生物化学(1)知识要点
- 格式:doc
- 大小:36.00 KB
- 文档页数:5
第一章蛋白质的结构与功能等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。
此时溶液的pH值称为该氨基酸的等电点。
蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。
蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。
肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。
螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm氨基酸的侧链伸向螺旋的外侧。
螺旋的稳定是靠氢键。
氢键方向与长轴平行。
β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状结构特点:锯齿状;顺向平行、反向平行稳定化学键:氢键蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。
也就是整条肽链所有原子在三维空间的排布位置。
结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。
分子伴侣 (chaperon): 帮助形成正确的高级结构使错误聚集的肽段解聚帮助形成二硫键蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。
其中,每条具有独立三级结构的多肽链模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif)蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用(denaturation)。
大一生物化学必考知识点生物化学是生物学和化学的交叉学科,研究生物体内的化学成分、结构和功能关系,是生命科学的重要分支之一。
作为大一生物学专业的学生,在学习生物化学时,有一些必考的知识点是不能避免的。
本文将根据不同的主题,介绍一些大一生物化学必考的知识点。
1. 氨基酸和蛋白质结构氨基酸是构成蛋白质的基本单位,了解氨基酸的结构是理解蛋白质的基础。
共有20种常见氨基酸,分为两类:极性氨基酸和非极性氨基酸。
极性氨基酸具有亲水性,非极性氨基酸则相反。
蛋白质的结构包括四个层次:一级结构(氨基酸链的线性序列)、二级结构(α-螺旋和β-折叠)、三级结构(蛋白质的立体构型)和四级结构(由多个蛋白质链组成的复合体)。
掌握这些知识点有助于理解蛋白质的功能和特性。
2. 酶和酶动力学酶是生物体内催化化学反应的蛋白质,而酶动力学则是研究酶速率、酶底物浓度和酶活性的关系。
酶的功能包括催化底物的转化、调节代谢途径和参与信号转导等。
酶动力学包括酶的速率方程、酶的底物浓度和酶的抑制等内容。
此外,还需了解酶的命名规则和酶促反应的机理等内容。
3. 代谢和能量代谢是生物体内化学反应的总称,能量则是生物化学反应的驱动力。
了解代谢和能量的相关知识是理解生物体内化学反应的基础。
代谢通过两个途径来产生能量:有氧呼吸和无氧呼吸。
有氧呼吸是在氧气的作用下产生ATP,无氧呼吸则是在没有氧气的情况下产生ATP。
此外,还需了解糖原的合成与降解、脂肪酸的合成与降解以及蛋白质的合成与降解等重要代谢过程。
4. 核酸和基因核酸是生物体内遗传信息的携带者,是构成基因的基本单位。
共有两种核酸:脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA通过不同的组合形成基因,每个基因携带了生物体遗传信息的一部分。
了解DNA和RNA的结构、功能以及复制和转录等过程对于理解基因的组成和功能至关重要。
5. 细胞膜和脂质细胞膜是细胞的外包层,它由磷脂双分子层和与其相关的蛋白质组成。
了解细胞膜的结构和功能有助于理解细胞的运输、信号传导和分裂等过程。
生物化学大一知识点总结归纳生物化学是一门研究生物体内物质的合成、降解、转运以及生物体能量的利用和产生的学科。
在大一阶段的学习中,我们接触到了一些基础的生物化学知识点,下面对这些知识点进行总结归纳。
1. 氨基酸和蛋白质氨基酸是构成蛋白质的基本单位,有20种常见氨基酸。
氨基酸之间通过肽键连接形成多肽,而多肽经过进一步的折叠和结合形成蛋白质。
蛋白质在生物体中具有多种功能,如酶的催化作用、结构支持、传递信号等。
2. 糖类糖类包括单糖、双糖和多糖,是生物体内重要的能量来源。
常见的单糖有葡萄糖、果糖等,双糖包括蔗糖、乳糖等,多糖如淀粉、糖原在生物体中作为能量储存物质。
3. 脂类脂类是生物体内重要的能量来源和结构组分。
常见的脂类有甘油三酯、磷脂等。
脂肪酸和甘油通过酯键结合形成甘油三酯,同时脂肪酸也是膜磷脂中的重要组成部分。
4. 核酸核酸包括DNA和RNA,是生物体遗传信息的携带者。
DNA分子由脱氧核糖和磷酸基团组成,RNA分子由核糖和磷酸基团组成。
DNA通过两股螺旋结构携带基因信息,RNA则参与基因的转录和翻译过程。
5. 酶和催化酶是生物体内催化反应的蛋白质,能够加速化学反应的速率。
酶具有高度的专一性和效率,可以在温和的条件下催化生物体内复杂的化学反应。
6. 代谢途径代谢途径指生物体内物质的合成、降解和转运的路径。
常见的代谢途径包括糖酵解、脂肪酸氧化、氧化磷酸化等。
这些代谢途径为细胞提供能量和合成物质。
7. 酸碱平衡生物体内的酸碱平衡是维持生命正常进行的重要条件之一。
细胞内外的酸碱平衡通过缓冲系统、呼吸系统和排泄系统等多种方式调节。
8. 酶动力学酶动力学研究酶催化反应的速率和影响因素。
酶的催化速率受到底物浓度、酶浓度、温度、pH值等因素的影响。
9. 免疫学免疫学是研究生物体对抗疾病和保护机体免受外界侵袭的学科。
生物体通过免疫系统识别并攻击外来致病因子,包括病毒、细菌等。
10. 遗传学遗传学研究生物体遗传信息的传递和变异。
生物化学知识点总结大一【生物化学知识点总结】生物化学是综合了生物学和化学理论和方法的学科,研究生物体内各种生物大分子的结构、组成、代谢和功能等。
下面将对大一生物化学课程中的重点知识点进行总结与归纳,以帮助学生们更好地理解与掌握。
一、生命的基础分子1. 水:生物体内最常见的分子,承担溶剂、适温媒介、反应物参与等重要作用。
2. 碳水化合物:包括单糖、双糖和多糖,提供能量和结构功能。
3. 脂质:包括脂肪、磷脂和固醇,构成细胞膜、储能和激素传递。
4. 蛋白质:构成生物体内几乎所有结构和功能分子,参与免疫、调节、催化等作用。
5. 核酸:包括DNA和RNA,携带和传递遗传信息,参与蛋白质的合成。
二、生物大分子的结构与功能1. 蛋白质的结构:一级结构、二级结构(α螺旋、β折叠)、三级结构和四级结构,确定其特定功能。
2. 酶的结构与催化机制:活性位点、底物结合、催化作用(酸碱催化、共价催化、金属离子催化)。
3. DNA的结构:双螺旋结构、碱基配对规则(A-T、G-C)、抗并行性、超螺旋。
4. RNA的结构:单链结构、功能多样性(mRNA、tRNA、rRNA等)。
5. 生物大分子的功能调控:结构与功能的相互关系、功能的失活活化、复合物的形成与解离。
6. 免疫球蛋白(抗体)的结构与功能:多样的重链与轻链组合、特异性识别与中和抗原。
三、代谢与能量1. 代谢的分类:有氧代谢和无氧代谢,糖酵解和细胞色素氧化还原。
2. 糖酵解:无氧和有氧条件下的糖分解途径,产生ATP和还原剂NADH。
3. 细胞色素氧化还原:线粒体内的呼吸链,将NADH和FADH2氧化为ATP和H2O。
4. 脂肪代谢:β氧化途径,将脂肪酸分解为乙酰辅酶A,进入三羧酸循环。
5. 蛋白质代谢:蛋白质降解为氨基酸,用于能量供应或合成其他生物分子。
6. 生物合成:核酸和蛋白质的合成途径,通过酶催化合成反应进行。
四、酶与代谢调控1. 酶的特性与分类:酶的底物特异性、酶促反应速率与底物浓度的关系,酶的分类与功能特点(氧化还原酶、转移酶等)。
生物化学大一知识点总结框架导言:生物化学是研究生物体内化学反应及其机制的学科,是生物学和化学的交叉学科。
本文将对生物化学大一的一些重要知识点进行总结和概述,帮助大家对生物化学有一个整体的了解和认识。
一、生物大分子的结构与功能1. 蛋白质a. 氨基酸的结构与分类b. 蛋白质的结构层次c. 蛋白质的功能和作用d. 蛋白质的降解与合成2. 核酸a. DNA的结构与功能b. RNA的结构与功能c. DNA的复制与遗传信息传递d. RNA的转录与蛋白质合成3. 多糖a. 单糖的结构与分类b. 多糖的结构与功能c. 多糖的合成和降解二、生物能量的转化和代谢1. ATP与能量耦合a. ATP的结构和功能b. ATP的合成和分解2. 糖代谢a. 糖原的合成和降解b. 糖酵解和乳酸发酵c. 糖异生和PPP途径3. 脂质代谢a. 脂肪的合成和降解b. 脂蛋白的结构与功能c. 脂肪酸的氧化和合成4. 蛋白质代谢a. 蛋白质的降解途径b. 氨基酸的转运和代谢c. 蛋白质合成与转运三、酶的作用和调控1. 酶的基本性质a. 酶的分类和命名b. 酶的结构和功能2. 酶的运作机制a. 酶的催化作用原理b. 酶促反应的速率常数3. 酶的调控a. 酶的诱导和抑制b. 酶的调控机制四、生物膜的结构和功能1. 生物膜的组成和结构a. 磷脂双分子层的结构b. 脂蛋白和糖蛋白的作用2. 生物膜的功能a. 选择性通透性和离子平衡b. 信号传导和细胞识别3. 膜蛋白的结构和功能a. 载体蛋白和通道蛋白b. 受体蛋白和酶蛋白总结:生物化学是理解生命活动中化学基础的重要学科。
本文通过对生物化学大一知识点的总结,介绍了生物大分子的结构与功能、生物能量的转化和代谢、酶的作用和调控以及生物膜的结构和功能等内容。
希望能够帮助读者建立对生物化学的基本概念和理解,为进一步学习和研究生物化学打下良好的基础。
酶、维生素1.酶的定义:酶是活细胞产生的,能在体内或体外发挥相同催化作用的一类具有活性中心和特殊结构的生物大分子,包括蛋白质和核酸,以蛋白质为主。
酶的化学组成:酶的活性中心:1)由酶分子在空间位置上比较靠近的几个氨基酸残基或其上某些功能基团所组成。
2)位于酶分子表面。
3)酶分子结构中其它部分为酶活性中心形成提供结构基础。
4)必需基团:结合基团、催化基团2.酶原:有些酶在细胞内合成或刚分泌时,无催化活性,这种无催化活性的酶的前体称为酶原。
酶原的激活:某种物质(活化素)作用于酶原使之转变成有活性的酶的过程。
酶原激活的生理意义:1)保证合成酶的细胞本身不受蛋白酶的消化破坏。
2)在特定的生理条件和规定的部位受到激活并发挥其生理作用。
3)酶原激活是生物体内的一种重要的调控酶活性的方式。
3.酶促反应的特点:加速化学反应,但不改变反应的平衡、高效性:更有效地降低反应的活化能。
酶促反应动力学:酶浓度对速度的影响:底物浓度对速度的影响:米氏方程:米氏常数Km的意义:Km是酶的特征性常数,只与酶的性质和酶所催化的底物和反应环境有关v=1/2Vm时,Km=[S]。
Km与酶和底物的亲和力成反比。
4.竞争性抑制:抑制剂与底物的结构相似,能与底物竞争酶的活性中心,从而阻碍酶底物复合物的形成,使酶的活性降低。
特点:I与S结构类似,竞争酶的活性中心抑制作用强弱取决于[I]/[S],故抑制作用可被高浓度S解除动力学, v 降低,Vmax不变,Km增大,斜率增大医学相关性:磺胺类药物的抑菌机制,与对氨基苯甲酸竞争二氢叶酸合成酶。
(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。
它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。
生物化学的研究对于理解生命的机理和病理过程具有重要意义。
2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。
蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。
蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。
3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。
RNA是单链结构,由磷酸二酯键连接的核苷酸组成。
核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。
4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。
合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。
能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。
生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。
5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。
酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。
酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。
6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。
信号传导包括外部信号的接受、内部信号的传递和效应的产生。
细胞间的信号传导有兴奋性传导和化学信号传导两种方式。
7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。
大一生物化学知识点考点生物化学是生物学与化学的交叉学科,研究生物体内化学反应的原理和机制。
作为一门重要的基础学科,生物化学的知识点非常广泛。
在大一生物化学的学习中,有一些重要的知识点和考点需要我们关注和掌握。
下面将从分子生物学、生物大分子、酶学和代谢物等四个方面介绍这些知识点和考点。
一、分子生物学1. DNA的结构和功能:DNA是遗传信息的基本单位,了解DNA的双螺旋结构、碱基配对原则及其在遗传信息传递和蛋白质合成中的作用是学习生物化学的重点。
2. RNA的结构和功能:RNA在生物体内主要参与蛋白质合成,了解RNA的结构和作用对于理解基因表达和转录调控等过程非常重要。
3. 蛋白质的合成:蛋白质是生命体内构成和调控的基本物质,了解蛋白质的合成过程、翻译机制和调控方式对于理解生物体的生命活动具有重要意义。
二、生物大分子1. 碳水化合物:碳水化合物是生物体内重要的能量来源,了解葡萄糖的代谢途径、糖酵解和糖苷化等反应过程,对于了解生物体的能量供给和物质代谢具有重要意义。
2. 脂质:脂质是生物体内重要的结构和能量储存物质,了解脂肪酸的合成、三酰甘油的代谢和脂质的生物学功能对于理解脂肪代谢和疾病的发生机制具有重要意义。
3. 蛋白质:蛋白质是生物体内最重要的功能分子,了解蛋白质的结构、折叠和功能调控对于理解生物分子的相互作用和信号传导机制具有重要意义。
三、酶学1. 酶的结构和功能:酶是生物体内催化作用的媒介,了解酶的结构、催化机理和酶活性调控是生物化学中的重点内容。
2. 酶动力学:了解化学反应速率与底物浓度、温度和酶活性的关系对于分析和评价酶的催化效率具有重要意义。
3. 酶抑制剂:了解酶抑制剂的种类、作用机制和应用对于抑制酶活性和疾病治疗具有重要意义。
四、代谢物1. 能量代谢:了解生物体内能量的产生、储存和利用对于理解人体的能量平衡和代谢紊乱具有重要意义。
2. 氮代谢:了解氨基酸的合成、降解和尿素循环是理解生物体氮代谢和蛋白质代谢的重要基础。
第一部分:名词解释1.蛋白质:是由许多氨基酸通过肽键相连形成的高分子含氮化合物。
2.氨基酸:含有氨基和羧基的一类有机化合物的通称。
3.等电点:在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,所带净电荷为零,呈电中性,此时溶液的pH称为该氨基酸的等电点。
4.肽键:一个氨基酸的a-羧酸与另一个氨基酸的a-氨基脱水缩和形成的化学键。
5.蛋白质的别构效应:又称为变构效应,是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
6.蛋白质的协同效应:一个寡聚体蛋白质的一个亚基与其配体结合后,能影响寡聚体中另一个亚基与配体结合的现象。
7.蛋白质的变性:蛋白质在某些物理和化学因素作用下其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质的变性。
8.凝胶过滤:利用具有网状结构的凝胶的分子筛作用利用各蛋白质分子大小不同来进行分离9.层析:待分离的蛋白质溶液经过一个固定物质时,根据待分离的蛋白质颗粒的大小,电荷多少及亲和力使待分离的蛋白质在两相中反复分配,并以不同流速经固定相而达到分离蛋白质的目的。
10.胶原蛋白:胶原纤维经过部分降解后得到的具有较好水溶性的蛋白质。
P6211.结构域:相对分子质量较大的蛋白质三级结构通常可分割成一个或数个球状或者纤维状的区域,折叠得较为紧密,各行期能,成为结构域。
12.免疫球蛋白:是一组具有抗体活性的蛋白质血清中含量最丰富的蛋白质之一13.波尔效应:pH对血红蛋白氧亲和力的这种影响。
14.热休克蛋白:是在从细菌到哺乳动物中广泛存在一类热应急蛋白质。
当有机体暴露于高温的时候,就会由热激发合成此种蛋白,来保护有机体自身。
15.次级键:除了典型的强化学键(共价键、离子键和金属键)等依靠氢键、盐键以及弱的共价键和范德华作用力(即分子间作用力)相结合的各种化学键的总称。
16.肽平面:肽键具有一定程度的双键(C-N键)性质(参与肽键的六个原子C、H、O、N、Cα1、Cα2不能自由转动,位于同一平面)。
大一生物化学知识点总结大一的生物化学课程是在理化生的基础上进一步学习生物化学的科学原理和基本知识。
本文将对大一生物化学中的一些重要知识点进行总结和回顾,希望能够帮助大家更好地理解和掌握这门学科。
一、生物分子的基本组成生物分子是构成生物体的基本单位,主要包括蛋白质、核酸、碳水化合物和脂质等。
蛋白质是生物体内最重要的有机化合物之一,是由氨基酸分子通过肽键连接而成的线性聚合物。
核酸则是由核苷酸分子组合而成,包括DNA和RNA。
碳水化合物则是由碳、氢、氧三种元素组成的化合物,包括单糖、双糖和多糖。
脂质则是由脂肪酸和甘油分子组合而成的,主要在生物体中起到储能和保护的作用。
二、生物酶的作用和特性生物酶是生物体内催化化学反应的一种生物大分子催化剂。
酶可以降低反应的活化能,从而加快化学反应的速率。
酶对于生物体内的新陈代谢和调节机制起到非常重要的作用。
酶的活性受到多种因素的影响,例如温度、pH值和底物浓度等。
酶的活性可以通过酶学实验方法进行测定,如最常用的活性测定法是测定酶催化反应速率的变化。
三、酶的反应动力学酶的反应动力学研究酶反应速率与底物浓度之间的关系。
典型的酶催化反应速率曲线呈酶底物浓度曲线,底物浓度低时速率呈线性增加,但随着底物浓度的增加速率会逐渐饱和。
反应速率与底物浓度之间的关系可通过米氏动力学方程描述。
其中最大反应速率Vmax 及半饱和常数Km 是用来描述酶催化过程的重要参数。
四、生物氧化还原反应生物体内的氧化还原反应是指物质通过转移电子和氢离子的过程。
这些反应对于生物体内的能量代谢和生命活动是至关重要的。
氧化还原反应中,电子接受者被称为氧化剂,而电子给出者被称为还原剂。
生物体内最重要的氧化还原反应是细胞呼吸和光合作用。
细胞呼吸是有机物被氧气氧化释放能量的过程,光合作用则是以光能为源将无机物转化为有机物的过程。
五、DNA与RNA的结构与功能DNA和RNA是生物体内负责存储和传递遗传信息的核酸分子。
DNA是由脱氧核苷酸分子组成的双链螺旋结构,可以通过复制作为遗传信息的模板传递给下一代。
第一章蛋白质一、知识要点(一)氨基酸的结构与(二)氨基酸的性质蛋白质是重要的生物大分子,其组成单位是氨基酸。
组成蛋白质的氨基酸有20种,均为α-氨基酸。
每个氨基酸的α-碳上连接一个羧基,一个氨基,一个氢原子和一个侧链R基团。
20种氨基酸结构的差别就在于它们的R基团结构的不同。
根据20种氨基酸侧链R基团的极性,可将其分为四大类:非极性R基氨基酸(8种);不带电荷的极性R基氨基酸(7种);带负电荷的R基氨基酸(2种);带正电荷的R基氨基酸(3种)。
氨基酸是两性电解质。
由于氨基酸含有酸性的羧基和碱性的氨基,所以既是酸又是碱,是两性电解质。
有些氨基酸的侧链还含有可解离的基团,其带电状况取决于它们的pK值。
由于不同氨基酸所带的可解离基团不同,所以等电点不同。
除甘氨酸外,其它都有不对称碳原子,所以具有D-型和L-型2种构型,具有旋光性,天然蛋白质中存在的氨基酸都是L-型的。
酪氨酸、苯丙氨酸和色氨酸具有紫外吸收特性,在280nm处有最大吸收值,大多数蛋白质都具有这些氨基酸,所以蛋白质在280nm处也有特征吸收,这是紫外吸收法定量测定蛋白质的基础。
氨基酸的α-羧基和α-氨基具有化学反应性。
许多氨基酸的侧链还含有羟基、氨基、羧基等可解离基团,也具有化学反应性。
较重要的化学反应有:(1)茚三酮反应,除脯氨酸外,所有的α-氨基酸都能与茚三酮发生颜色反应,生成蓝紫色化合物,脯氨酸与茚三酮生成黄色化合物。
(2)Sanger反应,α-NH2与2,4-二硝基氟苯作用产生相应的DNB-氨基酸。
(3)Edman反应,α-NH2与苯异硫氰酸酯作用产生相应的氨基酸的苯氨基硫甲酰衍生物(PIT-氨基酸)。
Sanger反应和Edmen反应均可用于蛋白质多肽链N端氨基酸的测定。
氨基酸通过肽键相互连接而成的化合物称为肽,由2个氨基酸组成的肽称为二肽,由3个氨基酸组成的肽称为三肽,少于10个氨基酸肽称为寡肽,由10个以上氨基酸组成的肽称为多肽。
(三)蛋白质的结构蛋白质是具有特定构象的大分子,为研究方便,将蛋白质结构分为四个结构水平,包括一级结构、二级结构、三级结构和四级结构。
一般将二级结构、三级结构和四级结构称为三维构象或高级结构。
一级结构指蛋白质多肽链中氨基酸的排列顺序。
肽键是蛋白质中氨基酸之间的主要连接方式,即由一个氨基酸的α-氨基和另一个氨基酸的α-之间脱去一分子水相互连接。
肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结构。
在多肽链的含有游离氨基的一端称为肽链的氨基端或N端,而另一端含有一个游离羧基的一端称为肽链的羧基端或C端。
蛋白质的二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。
最基本的二级结构类型有α-螺旋结构和β-折叠结构,此外还有β-转角和自由回转。
右手α-螺旋结构是在纤维蛋白和球蛋白中发现的最常见的二级结构,每圈螺旋含有3.6个氨基酸残基,螺距为0.54nm,螺旋中的每个肽键均参与氢键的形成以维持螺旋的稳定。
β-折叠结构也是一种常见的二级结构,在此结构中,多肽链以较伸展的曲折形式存在,肽链(肽段)的排列可以有平行和反平行两种方式。
氨基酸之间的轴心距为0.35nm,相邻肽链之间借助氢键彼此连成片层结构。
结构域是介于二级结构和三级结构之间的一种结构层次,是指蛋白质亚基结构中明显分开的紧密球状结构区域。
超二级结构是指蛋白质分子中的多肽链在三维折叠中形成有规则的三级结构聚集体。
蛋白质的三级结构是整个多肽链的三维构象,它是在二级结构的基础上,多肽链进一步折叠卷曲形成复杂的球状分子结构。
具有三级结构的蛋白质一般都是球蛋白,这类蛋白质的多肽链在三维空间中沿多个方向进行盘绕折叠,形成十分紧密的近似球形的结构,分子内部的空间只能容纳少数水分子,几乎所有的极性R基都分布在分子外表面,形成亲水的分子外壳,而非极性的基团则被埋在分子内部,不与水接触。
蛋白质分子中侧链R基团的相互作用对稳定球状蛋白质的三级结构起着重要作用。
蛋白质的四级结构指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。
在具有四级结构的蛋白质中,每一条具有三级结构的皑链称为亚基或亚单位,缺少一个亚基或亚基单独存在都不具有活性。
四级结构涉及亚基在整个分子中的空间排布以及亚基之间的相互关系。
维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力和范德华力等次级键。
此外,在某些蛋白质中还有二硫键,二硫键在维持蛋白质构象方面也起着重要作用。
蛋白质的空间结构取决于它的一级结构,多肽离岸主链上的氨基酸排列顺序包含了形成复杂的三维结构(即正确的空间结构)所需要的全部信息。
(四)蛋白质结构与功能的关系不同的蛋白质,由于结构不同而具有不同的生物学功能。
蛋白质的生物学功能是蛋白质分子的天然构象所具有的性质,功能与结构密切相关。
1.一级结构与功能的关系蛋白质的一级结构与蛋白质功能有相适应性和统一性,可从以下几个方面说明:(1)一级结构的变异与分子病蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能的变化。
如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分子中β-链第6位谷氨酸被缬氨酸取代。
这个一级结构上的细微差别使患者的血红蛋白分子容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。
(2)一级结构与生物进化研究发现,同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。
如比较不同生物的细胞色素C的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越小,亲缘关系越远差异越大。
(3)蛋白质的激活作用在生物体内,有些蛋白质常以前体的形式合成,只有按一定方式裂解除去部分肽链之后才具有生物活性,如酶原的激活。
2.蛋白质空间结构与功能的关系蛋白质的空间结构与功能之间有密切相关性,其特定的空间结构是行使生物功能的基础。
以下两方面均可说明这种相关性。
(1)核糖核酸酶的变性与复性及其功能的丧失与恢复核糖核酸酶是由124个氨基酸组成的一条多肽链,含有四对二硫键,空间构象为球状分子。
将天然核糖核酸酶在8mol/L脲中用β-巯基乙醇处理,则分子内的四对二硫键断裂,分子变成一条松散的肽链,此时酶活性完全丧失。
但用透析法除去β-巯基乙醇和脲后,此酶经氧化又自发地折叠成原有的天然构象,同时酶活性又恢复。
(2)血红蛋白的变构现象血红蛋白是一个四聚体蛋白质,具有氧合功能,可在血液中运输氧。
研究发现,脱氧血红蛋白与氧的亲和力很低,不易与氧结合。
一旦血红蛋白分子中的一个亚基与O2结合,就会引起该亚基构象发生改变,并引起其它三个亚基的构象相继发生变化,使它们易于和氧结合,说明变化后的构象最适合与氧结合。
从以上例子可以看出,只有当蛋白质以特定的适当空间构象存在时才具有生物活性。
(五)蛋白质的重要性质蛋白质是两性电解质,它的酸碱性质取决于肽链上的可解离的R基团。
不同蛋白质所含有的氨基酸的种类、数目不同,所以具有不同的等电点。
当蛋白质所处环境的pH大于pI时,蛋白质分子带负电荷,pH小于pI时,蛋白质带正电荷,pH等于pI时,蛋白质所带净电荷为零,此时溶解度最小。
蛋白质分子表面带有许多亲水基团,使蛋白质成为亲水的胶体溶液。
蛋白质颗粒周围的水化膜(水化层)以及非等电状态时蛋白质颗粒所带的同性电荷的互相排斥是使蛋白质胶体系统稳定的主要因素。
当这些稳定因素被破坏时,蛋白质会产生沉淀。
高浓度中性盐可使蛋白质分子脱水并中和其所带电荷,从而降低蛋白质的溶解度并沉淀析出,即盐析。
但这种作用并不引起蛋白质的变性。
这个性质可用于蛋白质的分离。
蛋白质受到某些物理或化学因素作用时,引起生物活性的丧失,溶解度的降低以及其它性质的改变,这种现象称为蛋白质的变性作用。
变性作用的实质是由于维持蛋白质高级结构的次级键遭到破坏而造成天然构象的解体,但未涉及共价键的断裂。
有些变性是可逆的,有些变性是不可逆的。
当变性条件不剧烈时,变性是可逆的,除去变性因素后,变性蛋白又可从新回复到原有的天然构象,恢复或部分恢复其原有的生物活性,这种现象称为蛋白质的复性。
(六)测定蛋白质分子量的方法1.凝胶过滤法凝胶过滤法分离蛋白质的原理是根据蛋白质分子量的大小。
由于不同排阻范围的葡聚糖凝胶有一特定的蛋白质分子量范围,在此范围内,分子量的对数和洗脱体积之间成线性关系。
因此,用几种已知分子量的蛋白质为标准,进行凝胶层析,以每种蛋白质的洗脱体积对它们的分子量的对数作图,绘制出标准洗脱曲线。
未知蛋白质在同样的条件下进行凝胶层析,根据其所用的洗脱体积,从标准洗脱曲线上可求出此未知蛋白质对应的分子量。
2.SDS-聚丙烯酰胺凝胶电泳法蛋白质在普通聚丙烯酰胺凝胶中的电泳速度取决于蛋白质分子的大小、分子形状和所带电荷的多少。
SDS(十二烷基磺酸钠)是一种去污剂,可使蛋白质变性并解离成亚基。
当蛋白质样品中加入SDS后,SDS与蛋白质分子结合,使蛋白质分子带上大量的强负电荷,并且使蛋白质分子的形状都变成短棒状,从而消除了蛋白质分子之间原有的带电荷量和分子形状的差异。
这样电泳的速度只取决于蛋白质分子量的大小,蛋白质分子在电泳中的相对迁移率和分子质量的对数成直线关系。
以标准蛋白质分子质量的对数和其相对迁移率作图,得到标准曲线,根据所测样品的相对迁移率,从标准曲线上便可查出其分子质量。
3.沉降法(超速离心法)沉降系数(S)是指单位离心场强度溶质的沉降速度。
S也常用于近似地描述生物大分子的大小。
蛋白质溶液经高速离心分离时,蛋白质分子趋于下沉,沉降速度与蛋白质颗粒大小成正比,应用光学方法观察离心过程中蛋白质颗粒的沉降行为,可判断出蛋白质的沉降速度。
根据沉降速度可求出沉降系数,将S带入公式,即可计算出蛋白质的分子质量。
第二章核酸一、知识要点核酸分两大类:DNA和RNA。
所有生物细胞都含有这两类核酸。
但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA。
核酸的基本结构单位是核苷酸。
核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成。
核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起。
核酸中还有少量的稀有碱基。
RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶。
在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤。
核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使。
DNA的空间结构模型是在1953年由Watson和Crick两个人提出的。
建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性。