遇立即沿原路返回,第二次在距B 地20千米处相遇地相对开出,两车第一次在距A 地30千米处相遇立即沿原路返回,第二次在距A 地60千米处相遇地相对开出,两车第一次在距A 地80千米处相遇立即沿原路返回,第二次在距B 地60千米处相遇的两端,小张在A 点,小王在B 点同时出发反向行走D 点第二次相遇,D 点离B 点60米.求这个圆的周姆生于瑞士,因数学上的成就,于1836年当选为法作出了重要贡献在十九世纪的一次国际数学会议期间学家的晨宴快要结束的时候,柳卡向在场的数学家提出某轮船公司每天中午都有一艘轮船从哈佛开往纽约,往哈佛轮船在途中所花的时间来去都是七昼夜,而且都哈佛开出的轮船,在开往纽约的航行过程中,将会遇到出后,果然一时难住了与会的数学家们尽管为此问题大到会议结束竟还没有人真正解决这个问题这个有趣的数图姆给出的一个非常直观巧妙的解法.遇,相遇后两车继续行相遇,则A 、B 两地间的遇,相遇后两车继续行相遇,则A 、B 两地间的遇,相遇后两车继续行相遇,当甲乙第三次相遇行走,他们在C 点第一圆的周长.选为法国科学院院士他对期间,有一天,正当来自家提出困扰他很久、自认,并且每天的同一时刻而且都是匀速航行在同一会遇到几艘同一公司的轮问题大家进行了广泛的探趣的数学问题,被数学界⑸小王、小李二人往返于甲、乙两地,小王从甲地、小李从乙地同时出发,相向而行,两人第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇(追上也算作相遇),则甲、乙两地的距离为千米(学案对应:学案3)【分析】⑴3032070⨯-=(千米)⑵(30360)275⨯+÷=(千米)⑶,A B 两地间相距80360180⨯-=千米当第三次相遇时,两车所走路程和是5个全程,那么其中甲车走了805400⨯=千米,400180240÷= ,所以距A 地40千米⑷第一次相遇,两人合起来走了半个周长;第二次相遇,两个人合起来又走了一个周长.从出发开始算,两个人合起来走了一周半.因此,第二次相遇时两人合起来所走的路程是第一次相遇时合起来所走的路程的3倍,那么从A 经过C 到D 的距离,应该是从A 到C 距离的3倍,即A 到D 是803240⨯=(米).那么圆周上A 到B 的距离是24060180-=(米).圆的周长为1802360⨯=(米).⑸由于两人同时出发相向而行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以两人第二次相遇可能为迎面相遇,也可能为同向追及.①如果第二次相遇为迎面相遇,如下图所示,两人第一次在A 处相遇,第二次在B 处相遇.则甲、乙两地的距离为(336)27.5⨯+÷=千米;②如果第二次相遇为同向追及,如上图,两人第一次在A 处相遇,相遇后小王继续向前走,小李走到甲地后返回,在B 处追上小王.在这个过程中,小王走了633-=千米,小李走了639+=千米,两人的速度比为3:91:3=.所以第一次相遇时小李也走了9千米,甲、乙两地的距离为9312+=千米.所以甲、乙两地的距离为7.5千米或12千米【想想练练】如图,有一个圆,两只小虫分别从直径的两端A 与C 同时出发,绕圆周相向而行.它们第一次相遇在离A 点8厘米处的B 点,第二次相遇在离C 点6厘米处的D 点,问,这个圆周的长是多少?【分析】如图所示,第一次相遇,两只小虫共爬行了半个圆周,其中从A 点出发的小虫爬了8厘米,第二次相遇,两只小虫又爬了一个圆周,所以两只小虫从出发共爬行了1个半圆周,其中从A 点出发的应爬行8324⨯=(厘米),比半个圆周多6厘米,半个圆周长为83618⨯-=(厘米),一个圆周长就是:(836)236⨯-⨯=(厘米)李王乙甲甲王乙C A甲、乙两车分别从A 、B 两地同时出发相向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2012次相遇的地点和第2013次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米?(学案对应:学案4)【分析】因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2012次相遇时,甲走:(2012⨯2-1)⨯3=12069(份),120691012069÷= ,所以第2012次相遇地点是在从A 地向右数9份的C 点,第2013次相遇时,甲继续向右数6份即可,到达D 由图看出CD 间距离为4份,A 、B 两地之间的距离是120410300÷⨯=(千米).D C BA四龟问题四只乌龟在边长为3米的正方形四个角上,以每秒1厘米的速度同时匀速爬行,每只乌龟的爬行方向时刻指向另一只.问:经过多少时间它们才能在正方形的中心碰头?答案:对于任意一只乌龟A ,它始终朝着它面对的那只乌龟B 爬行,因此无论如何,A 与B 的距离都是以1cm /s 的速度在减小的,一开始两者距离是3m ,所以就是300s 之后,两只乌龟的距离变成0,即碰头.A 、B 两地相距2400米,甲从A 地、乙从B 地同时出发,在A 、B 间往返长跑甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动甲、乙两人在第几次相遇时距A 地最近?最近距离是多少米?【分析】方法一:()300240302400 6.75+⨯÷=(个),即甲乙共行了6.75个全程,共相遇了3次,甲乙两人的速度比是300:2405:4=,设全程为9份①如图所示,甲走路线用实线表示,乙走路线用虚线表示第一次相遇甲行5份,乙行4份,所以第一次相遇地点距A 地是全程的59②第二次相遇时两人共行了3个全程,甲行的距A 地()93593-⨯-=份,所以第二次相遇地点距A 地是全程的13③第三次相遇时两人共行了5个全程,55927⨯÷= 甲行的距A 地7份,所以第三次相遇地点距A 地是全程的79,所以第二次相遇距A 地最近,最近距离是124008003⨯=(米)方法二:柳卡图法,其中实线表示甲所走的路程,虚线表示乙走的路程,实线与虚线的交点就是相遇点由图可以看出两人共相遇了3次,其中第2次距A 地最近,最近距离为D 到A 地的距离,由图看出:6:121:2MN PQ ==,根据沙漏模型:1:2DA DB ''=,所以最近距离为124008003⨯=(米)杯赛提高1.A 、B 两地相距950米甲、乙两人同时由A 地出发往返锻炼半小时甲步行,每分钟走40米;乙跑步,每分钟行150米则甲、乙两车第次迎面相遇时距B 地最近【分析】半小时,两人一共行走(40+150)×30=5700(米),相当于5700÷950=6(个)全程,由于两人同时同地出发,两人行程每2个全程就会有一次相遇,而两人的速度比15:4,所以相同时间内两人的行程比为15:4,那么第一次相遇甲走了全程的48215419⨯=+,距离B 地1119个全程;第二次相遇甲走了全程的1619,距离B 地319个全程;第三次相遇甲走了全程的2419,距离B地519个全程,比较可知甲、乙两人第二次迎面相遇时距离B 地最近2.两名游泳运动员在长30米的游泳池里来回游泳,甲的速度是每秒1米,乙的速度是每秒0.6米,他们同时从游泳池的一端出发,来回一共游了21分钟,他们一共遇上(迎面或同向)几次?【分析】甲游全程用30130÷=秒,乙游全程用300.650÷=秒,画出柳卡图:21分钟一共1260秒,一共相遇84133⨯+=次3.男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A ,坡底为B ).两人同时从A点出发,在A ,B 之间不停地往返奔跑.已知男运动员上坡速度是每秒3米,下坡速度是每秒5米,女运动员上坡速度是每秒2米,下坡速度是每秒3米.那么两人第二次迎面相遇的地点离A 点多少米?【分析】方法一:柳卡图法如上图所示,A 为坡顶,B 为坡底,从A 到B 的方向表示下坡,从B 到A 的方向表示上坡,折线图向右的方向的距离表示上(下)坡的时间.根据题意,男、女运动员下坡、上坡的时间比为1111:::6:10:10:155332=,男运动员跑的路线为实线,女运动员跑的路线为虚线,从图中可以看出,两人第一次迎面相遇在C ,第二乙甲03060901201501802102402703003002702402101501209060300B A 35102260附加题次迎面相遇在D ,所以需要求D 到A 的距离.根据几何中的相似三角形性质,可得D 到A 的距离与到B 的距离之比等于(2516):(2210)9:123:4--==,而A 、B 之间的距离为110米,所以D 到A 的距离为3111047347⨯=+(米),故第二次相遇的地点距A 点1477米.方法二:方程法.设第二次迎面相遇的地点离A 点x 米.由于第二次相遇时男运动员走了一个下坡、一个上坡和x 米下坡,女运动员走了一个下坡和()110x -米上坡,可得方程:1101101101105332x x +-+=+解得1477x =,即第二次迎面相遇的地点离A 点1477米.4.甲乙两人都从A 地去往B 地,甲先出发1小时后乙再出发.结果乙比甲提前1小时到达B地,问:乙在什么地方追上甲?【分析】由图可看出,乙在A,B 中点处追上甲.多次迎面相遇规律1.相向而行:第一次相遇两人合走一个全程,以后每相遇一次都要合走两个全程,因此第n 次相遇,两人合走21n -个全程(n 为正整数)2.同向而行:每相遇一次都要合走两个全程,因此第n 次相遇,两人合走2n 个全程(n 为正整数)1.甲、乙二人在相距180米的直路两端同时出发来回散步,甲每秒走2米,乙每秒走2.5米.每人都走了6.5分钟,那么在这段时间内他们共相遇了多少次.【分析】方法一:甲乙6.5分钟共走了(2 2.5) 6.5601755+⨯⨯=米,共走了17551809.75÷=个全程.两人第一次相遇合走了一个全程,以后每2个全程相遇一次.那么,9.75个全程共相遇了5次.方法二:甲行全程用180290÷=秒,乙行全程用180 2.572÷=秒画出柳卡图:乙甲AB 家庭作业知识点总结由图得,一共相遇5次2.如图,A,B 两地相距70米,甲、乙两人同时从A 地同向出发来回步行,甲的速度和乙的速度之比为3:4,则第二次相遇地点与第一次相遇地点间相距多少米?【分析】6270()406125⨯-=++(米)3.甲、乙两车同时从A 地出发同向而行去往B 地,甲车的速度是乙车速度的1.5倍,在,A B 两地间做往返运动.已知两车第二次相遇的地点距第一次相遇的地点是50千米(两人相遇指迎面相遇),那么,A 、B 两地相距___千米.【分析】方法一:线段图,根据题意甲乙速度比是3:2,因此可以设全程为5份,画图如下:(甲走的用实线表示,乙走的用虚线表示)因此甲、乙两地间的距离是5025125÷⨯=(千米)方法二:柳卡图,由于甲乙速度比是3:2,因此甲乙各走一个全程所用的时间比是2:3,画图如下(甲走的用实线表示,乙走的用虚线表示)因此甲、乙两地间的距离是3150()12555÷-=(千米)010836乙912034A B A BC D E F 6B A 26304.甲、乙二人同时从A 地出发去B 地,在A 、B 两地间往返而行,甲的速度是每小时30千米,乙的速度是每小时20千米.已知二人第二次相遇的地点距第一次相遇的地点是40千米,那么,A 、B 两地相距多少千米.【分析】因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,第一次相遇甲、乙共同行了两个全程,则两个全程中,甲走了6份,乙走了4份,所以F 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了4个全程,一个全程甲走3份,8个全程甲共走3412⨯=份,所以D 是第二次相遇地点,由图看出DF 是2份.但已知DF 是40千米,所以AB 的长度是40÷2⨯(2+3)=100(千米).(也可以用乙进行计算)5.甲、乙两车同时从A B 、两地相向出发,第一次在距A 地3000米处相遇相遇后两车继续前行,各自到达目的地后立即返回,在距A 地500米处第二次相遇A B 、两地相距()米【分析】两人第一次相遇共同走了一个全程,第二次相遇共同走了三个全程,第二次相遇所用时间是第一次相遇时间的三倍甲第一次相遇时走了3000米,第二次相遇时走了3个3000米即9000米甲一去一回走了9000米后离出发点还有500米,即两个全程的长度是9000+500=9500米,一个全程的长度是4750米6.甲、乙二人分别从A 、B 两地同时出发,往返跑步.甲每分跑180米,乙每分跑240米.如果他们的第100次相遇点与第101次相遇点的距离是160米,求A 、B 两点间的距离为多少米?【分析】因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此180:2403:4S V V ===乙乙甲甲:S :,设全程为7份,则一个全程中,甲走了3份,乙走了4份,通过总结的规律分析第100次相遇时,甲走:(100⨯2-1)⨯3=597(份),5977852÷= ,所以第100次相遇地点是在从B 地向左数2份的C 点,第101次相遇时甲走:(101⨯2-1)3⨯=603(份),6037861÷= ,所以第101次相遇地点在从A 点向右数1份的D 点,由图看出CD 间距离为4份,A 、B 两地之间的距离是16047280÷⨯=(米).【学案1】甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒.如果他们同时从直路的同一端出发,当他们跑了10分钟后,共相遇多少次?【分析】方法一:10分钟两人共跑了(3+2)⨯60⨯10=3000米3000÷100=30个全程.我们知道两人同时从一端同向而行,每两个全程相遇一次,共15次.方法二:第一次两个人相遇需要200÷(3+2)=40(秒),从第一次开始到第二次相遇要走两个全程需要:200÷(3+2)=40(秒)所以一共相遇:10⨯60÷40=15(次)BBA版学案【学案2】甲、乙二人分别从A 、B 两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B 地、乙到A 地后立即返回.已知二人第二次相遇的地点距第一次相遇的地点是20千米,那么,A 、B 两地相距多少千米.【分析】因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此:30:203:2S V V ===乙乙甲甲:S ,设全程为5份,则一个全程中,甲走了3份,乙走了2份,所以C 是第一次相遇地点,第一次相遇到第二次相遇,甲、乙共走2个AB ,因此从开始到第二次相遇,甲、乙共走了3个全程,一个全程甲走3份,3个全程甲共走339⨯=份,所以D 是第二次相遇地点,由图看出DC 是2份.但已知DC 是20千米,所以AB 的长度是20÷2⨯(2+3)=50(千米).(也可以用乙进行计算)【学案3】甲、乙两车的速度分别为52千米/时和40千米/时.他们同时从A 地出发去B 地,在A 、B 两地间往返而行,从开始走到第三次相遇,共用了6小时.A 、B 两地相距多少千米?【分析】从开始走到第一次相遇,两车走的路程是两个AB 之长;而到第三次相遇,两车走的路程总共就是6个AB 之长,是(52+40)⨯6=552(千米),所以A 、B 两地相距552÷6=92(千米).【学案4】甲、乙两车同时从A 地出发同向而行,在A 、B 两地之间不断往返行驶.甲车速度是乙车速度的37,并且甲、乙两车第2012次相遇的地点和第2013次相遇的地点恰好相距120千米(注:当甲、乙两车同向时,乙车追上甲车不算作相遇),那么,A 、B 两地之间的距离是多少千米?【分析】因为甲乙同时出发,同时相遇,所以甲、乙相遇时间相同,因此3:7S V V ==乙乙甲甲:S :,设全程为10份,则一个全程中,甲走了3份,乙走了7份,通过总结的规律分析第2012次相遇时,甲走:(2012⨯2)⨯3=12072(份),120721012072÷= ,所以第2012次相遇地点是在从B 地向左数2份的C 点,第2013次相遇时,甲继续向左数6份即可,到达D 由图看出CD 间距离为6份,A 、B 两地之间的距离是120610200÷⨯=(千米).BC D BA。
相遇与追及知识框架一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了儿8之间这段路程,如果两人同时出发,那么甲乙甲乙・・・・・A 3 A B0时刻唯每出发时向t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.一般地,相遇问题的关系式为:速度和X相遇时间二路程和,即S和二v n t二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他. 这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度X追及时间-乙的速度X追及时间=(甲的速度-乙的速度)X追及时间=速度差X追及时间.一般地,追击问题有这样的数量关系:追及路程二速度差X追及时间,即S差=Qt例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为、和y乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间1追了乙5米甲甲乙乙«--- •----------------------- » ・・。
米 5米10。
米100三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。
Page 1 of 11例题精讲【例1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)X3.5=94X3.5=329 (千米).【答案】329千米【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】方法一:由题意知聪聪的速度是:20 + 42 = 62 (米/分),两家的距离=明明走过的路程+聪聪走 过的路程=20x 20 + 62x 20 = 400 +1240 = 1640 (米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v 和t .对于刚刚学习奥数的孩子, 注意引导他们认识、理解及应用公式.方法二:直接利用公式:S 和=v 和t =(20 + 62)x 20 = 1640 (米). 【答案】1640米【例2】A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】包子的速度:90 ・ 30 = 3 (米/秒),菠萝的速度:90 ・15 = 6 (米/秒),相遇的时间: 90 + (3 + 6) =10 (秒),包子距B 地的距离:90 — 3x 10 = 60 (米).【答案】包子距B 地的距离是60米【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时 行40千米。
行程问题1、王、李二人往返于甲、乙两地,王从甲地,李从乙地同时出发,相向而行,第一次在距甲地3千米处相遇,第二次在距甲地6千米处相遇,(追上也算相遇)则甲、乙两地的距离为________ .【解析】由于两人同时出发相向而行,所以第一次相遇一定是迎面相遇;由于本题中追上也算相遇,所以两人第二次相遇可能为迎面相遇,也可能为同向追及.①如果第二次相遇为迎面相遇,如下图所示,两人第一次在A处相遇,第二次在B处相遇.由于第一次相遇时两人合走1个全程,小王走了3千米;从第一次相遇到第二次相遇,两人合走2个全程,所以这期间小王走了3×2=6 千米,由于 A、B 之间的距离也是3千米,所以 B与乙地的距离为(6-3)÷2=1.5 千米,甲、乙两地的距离为6+1.5=7.5 千米;②如果第二次相遇为同向追及,如上图,两人第一次在A处相遇,相遇后小王继续向前走,小李走到甲地后返回,在B处追上小王.在这个过程中,小王走了6-3=3 千米,小李走了3+6=9 千米,两人的速度比为3:9=1:3 .所以第一次相遇时小李也走了9千米,甲、乙两地的距离为9+3=12 千米.所以甲、乙两地的距离为7.5千米或12千米.2、甲,乙两人分别从A,B两地同时相向而行,甲的速度是每小时30千米,乙的速度是每小时20千米,二人相遇后继续行进,甲到B地,乙到A地后立即返回。
已知两人第二次相遇的地点距第一次相遇的地点是20千米,那么A,B两地相距多少千米?【解析】甲的速度是每小时30千米,乙的速度是每小时20千米,所以甲乙在相同的时间内所行的路程的比是30:20=3:2,所以第一次相遇时,他们所行的路程是3:2,把甲行的看作3份,乙行的就有2份。
第二次相遇时,他们共行了3个全程,所以甲共行了3*3=9份,这时甲距B地应该是9-(3+2)=4份,而第一次相遇时甲离B地2份(乙行了2份),所以这两个相遇点之间相距4-2=2份,所以1份是20/2=10千米A,B两地相距10*(3+2)=50千米3、甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,两人都走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【解析】第二次相遇两人总共走了3个全程,所以甲一个全程里走了4千米,三个全程里应该走4*3=12千米,通过画图,我们发现甲走了一个全程多了回来那一段,就是距B地的3千米,所以全程是12-3=9千米,所以两次相遇点相距9-(3+4)=2千米。
一、 相遇甲从A 地到B 地,乙从B 地到A 地,然后两人在途中相遇,实质上是甲和乙一起走了A,B 之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间 =(甲的速度+乙的速度)×相遇时间=速度和×相遇时间. 一般地,相遇问题的关系式为:速度和×相遇时间=路程和,即=tS V 和和二、 追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间 =(甲的速度-乙的速度)×追及时间 =速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间,即=tS V 差差三、 在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同 (2)在整个运行过程中,2个物体所走的是同一路径。
⨯⎧⎪÷⎨⎪÷⎩÷⎧⎪⨯⎨⎪÷⎩n n n n n n n nn n n n n n n n nn n 路程=速度和相遇相遇速度和=路程相遇相遇=路程速度和追及=追及路程速度差追及追及路程=速度差追及速度差=追及路程追及知识框架相遇和追及问题重难点能够解决行程中复杂的相遇与追及问题能够画出多人相遇和追及的示意图并将问题转化多个简单相遇和追及环节进行解题能够利用柳卡图、比例解决多次相遇和追及问题例题精讲一、相遇和追及【例 1】在一条笔直的高速公路上,前面一辆汽车以90千米/小时的速度行驶,后面一辆汽车以108千米/小时的速度行驶.后面的汽车刹车突然失控,向前冲去(车速不变).在它鸣笛示警后5秒钟撞上了前面的汽车.在这辆车鸣笛时两车相距多少米?【巩固】乙二人同时从A地去B地,甲每分钟行60米,乙每分钟行90米,乙到达B地后立即返回,并与甲相遇,相遇时,甲还需行3分钟才能到达B地,A、B两地相距多少米?【例 2】甲、乙二人分别从山顶和山脚同时出发,沿同一山道行进。
两人的上山速度都是20米/分,下山的速度都是30米/分。
甲到达山脚立即返回,乙到达山顶休息30分钟后返回,两人在距山顶480米处再次相遇。
山道长米。
【巩固】小张和小王早晨8点整同时从甲地出发去乙地,小张开车,速度是每小时60千米.小王步行,速度为每小时4千米.如果小张到达乙地后停留1小时立即沿原路返回,恰好在10点整遇到正在前往乙地的小王.那么甲、乙两地之间的距离是千米.【例 3】如图,A、B是一条道路的两端点,亮亮在A点,明明在B点,两人同时出发,相向而行.他们在离A点100米的C点第一次相遇.亮亮到达B点后返回A点,明明到达A点后返回B点,两人在离B点80米的D点第二次相遇.整个过程中,两人各自的速度都保持不变.求A、B间的距离.要求写出关键的推理过程.【巩固】甲、乙二人同时分别从A、B两地出发,相向匀速而行.甲到达B地后立即往回走,乙到达A地后也立即往回走.已知他们第一次相遇在离A,B中点2千米处靠B一侧,第二次相遇在离A地4千米处.A、B两地相距多少千米?【例 4】(这道题就是之前介绍过的苏步青教授利用巧妙方法解决过的一个问题,当时苏步青教授在德国访问,一位有名的德国数学家在电车上给他出了这道题)甲和乙分别从东西两地同时出发,相对而行,两地相距100里,甲每小时走6里,乙每小时走4里.如果甲带一只狗,和甲同时出发,狗以每小时10里的速度向乙奔去,遇到乙后即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲乙两人相遇时狗才停住.这只狗共跑了多少里路?【巩固】在一次宴会上,一位客人给著名的数学大师、“计算机之父”冯·诺伊曼先生出了一个蜜蜂问题:两列火车相距100英里,在同一轨道上相向行驶,速度都是每小时50英里.火车A的前端有一只蜜蜂以每小时100英里的速度飞向火车B,遇到火车B以后.立即回头以同样的速度飞向火车A,遇到火车A后,又回头飞向火车B,速度始终保持不变,如此下去,直到两列火车相遇时才停止.假设蜜蜂回头转身的时间忽略不计,那么,这只蜜蜂一共飞了多少英里的路?【例 5】甲、乙两地之间有一条公路.李明从甲地出发步行去乙地,同时张平从乙地出发骑摩托车去甲地,80分钟后两人在途中相遇.张平到达甲地后马上折回往乙地,在第一次相遇后又经过20分钟在途中追上李明.张平到达乙地后又马上折回往甲地,这样一直下去.问:当李明到达乙地时,张平共追上李明多少次?【巩固】一辆汽车和一辆摩托车同时从甲乙两地相对开出,摩托车每小时行54千米.汽车每小时行48千米.两车相遇后又以原来的速度继续前进,摩托车到乙地立即返回.汽车到甲地立即返回.两车在距离中点108千米的地方再次相遇,那么甲乙两地的路程是多少千米?二、多人相遇和追及【例 6】甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A地出发,向B地行时,丙从B地出发向A地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?【巩固】甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。
已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【例 7】甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。
此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米?【巩固】甲、乙两人从相距490米的A、B两地同时步行出发,相向而行,丙与甲同时从A出发,在甲、乙二人之间来回跑步(遇到乙立即返回,遇到甲也立即返回).已知丙每分钟跑240米,甲每分钟走40米,当丙第一次折返回来并与甲相遇时,甲、乙二人相距210米,那么乙每分钟走________米;甲下一次遇到丙时,甲、乙相距________米.【例 8】张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?【巩固】甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。
已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?【例 9】甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人。
已知甲车每分钟行1000米,丙车每分钟行800米,求乙速车的速度是多少?【巩固】快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?【例 10】快、中、慢三辆车同时同地出发,沿同一公路去追赶前面一骑车人,这三辆车分别用6分、9分、12分追上骑车人。
已知快、慢车的速度分别为60千米/时和40千米/时,求中速车的速度。
【巩固】A,B两地相距105千米,甲、乙两人分别骑车从A,B两地同时相向出发,甲速度为每小时40千米,出发后1小时45分钟相遇,然后甲、乙两人继续沿各自方向往前骑.在他们相遇3分钟后,甲与迎面骑车而来的丙相遇,而丙在C地追上乙.若甲以每小时20千米的速度,乙以每小时比原速度快2千米的车速,两人同时分别从A,B出发相向而行,则甲、乙二人在C点相遇,问丙的车速是多少?三、多次相遇和追及【例 11】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?【例 12】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例 13】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【例 14】每天中午有一条轮船从哈佛开往纽约,且每天同一时刻也有一艘轮船从纽约开往哈佛.轮船在途中均要航行七天七夜.试问:某条从哈佛开出的轮船在到达纽约前(途中)能遇上几艘从纽约开来的轮船?【巩固】 一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟.有一个人从乙站出发沿电车线路骑车前往甲站.他出发的时候,恰好有一辆电车到达乙站.在路上他又遇到了10辆迎面开来的电车.到达甲站时,恰好又有一辆电车从甲站开出.问他从乙站到甲站用了多少分钟?【例 15】 如图,学校操场的400米跑道中套着300米小跑道,大跑道与小跑道有200米路程相重.甲以每秒6米的速度沿大跑道逆时针方向跑,乙以每秒4米的速度沿小跑道顺时针方向跑,两人同时从两跑道的交点A 处出发,当他们第二次在跑道上相遇时,甲共跑了多少米?【巩固】 下图中有两个圆只有一个公共点A ,大圆直径48厘米,小圆直径30厘米。
两只甲虫同时从A 点出发,按箭头所指的方向以相同速度分别沿两个圆爬行。
问:当小圆上甲虫爬了几圈时,两只甲虫首次相距最远?【随练1】 自行车队出发12分钟后,通信员骑摩托车去追他们,在距出发点9千米处追上了自行车队,乙甲乙甲A 课堂检测然后通信员立即返回出发点;随后又返回去追自行车队,再追上时恰好离出发点18千米,求自行车队和摩托车的速度.【随练2】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。