数学分析6.4函数的极值与最大(小)值(讲义)
- 格式:docx
- 大小:29.21 KB
- 文档页数:5
第六章微分中值定理及其应用4 函数的极值与最大(小)值(讲义)练习题1、求下列函数的极值.(1)f(x)=2x3-x4; (2)f(x)=; (3)f(x)=; (4)f(x)=arctanx ln(1+x2).解:(1)f在R上连续,当f’(x)=6x2-4x3=0时,x=0或x=.又当x<0时,f’(x)=6x2-4x3>0;当0<x<时,f’(x)=6x2-x3>0;当x>时,f’(x)=6x2-4x3<0. ∴f有极大值f()=2×-=.(2)f在R上连续,当f’(x)===0时,x=0,又x<0时,f’(x)<0;当x>0时,f’(x)>0. ∴f有极小值f(0)=0.(3)f在R+上连续,当f’(x)==0时,x=1或x=e2.又当x<1时,f’(x)<0;当1<x<e2时,f’(x)>0; 当x>e2时,f’(x)<0.∴f有极小值f(1)=0; 极大值f(e2)=4e-2.(4)f在R上连续,当f’(x)===0时,x=1.又当x<1时,f’(x)>0; 当x>1时,f’(x)<0,∴f有极大值f(1)=.2、设f(x)=.(1)证明x=0是函数f的极小值点; (2)说明在f的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.证:(1)∵对任意x≠0,有f(x)=≥0,∴x=0是f的极小值点. (2)f’(x)=,令x n=(2nπ+)-1, y n=(2nπ+)-1, (n=1,2,…),则x n, y n>0且x n=y n=0,又f’(x n)=(2nπ+)-2·[2(2nπ+)-1-1]< 0,f’(y n)=(2nπ+)-2·[4(2nπ+)-1-0]=4(2nπ+)-3>0,即f’在任一U+⁰(0,δ)内变号,∴f不满足第一充分条件.又f”(0)=0,∴f不满足第二充分条件.3、证明:若函数f在x0处有f+’(x0)<0(或>0), f-’(x0)>0(或<0), 则x0为f 的极大(小)值点.证:∵f+’(x0)=<0,∴存在某U⁰+(x0,δ1),使当x∈U⁰+(x0,δ1)时,有<0,∴f(x)<f(x0).又∵f-’(x0)=>0,∴存在某U⁰-(x0,δ2),使当x∈U⁰-(x0,δ2)时,有>0,∴f(x)<f(x0).取δ=min(δ1,δ2),则当x∈U⁰(x0,δ)时有f(x)<f(x0),∴x0为f的极大值点.同理可证若f在x0处有f+’(x0)>0, f-’(x0)<0, 则x0为f的极小值点.4、求下列函数在给定区间上的最大最小值.(1)y=x5-5x4+5x3+1, [-1,2]; (2)y=2tanx-tan2x, 当[0,]; (3)y=lnx, (0,+∞). 解:(1)y在[-1,2]上连续, 当y’=5x4-20x3+15x2=0时, x=0,x=1或x=3(舍去),y(-1)=-10, y(0)=1, y(1)=2, y(2)=-7,∴y在[-1,2]的最大值为y(1)=2,最小值为y(-1)=-10.(2)记u=tanx,则当x∈[0,]时,u∈[0,+∞], y=2u-u2在[0,+∞)连续.当=2-2u=0时,u=1, x=arctan1=, y(0)=0, y()=1,由二次函数的性质知y在[0,]无最小值,最大值为y()=1.(3)y在(0,+∞)连续,当y’=+=0时,x=e-2.y(e-2)=<0, lnx=0, lnx=+∞.∴y在(0,+∞)无最大值,最小值为y(e-2)=.5、设f(x)在区间I连续,并且在I有唯一的极值点x0.证明:若x0是f的极大(小)值点,则x0是f(x)在I上的最大(小)值点. 解:∵f在I连续,∴若x0是f在I唯一的极大值点,则对任意的x∈I有f(x)<f(x0), ∴x0是f在I上的最大值点. 同理可证:若x0是f在I唯一的极小值点,则x0是f在I上的最小值点.6、把长为1的线段截为两段,问怎样截法能使以这两段线为边所组成的矩形的面积为最大?解:设两段线长为x, 1-x,则所求矩形面积为S=x(1-x)=x-x2, x∈(0,1). 当S’=1-2x=0时,x=0.5,又S”=-2<0,∴x=0.5是S唯一的极大值点.∴当两段线长都为0.5时,矩形的面积最大为S(0.5)=0.25.7、一个无盖的圆柱形容器,当给定体积为V时,要使容器的表面积最小,问底的半径与容器的高的比例应该怎样?解:设底的半径为r, 高为h,则V=πr2h, ∴h=.容器的表面积S=πr2+2πrh=πr2+. 当S’=2πr=0时,r==h,∴当底的半径与容器的高的比例为1:1时,容器的表面积最小.8、设用某仪器进行测量时,读得n次实验数据为a1,a2,…,a n. 问:以怎样的数值x表示所要测量的真值,才能使它与这n个数之差的平方和为最小?解:记S=(x-a1)2+(x-a2)2+…+(x-a n)2,当S’=2(x-a1)+2(x-a2)+…2(x-a n)=0时,x=,又S”=2n>0,∴x=是S唯一的极小值点. 又S=+∞,∴以x=表示真值时,它与这n个数之差的平方和最小.9、求正数a,使它与其倒数之和为最小.解:记f(a)=a+, a∈(0,+∞),当f’(a)=1=0时,a=1或a=-1(舍去).f(1)=2, f(a)=+∞, f(a)=+∞. ∴a=1为所求.10、求下列函数的极值.(1)f(x)=|x(x2-1)|; (2)f(x)=; (3)f(x)=(x-1)2(x+1)3.解:(1)f’(x)=(3x2-1)sgn(x3-x), f”(x)=6xsgn(x3-x), (x≠0,±1);当f’=0时,x=, ∵f”()=-6×=-2<0, f”()=6×()=-2<0, ∴f()=f()=是f的极大值.又f(x)≥0,∴f(0)=f(±1)=0是f的极小值.(2)当f’(x)===0时,x=±1. 当x<-1时,f’(x)<0;当1<x<1时,f’(x)>0;当x>1时,f’(x)<0.∴f(-1)=-1是f的极小值,f(1)=2是f的极大值.(3)当f’(x)=2(x-1)(x+1)3+3(x-1)2(x+1)2=(x2-1)(5x-1)(x+1)=0时,x=±1或x=0.2. 当x<-1时,f’(x)>0;当-1<x<0.2时,f’(x)>0;当0.2<x<1时,f’(x)<0;当x>1时,f’(x)>0.∴f(0.2)=1.10592是f的极大值;f(1)=0是f的极小值.11、设f(x)=alnx+bx2+x, 在x1=1,x2=2处都取得极值;试定出a与b的值;并问这时f在x1与x2是取得极大值还是极小值?解1:当f’(x)=+2bx+1==0时,x=,当=1, =2时,解得a=, b=;当=2, =1时,无解.又当0<x<1时,f’(x)>0;当1<x<2时,f’(x)<0;当x>2时,f’(x)>0.∴a=, b=,且f在x1=1取得极小值,在x2=2取得极大值.解2:f’(x)=+2bx+1,∵f在x1=1,x2=2处都取得极值,∴有, 解得:a=, b=; ∴f’(x)= 1.f”(x)=,∵f”(1)=>0,f”(2)=<0.∴f在x1=1取得极小值,在x2=2取得极大值.12、在抛物线y2=2px上哪一点的法线被抛物线所截之线段最短.解:2yy’=2p, y’=,设抛物线上一点(a,b),则过这点的法线方程为:y-b=(x-a),即y=. 代入x=得y=,即by2+2p2y-2pab=0,设另一交点为(a’,b’),则b+b’=,解得b’=, a’==.法线被抛物线所截线段长度的平方为:D(b)=(a’-a)2+(b’-b)2=()2+(b)2=.当D’(b)===0时,b=±p,a==p,∴抛物线在(p,±p)的法线被抛物线所截之线段最短.13、要把货物从运河边上A城运往与运河相距为BC=a千米的B城(如图). AC=d千米. 轮船运费单价是m元/千米. 火车运费单价是n元/千米(n>m). 试求运河边上的一点M,修建铁路MB,使总运费最省.解:设CM=x,则AM=d-x,在Rt△BCM中,BM=. 总运费f(x)=m(d-x)+n当f’(x)=-m=0时,x=.又f(0)=md+na, f(d)= n,f()=md+a< md+na=f(0). 令m=nsinθ, 则md+aθ+nacosθ=n sin(θ+φ)≤n=f(d). (φ=arcsin). ∴f()是f(x)在[0,d]上的最小值,即离C点千米处修铁路运费最省。
《函数的极值》讲义在数学的广袤天地中,函数是一个极其重要的概念,而函数的极值问题则是其中一个关键且富有魅力的部分。
一、函数极值的定义首先,咱们得搞清楚啥是函数的极值。
简单来说,对于一个给定的函数,如果在某个点的附近,函数值比这个点的函数值都大(或者都小),那这个点对应的函数值就是函数的一个极值。
极大值就是在这点附近函数值最大,极小值就是在这点附近函数值最小。
比如说,有个函数 f(x),在 x = a 这点,它左边的函数值都比 f(a) 小,右边的函数值也都比 f(a) 小,那 f(a) 就是一个极小值。
要是左边右边的函数值都比 f(a) 大,那 f(a) 就是极大值。
二、如何判断函数的极值那怎么知道一个函数在某个点是不是有极值呢?这就得靠导数啦。
如果函数在某点的导数为 0,并且在这点的左侧导数为正,右侧导数为负,那这点就是极大值点;反过来,如果左侧导数为负,右侧导数为正,那这点就是极小值点。
为啥是这样呢?咱们可以这么想,导数为正的时候,函数是上升的;导数为负的时候,函数是下降的。
所以从上升到下降的转折点就是极大值点,从下降到上升的转折点就是极小值点。
举个例子,函数 f(x) = x²,它的导数是 f'(x) = 2x。
当 x = 0 时,导数为 0。
在 x < 0 时,导数为负,函数下降;在 x > 0 时,导数为正,函数上升。
所以 x = 0 就是极小值点,极小值是 f(0) = 0。
但是要注意哦,导数为 0 的点不一定都是极值点。
比如说函数 f(x)= x³,它的导数 f'(x) = 3x²,当 x = 0 时,导数为 0,但是在 x = 0的两侧,导数的符号是一样的,都是正的,所以 x = 0 不是极值点。
三、函数极值的求法知道了怎么判断极值,那咱们来看看怎么求函数的极值。
第一步,先求出函数的导数。
第二步,令导数等于 0,解出这些方程的根。
第三步,根据上面说的判断方法,判断这些根是不是极值点。
《函数的极值》讲义一、函数极值的定义在数学中,函数的极值是一个非常重要的概念。
简单来说,极值就是函数在某个局部范围内的最大值或最小值。
具体而言,如果在函数定义域内的某个点 x₀处,函数值 f(x₀) 大于(或小于)其在 x₀附近的所有点的函数值,那么 f(x₀) 就是函数的一个极大值(或极小值)。
需要注意的是,极值是局部概念,也就是说一个函数在某一点取得极值,并不意味着它在整个定义域内都是最大或最小的。
二、函数极值的必要条件为了找到函数的极值,我们首先要了解一个重要的定理——费马定理。
费马定理指出:如果函数 f(x) 在点 x₀处可导,且 x₀为 f(x) 的极值点,那么 f'(x₀) = 0。
这意味着,可导函数的极值点处的导数为 0。
但要注意,导数为 0 的点不一定是极值点,比如函数 f(x) = x³,在 x = 0 处导数为 0,但不是极值点。
三、函数极值的充分条件仅仅知道导数为 0 还不够,我们还需要一些充分条件来确定这个点到底是不是极值点。
第一种情况:如果在 x₀的左侧导数为正,右侧导数为负,那么 x₀是极大值点。
第二种情况:如果在 x₀的左侧导数为负,右侧导数为正,那么 x₀是极小值点。
第三种情况:如果在 x₀的两侧导数同号,那么 x₀不是极值点。
四、求函数极值的步骤接下来,我们来总结一下求函数极值的一般步骤:第一步,求出函数的定义域。
第二步,对函数求导。
第三步,令导数等于 0,求出导数为 0 的点(即驻点)以及导数不存在的点。
第四步,根据上述充分条件,判断这些点是否为极值点。
第五步,将极值点代入函数,求出相应的极值。
五、实例分析为了更好地理解函数极值,我们通过一些具体的例子来进行分析。
例 1:求函数 f(x) = x² 4x + 3 的极值。
首先,对函数求导得到 f'(x) = 2x 4。
令 f'(x) = 0,解得 x = 2。
当 x < 2 时,f'(x) < 0;当 x > 2 时,f'(x) > 0。
第六章微分中值定理及其应用4 函数的极值与最大(小)值(讲义)练习题1、求下列函数的极值.(1)f(x)=2x3-x4; (2)f(x)=; (3)f(x)=; (4)f(x)=arctanx ln(1+x2).解:(1)f在R上连续,当f’(x)=6x2-4x3=0时,x=0或x=.又当x<0时,f’(x)=6x2-4x3>0;当0<x<时,f’(x)=6x2-x3>0;当x>时,f’(x)=6x2-4x3<0. ∴f有极大值f()=2×-=.(2)f在R上连续,当f’(x)===0时,x=0,又x<0时,f’(x)<0;当x>0时,f’(x)>0. ∴f有极小值f(0)=0.(3)f在R+上连续,当f’(x)==0时,x=1或x=e2.又当x<1时,f’(x)<0;当1<x<e2时,f’(x)>0; 当x>e2时,f’(x)<0.∴f有极小值f(1)=0; 极大值f(e2)=4e-2.(4)f在R上连续,当f’(x)===0时,x=1.又当x<1时,f’(x)>0; 当x>1时,f’(x)<0,∴f有极大值f(1)=.2、设f(x)=.(1)证明x=0是函数f的极小值点; (2)说明在f的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.证:(1)∵对任意x≠0,有f(x)=≥0,∴x=0是f的极小值点. (2)f’(x)=,令x n=(2nπ+)-1, y n=(2nπ+)-1, (n=1,2,…),则x n, y n>0且x n=y n=0,又f’(x n)=(2nπ+)-2·[2(2nπ+)-1-1]< 0,f’(y n)=(2nπ+)-2·[4(2nπ+)-1-0]=4(2nπ+)-3>0,即f’在任一U+⁰(0,δ)内变号,∴f不满足第一充分条件.又f”(0)=0,∴f不满足第二充分条件.3、证明:若函数f在x0处有f+’(x0)<0(或>0), f-’(x0)>0(或<0), 则x0为f 的极大(小)值点.证:∵f+’(x0)=<0,∴存在某U⁰+(x0,δ1),使当x∈U⁰+(x0,δ1)时,有<0,∴f(x)<f(x0).又∵f-’(x0)=>0,∴存在某U⁰-(x0,δ2),使当x∈U⁰-(x0,δ2)时,有>0,∴f(x)<f(x0).取δ=min(δ1,δ2),则当x∈U⁰(x0,δ)时有f(x)<f(x0),∴x0为f的极大值点.同理可证若f在x0处有f+’(x0)>0, f-’(x0)<0, 则x0为f的极小值点.4、求下列函数在给定区间上的最大最小值.(1)y=x5-5x4+5x3+1, [-1,2]; (2)y=2tanx-tan2x, 当[0,]; (3)y=lnx, (0,+∞). 解:(1)y在[-1,2]上连续, 当y’=5x4-20x3+15x2=0时, x=0,x=1或x=3(舍去),y(-1)=-10, y(0)=1, y(1)=2, y(2)=-7,∴y在[-1,2]的最大值为y(1)=2,最小值为y(-1)=-10.(2)记u=tanx,则当x∈[0,]时,u∈[0,+∞], y=2u-u2在[0,+∞)连续.当=2-2u=0时,u=1, x=arctan1=, y(0)=0, y()=1,由二次函数的性质知y在[0,]无最小值,最大值为y()=1.(3)y在(0,+∞)连续,当y’=+=0时,x=e-2.y(e-2)=<0, lnx=0, lnx=+∞.∴y在(0,+∞)无最大值,最小值为y(e-2)=.5、设f(x)在区间I连续,并且在I有唯一的极值点x0.证明:若x0是f的极大(小)值点,则x0是f(x)在I上的最大(小)值点. 解:∵f在I连续,∴若x0是f在I唯一的极大值点,则对任意的x∈I有f(x)<f(x0), ∴x0是f在I上的最大值点. 同理可证:若x0是f在I唯一的极小值点,则x0是f在I上的最小值点.6、把长为1的线段截为两段,问怎样截法能使以这两段线为边所组成的矩形的面积为最大?解:设两段线长为x, 1-x,则所求矩形面积为S=x(1-x)=x-x2, x∈(0,1). 当S’=1-2x=0时,x=0.5,又S”=-2<0,∴x=0.5是S唯一的极大值点.∴当两段线长都为0.5时,矩形的面积最大为S(0.5)=0.25.7、一个无盖的圆柱形容器,当给定体积为V时,要使容器的表面积最小,问底的半径与容器的高的比例应该怎样?解:设底的半径为r, 高为h,则V=πr2h, ∴h=.容器的表面积S=πr2+2πrh=πr2+. 当S’=2πr=0时,r==h,∴当底的半径与容器的高的比例为1:1时,容器的表面积最小.8、设用某仪器进行测量时,读得n次实验数据为a1,a2,…,a n. 问:以怎样的数值x表示所要测量的真值,才能使它与这n个数之差的平方和为最小?解:记S=(x-a1)2+(x-a2)2+…+(x-a n)2,当S’=2(x-a1)+2(x-a2)+…2(x-a n)=0时,x=,又S”=2n>0,∴x=是S唯一的极小值点. 又S=+∞,∴以x=表示真值时,它与这n个数之差的平方和最小.9、求正数a,使它与其倒数之和为最小.解:记f(a)=a+, a∈(0,+∞),当f’(a)=1=0时,a=1或a=-1(舍去).f(1)=2, f(a)=+∞, f(a)=+∞. ∴a=1为所求.10、求下列函数的极值.(1)f(x)=|x(x2-1)|; (2)f(x)=; (3)f(x)=(x-1)2(x+1)3.解:(1)f’(x)=(3x2-1)sgn(x3-x), f”(x)=6xsgn(x3-x), (x≠0,±1);当f’=0时,x=, ∵f”()=-6×=-2<0, f”()=6×()=-2<0, ∴f()=f()=是f的极大值.又f(x)≥0,∴f(0)=f(±1)=0是f的极小值.(2)当f’(x)===0时,x=±1. 当x<-1时,f’(x)<0;当1<x<1时,f’(x)>0;当x>1时,f’(x)<0.∴f(-1)=-1是f的极小值,f(1)=2是f的极大值.(3)当f’(x)=2(x-1)(x+1)3+3(x-1)2(x+1)2=(x2-1)(5x-1)(x+1)=0时,x=±1或x=0.2. 当x<-1时,f’(x)>0;当-1<x<0.2时,f’(x)>0;当0.2<x<1时,f’(x)<0;当x>1时,f’(x)>0.∴f(0.2)=1.10592是f的极大值;f(1)=0是f的极小值.11、设f(x)=alnx+bx2+x, 在x1=1,x2=2处都取得极值;试定出a与b的值;并问这时f在x1与x2是取得极大值还是极小值?解1:当f’(x)=+2bx+1==0时,x=,当=1, =2时,解得a=, b=;当=2, =1时,无解.又当0<x<1时,f’(x)>0;当1<x<2时,f’(x)<0;当x>2时,f’(x)>0.∴a=, b=,且f在x1=1取得极小值,在x2=2取得极大值.解2:f’(x)=+2bx+1,∵f在x1=1,x2=2处都取得极值,∴有, 解得:a=, b=; ∴f’(x)= 1.f”(x)=,∵f”(1)=>0,f”(2)=<0.∴f在x1=1取得极小值,在x2=2取得极大值.12、在抛物线y2=2px上哪一点的法线被抛物线所截之线段最短.解:2yy’=2p, y’=,设抛物线上一点(a,b),则过这点的法线方程为:y-b=(x-a),即y=. 代入x=得y=,即by2+2p2y-2pab=0,设另一交点为(a’,b’),则b+b’=,解得b’=, a’==.法线被抛物线所截线段长度的平方为:D(b)=(a’-a)2+(b’-b)2=()2+(b)2=.当D’(b)===0时,b=±p,a==p,∴抛物线在(p,±p)的法线被抛物线所截之线段最短.13、要把货物从运河边上A城运往与运河相距为BC=a千米的B城(如图). AC=d千米. 轮船运费单价是m元/千米. 火车运费单价是n元/千米(n>m). 试求运河边上的一点M,修建铁路MB,使总运费最省.解:设CM=x,则AM=d-x,在Rt△BCM中,BM=. 总运费f(x)=m(d-x)+n当f’(x)=-m=0时,x=.又f(0)=md+na, f(d)= n,f()=md+a< md+na=f(0). 令m=nsinθ, 则md+aθ+nacosθ=n sin(θ+φ)≤n=f(d). (φ=arcsin). ∴f()是f(x)在[0,d]上的最小值,即离C点千米处修铁路运费最省。
函数的极值与最大值最小值在数学中,对于一个给定的函数,我们常常关心它的极值以及最大值和最小值。
这些概念在微积分中扮演着重要的角色,不仅在数学理论中有着深刻的意义,也在实际问题中有着广泛的应用。
1. 极值的定义极值是指函数在某个区间内取得的局部最大值或最小值。
具体来说,设函数f(x)在区间I上有定义,若存在$x_0 \\in I$,使得对任意$x\\in I$,有$f(x)\\leqf(x_0)$或者$f(x) \\geq f(x_0)$,则称f(x0)是函数f(x)在区间I上的一个极大值或极小值。
2. 求极值的方法常见求函数极值的方法有:•导数法:通过求函数的导数(一阶导数或高阶导数)来找到函数的驻点,然后通过二阶导数的符号来判断是极大值还是极小值。
•边界法:求出函数在区间端点处的函数值,以及在可能的间断点处的函数值,然后比较这些值来确定最大值和最小值。
•微分中值定理:借助中值定理的思想,将函数f(x)在区间I上的极值归结为函数导数在该区间上的零点问题。
3. 最大值与最小值与极值类似,函数的最大值和最小值是指函数在定义域内取得的最大值和最小值。
最大值可以是有限值,也可以是无穷大;最小值也可以是有限值,也可以是负无穷。
4. 求最大值最小值的方法确定函数的最大值和最小值,主要采用以下方法:•导数法:同样利用导数的性质来判断函数的最大值和最小值,这一点与求极值的方法类似。
•二次型法:当函数为二次函数时,可以通过完全平方的方式将其转化为标准形式,进而求得最值。
•辅助线法:有时候在求最值的过程中,通过引入一条辅助线,并考虑其和原函数之间的关系,来得到最值的情况。
5. 总结函数的极值和最值是微积分中一个重要的概念,通过对函数的极值和最值进行研究,我们可以更好地理解函数的性质,优化问题和实际问题也经常涉及到函数的极值和最值。
因此,熟练掌握求解函数极值和最值的方法是数学学习中的关键一环。
函数的极值与最大(小)值(解析版)函数的极值与最大(小)值(解析版)函数的极值与最大(小)值是数学分析中一个重要的概念和研究内容,它在很多领域具有广泛的应用,如经济学、物理学、工程学等。
本文将介绍函数的极值与最大(小)值的定义、求解方法以及一些实际问题中的应用。
一、函数的极值与最大(小)值的概念函数的极值是指在一个特定的区间内,函数取得的最大值或最小值。
定义域中的极值点可以是局部极大值或局部极小值,也可是全局的最大值或最小值。
二、求解函数的极值与最大(小)值求解函数的极值与最大(小)值通常有以下方法:1. 导数法:根据函数的导数(或导函数),可以找到函数的驻点和拐点,并通过一阶和二阶导数的符号来判断极值点的类型,即极大值或极小值。
其中,一阶导数为零的点即为函数的驻点,二阶导数为零的点即为函数的拐点。
2. 边界法:在给定的区间内,如果函数在区间的端点处取得最大或最小值,则该值也是函数的极值。
通过比较函数在边界点和内部点的取值,可以确定函数的最大(小)值。
3. 高阶导数法:对于一些特殊的函数,可以通过多阶导数的方法求解极值。
通过计算函数的高阶导数,可以得到函数的极值点。
4. 参数方程法:对于参数方程给出的函数,可以通过求解参数方程中的参数值,得到函数的极值。
这种方法在实际问题中应用较多。
三、实际问题中的应用函数的极值与最大(小)值在各个领域中都有广泛的应用,例如:1. 经济学中,通过对供需函数的极值分析,可以确定市场的均衡价格和数量,从而指导市场调节和政策制定。
2. 物理学中,通过对物体运动轨迹方程的极值分析,可以确定物体在运动过程中最大(小)值速度、加速度等相关参数。
3. 工程学中,通过对成本、效益、材料使用等函数的极值分析,可以优化设计方案,提高工程效率和经济性。
4. 生物学中,通过对生态系统中的种群数量变化函数的极值分析,可以研究种群的稳定性和生态系统的平衡状态。
总之,函数的极值与最大(小)值是数学分析中的重要内容,它不仅具有理论意义,还在实际应用中发挥着重要的作用。
第六章微分中值定理及其应用
4 函数的极值与最大(小)值(讲义)
一、极值判别
定理6.10:(极值的第一充分条件)设f在点x0连续,在某邻域U0(x0,δ)内可导:
1、若当x∈(x0-δ,x0)时,f’(x)≤0,当x∈(x0,x0+δ)时,f’(x)≥0,则f 在点x0取得极小值.
2、若当x∈(x0-δ,x0)时,f’(x)≥0,当x∈(x0,x0+δ)时,f’(x)≤0,则f 在点x0取得极大值.
证:∵当x∈(x0-δ,x0)时,f’(x)≤0,∴f在(x0-δ,x0)内递减.
∵当x∈(x0,x0+δ)时,f’(x)≥0,∴f在(x0-δ,x0)内递增.
∴对任意x∈U(x0,δ),恒有f(x)≥f(x0),即f在x0取得极小值。
同理可证2.
定理6.11:(极值的第二充分条件)设f在点x0的某邻域U(x0,δ)内一阶可导,在x= x0处二阶可导,且f’(x0)=0,f”(x0)≠0.
1、若f”(x0)<0,则f在点x0取得极大值.
2、若f”(x0)>0,则f在点x0取得极小值.
证:依题意,f(x)=f(x0)+f’(x0)(x-x0)+1
2!
f”(x0)(x-x0)2+o((x-x0)2).
∵f’(x0)=0,∴f(x)-f(x0)=1
2!f”(x0)(x-x0)2+o((x-x0)2)=[1
2!
f”(x0)+o(1)](x-x0)2.
又f”(x0)≠0,∴存在正数δ’≤δ,使当x∈U(x0,δ’)时,
1 2!f”(x0)与1
2!
f”(x0)+o(1)同号.
∴当 f ”(x 0)<0时,f(x)-f(x 0)<0,即f(x)<f(x 0),∴f 在点x 0取得极大值. 当 f ”(x 0)>0时,f(x)-f(x 0)>0,即f(x)>f(x 0),∴f 在点x 0取得极小值.
例1:求f(x)=(2x-5)23.
解:f(x)=(2x-5)√x 23=2x 53-5x 23, f ’(x)=103x 23−103x −13, f ”(x)=209x −13+109
x −43. 当f ’(x)=0时,103x 23−
103x −13=0,解得x=1. ∵f ”(1)=209+109=103>0,f(1)=2-5=-3. ∴f 在x=1取得极小值f(1)=-3.
又f 在x=0连续,f ’(0)不存在,当0<x<1时,f ’(x)= 103x 23−
103x −13<0, 当x<0时,f ’(x)= 103x 23−103x −13>0,∴f(x)在x=0取得极大值f(0)=0.
例2:求f(x)=x 2+
432x 的极值点及极值. 解:f ’(x)=2x −
432x 2, f ”(x)=2+864x 3. 当f ’(x)=0时,2x −432x 2=0,解得x=6. ∵f ”(6)= 2+
8646=6>0,f(6)=36+72=108. ∴f 在x=6取得极小值f(6)=108.
定理6.12:(极值的第三充分条件)设f 在x 0的某邻域内存在直到n-1阶导函数,在x 0处n 阶可导,且f (k)(x 0)=0 (k=1,2,…,n-1),f (n)(x 0)≠0,则:
1、当n 为偶数时, f 在x 0取得极值,且当f (n)(x 0)<0时取极大值,当f (n)(x 0)>0时,取得极小值.
2、当n 为奇数时, f 在x 0处不取极值.
证:f(x)=f(x 0)+f ’(x 0)(x-x 0)+12!f ”(x 0)(x-x 0)2+…+1n!f (n)(x 0)(x-x 0)n +o ((x-x 0)n ). ∵f (k)(x 0)=0 (k=1,2,…,n-1),
∴f(x)-f(x 0)=1n!f (n)(x 0)(x-x 0)n +o ((x-x 0)n )=[12!f (n)(x 0)+o (1)](x-x 0)n . 又f (n)(x 0)≠0,∴存在正数δ’≤δ,使当x ∈U(x 0,δ’)时,
1n!f (n)(x 0)与12!f (n)(x 0)+o (1)同号. ∴当n 为偶数时,有
当 f (n)(x 0)<0时,f(x)-f(x 0)<0,即f(x)<f(x 0),∴f 在点x 0取得极大值. 当 f (n)(x 0)>0时,f(x)-f(x 0)>0,即f(x)>f(x 0),∴f 在点x 0取得极小值. 当n 为奇数且f (n)(x 0)<0时,有
当x 0<x<x 0+δ’时,f(x)-f(x 0)<0,即f(x)<f(x 0).
当x 0-δ’<x<x 0时,f(x)-f(x 0)>0,即f(x)<f(x 0).
即f(x)递增. 同理可证,当n 为奇数且f (n)(x 0)>0时,f(x)递减. ∴当n 为奇数时, f 在x 0处不取极值.
例3:试求函数x 4(x-1)3的极值.
解:记f(x)=x 4(x-1)3=x 7-3x 6+3x 5-x 4.
当f ’(x)=7x 6-18x 5+15x 4-4x 3=0时,x=0或x=1或x=47. ∵f ”(x)=42x 5-90x 4+60x 3-12x 2,∴f ”(0)=0,f ”(1)=0,f ”(47)=6449>0. ∵f ”’(x)=210x 4-360x 3+180x 2-24x ,f ”’(0)=0, f ”’(1)=6(无极值).
f (4)(x)=840x 3-1080x 2+360x-24,f (4)(0)=-24<0.
∴x 4(x-1)3在x=0处有极大值f(0)=0,在x=47处有极小值f(47)=−6912823543.
四、最大值与最小值
比较f 的所有稳定点、不可导点和区间端点上的函数值,以取得f 的最值.
例4:求f(x)=|2x 3-9x 2+12x|在闭区间[−14,52]上的最大值与最小值. 解:当f(x)=|2x 3-9x 2+12x|=0时,x=0,∴f ’(x)=|6x 2-18x+12|, (x ≠0). 当f ’(x) =|6x 2-18x+12|=0时,x=1或x=2.
f(−14)=|2×(−14)3-9×(−14)2+12×(−14)|=3932
, f(1)=|2-9+12|=5, f(2)=|2×23-9×22+12×2|=4, f(52)=|2×(52)3-9×(52)2+12×52|=5. ∵0<3932<4<5,∴f 在x=0处取最小值0,在x=1,x=52处取最大值5.
例5:一艘轮船在航行中的燃料费和它的速度的立方成正比. 已知当速度为10(km/h)时,燃料费为每小时6元,而其他与速度无关的费用为每小时96元. 问轮船的速度为多少时,每航行1km 所消耗的费用最小?
解:记速度为x km/h, 燃料费为y 元,
可设y=kx 3,将x=10, y=6代入上式得6=1000k, ∴k=0.006.
记每航行1km 所消耗的费用为f(x)=1x (0.006x 3+96). 当f ’(x)=0.018x −1
x 2(0.006x 3+96)=0时,x=20. 又当x<20时,f ’(x)<0,∴f(x)>f(20);当x>20时,f ’(x)>0,∴f(x)>f(20), 即x=20是f 唯一的极小值点,且f 在(0,+∞)处处可导,
∴当轮船的速度为20km/h 时,每航行1km 所消耗的费用 f(20)=120(0.006×203+96)=7.2(元)最小.
例6:剪去边长为a 的正方形四角同样大小的正方形后制成一个无盖
盒子,问剪去小方块的边长为何值时,可使盒子容积最大. 解:设小正方形的边长为x ,则0<x<a 2,记盒子的容积为: f(x)=x(a-2x)2=4x 3-4ax 2+a 2x, x ∈(0, a 2), 当f ’(x)=12x 2-8ax+a 2=0时,x=a 2(舍去)或x=a 6. 又当x<a 6时,f ’(x)>0,∴f(x)<f(a 6);当a 6<x<a 2时,f ’(x)<0,∴f(x)<f(a 6); 即x=a 6是f 唯一的极大值点,且f 在(0, a 2)处处可导, ∴剪去小方块的边长为a 6时,盒子容积f(a 6)=a 6(a −2a 6)2=2a 327最大.。