2016年山东省济宁市中考数学三模试卷和解析
- 格式:pdf
- 大小:738.49 KB
- 文档页数:22
2016年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:1 2 3 4 5参赛者编号成绩/分96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:1 2 3 4 5参赛者编号成绩/分96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b 的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b,b).∵点B在反比例函数y=的图象上,∴(10+b)×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN﹣OM=﹣1.S△AOF=S△AOM+S梯形AMNF ﹣S△OFN=S梯形AMNF=(AM+FN)•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D.二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D 点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x ﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).2016年6月25日。
考点10.一次函数(精练)限时检测1:最新各地模拟试题(40分钟)4.(2023·江苏·中考模拟)如图,在平面直角坐标系中,直线2y x b =+与直线36y x =-+相交于点A ,则关于x ,y 的二元一次方程组236y x b y x =+⎧⎨=-+⎩的解是()A .20x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .19x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩A .210k k <<B .1k <7.(2023·山东枣庄·校考一模)已知点A .25b a ≥B .b a ≤A .<2x -11.(2023·安徽滁州则以下判断正确的是(A .若0x x >A .12k ≤-B .3k ≥-13.(2023·河南周口·校联考三模)如图,在平面直角坐标系于点P ,Q ,在Rt OPQ 中从左向右依次作正方形123n A A A A ⋯,,,在x 轴上,点1B 在全等的直角三角形和一个小正方形,其中每个小正方形的边都与坐标轴平行,从左至右的小正方形A .1134n n ++B .212234n n --C .14.(2023·天津河西·校考三模)若一次函数3y kx =+出一个满足条件的值).15.(2023·湖南永州·校考二模)已知一次函数y =取值范围是.19.(2023·河北·模拟预测)已知直线y-≤≤,求该函数的解析式.12820.(2023·陕西西安·校考一模)李老师计划组织学生暑假去北京研学旅行,经了解,现有甲、乙两家旅行社比较合适,报价均为每人都按八折收费;乙旅行社表示,若人数不超过仍按报价的八五折收费,则超出部分每人按七折收费,假设组团参加甲、乙两家旅行社研学旅行的人数均限时检测2:最新各地中考真题(40分钟)1.(2023年湖南省益阳市中考数学真题)关于一次函数1y x =+,下列说法正确的是()A .图象经过第一、三、四象限B .图象与y 轴交于点()0,1C .函数值y 随自变量x 的增大而减小D .当1x >-时,0y <2.(2023年湖南娄底中考数学真题)将直线 21y x =+向右平移2个单位所得直线的表达式为()A .21y x =-B .23y x =-C .23y x =+D .25y x =+3.(2023年四川省雅安市中考数学真题)在平面直角坐标系中.将函数y x =的图象绕坐标原点逆时针旋转90︒,再向上平移1个单位长度,所得直线的函数表达式为()A .=1y x -+B .1y x =+C .=1y x --D .1y x =-4.(2023年甘肃省兰州市中考数学真题)一次函数1y kx =-的函数值y 随x 的增大而减小,当2x =时,y 的值可以是()A .2B .1C .-1D .-25.(2022·湖南邵阳·中考真题)在直角坐标系中,已知点3,2A m ⎛⎫ ⎪⎝⎭,点B n ⎫⎪⎪⎝⎭是直线()0y kx b k =+<上的两点,则m ,n 的大小关系是()A .m n <B .m n >C .m n ≥D .m n≤6.(2023年宁夏回族自治区中考数学真题)在同一平面直角坐标系中,一次函数1(0)y ax b a =+≠与2(0)y mx n m =+≠的图象如图所示,则下列结论错误的是()A .1y 随x 的增大而增大B .b n <C .当2x <时,12y y >D .关于x ,y 的方程组ax y b mx y n -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩7.(2023年山东省临沂市中考数学真题)对于某个一次函数(0)y kx b k =+≠,根据两位同学的对话得出的结论,错误的是()A.8:28B.8:3010.(2023年山东省威海市中考数学真题)时)之间的函数关系如图所示.当0≤x之间的函数表达式为.11.(2023年江苏省无锡市中考数学真题)12.(2023年湖南省郴州市中考数学真题)在一次函数16.(2022·辽宁锦州·中考真题)点()()1122,,,A x y B x y 在一次函数(2)1y a x =-+的图像上,当12x x >时,12y y <,则a 的取值范围是____________.18.(2023年四川省南充市中考数学真题)如图,直线于点A ,B ,则23OA OB +的值是(1)=a___________,b=___________;(2)请分别求出(3)当上升多长时间时,两个气球的海拔竖直高度差为(1)A,B两地之间的距离是______千米,(3)货车出发多少小时两车相距15千米?(直接写出答案即可)(1)小聪在直角坐标系中描出了表中数据对应的点.经老师介绍,在这种食用油达到沸点前,锅中油温︒)与加热的时间t(单位:位:C选填“正比例”“一次”“二次”“反比例(3)当加热110s时,油沸腾了,请推算沸点的温度.(3)当2,1,2a b c =-==时,即212y x =--+.①当1x ≥时,函数化简为y =______.②在图2所示的平面直角坐标系内画出函数212y x =--+的图象.(4)请写出函数y a x b c =-+(a ,b ,c 是常数,0a ≠)的一条性质:______.(若所列性质多于一条,则仅以第一条为准)。
2016年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.(3分)下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x3.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.(3分)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.5.(3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°6.(3分)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A .﹣3B .0C .6D .97.(3分)如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm8.(3分)在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是( )A.96,88, B .86,86 C .88,86 D .86,889.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .B .C .D .10.(3分)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数y=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .60B .80C .30D .40二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若式子有意义,则实数x的取值范围是.12.(3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.(3分)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.(6分)2016年6月19日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.(7分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.19.(8分)某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.(9分)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.(11分)如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l 交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P 的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.(3分)下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.(3分)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C.D.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.(3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.(3分)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.(3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.(3分)在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是( ) A .96,88, B .86,86 C .88,86 D .86,88【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( )A .B .C .D .【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况, ∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B .10.(3分)如图,O 为坐标原点,四边形OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数y=在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A.60 B.80 C.30 D.40【解答】解:过点A作AM⊥x轴于点M,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6,OB=OA=10.∵四边形OACB是菱形,点F在边BC上,∴S=S菱形OBCA=OB•AM=40.△AOF故选D.二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若式子有意义,则实数x的取值范围是x≥1.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.12.(3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.(3分)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为1.【解答】解:把整数1化为,得,,,(),,,…可以发现分子为连续奇数,分母为连续质数,所以,第4个数的分子是7,分母是7,故答案为:1.三、解答题:本大题共7小题,共55分16.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.(6分)2016年6月19日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.(7分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.(8分)某地2014年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知EO=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【解答】解:(1)∵四边形ABCD是正方形,∴CA==BC.∵CF=CA,CE是∠ACF的角平分线,∴E是AF的中点.∵E、O分别是AF、AC的中点,∴EO∥BC,且EO=CF,∵EO=,∴CA=CF=2,∴BC=2.∴正方形ABCD的边长为2;(2)EM=CN.证明:连接FN,∵CF=CA,CE是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴BF=BN,∴∠CFN=∠FNB=45°,∵四边形ABCD是正方形,∴∠DBC=45°,∵EO∥BC,∴∠EOM=∠DBC=45°,∠OEM=∠FCN,∴∠CFN=∠EOM,∴△CFN∽△EOM,∴,即=.∴EM=CN.21.(9分)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.(11分)如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l 交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P 的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a 1=9,a 2=15.∴点Q 坐标为(9,4)或(15,16).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
2023年江苏省泰州市兴化市九年级(下)中考三模数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.以下各数是有理数的是()A.B.C.D.2.在如图所示的几何体中,俯视图和左视图相同的是()A. B. C. D.3.下列运算正确的是()A.B.C.D.4.下列说法正确的是()A.命题一定有逆命题B.所有的定理一定有逆定理C.真命题的逆命题一定是真命题D.假命题的逆命题一定是假命题5.费尔兹奖是国际上享有崇高声誉的一个数学奖项,每四年评选一次,主要授予年轻的数学家.下面数据是部分获奖者获奖时的年龄单位:岁:29,32,33,35,35,40,则这组数据的众数和中位数分别是()A.35,35 B.34,33 C.34,35 D.35,346.如图,在矩形中,连接BD ,分别以为圆心,大于的长为半径作弧,两弧交于点,作直线EF 分别交线段于点连接CH ,则四边形BCHG 的周长为()A. B.11 C. D.二、填空题:本题共10小题,每小题3分,共30分。
7.若分式有意义,x 的取值范围是__________.8.近年来,我国研发的北斗芯片实现了22纳米制程的突破,22纳米等于米.用科学记数法表示是__________.9.因式分解:__________.10.不等式组的解集是__________.11.已知扇形面积为,半径为6,则扇形的弧长为__________.12.如图,将一个正八边形与一个正六边形如图放置,顶点A、B、C、D四点共线,E为公共顶点.则__________.13.设m、n是方程的两个实数根,则__________.14.以下表格为摄氏温度和华氏温度部分计量值对应表摄氏温度值010********华氏温度值32506886104122根据表格信息,当华氏温度的值和摄氏温度的值相等时,这个值是__________.15.如图,已知扇形,半径,点E在弧AB上一动点与A、B不重合,过点E作于点C,于点D,连接CD,则面积的最大值为__________.16.已知中,,含角的三个顶点分在的三边上,且直角顶点D在斜边AC上,则CD的长为__________.三、解答题:本题共10小题,共80分。
2016年山东省济宁市中考数学三模试卷一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14 B.0 C.1 D.22.下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n3.下列四个几何图形中,俯视图是矩形的是()A. B.C.D.4.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.5.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°6.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣18.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)二、填空题:本大题共5小题,每小题3分.共15分.11.计算:﹣2等于.12.已知函数:y=,当x=2时,函数值y为.13.若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD 的对角线长为.14.2016年济宁市常住人口约为820万人,与2010年第六次人口普查的808.19万人略有提升,820万用科学记数法表示为8.2×10n,则n= .15.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.三、解答题:本大题共7小题,共55分.16.先化简,再求值:÷(2+),其中x=﹣1.17.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.18.济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?19.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)20.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.21.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学三模试卷参考答案与试题解析一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14 B.0 C.1 D.2【考点】正数和负数.【分析】根据负数是小于0的数,可得答案.【解答】解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,故选:A.2.下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.【解答】解:A、4m﹣m=3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)2=m6,故此选项错误;D、﹣(m+2n)=﹣m﹣2n,故此选项错误;故选:B.3.下列四个几何图形中,俯视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】从上面看到的图叫做俯视图.【解答】解:A、球体的俯视图是圆,故本选项错误;B、平放在地面上的圆柱的俯视图是矩形,故本选项正确;C、圆锥的俯视图是一个带有圆心的圆形,故本选项错误;D、圆台的俯视图是两个同心圆,故本选项错误;故选:B.4.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解的不等式,然后在数轴上表示出来.【解答】解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.5.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=÷2=÷2=35°,故选:A.6.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1【考点】二次函数的性质.【分析】根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.【解答】解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.8.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式【考点】方差;全面调查与抽样调查;随机事件;概率的意义.【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.10.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.二、填空题:本大题共5小题,每小题3分.共15分.11.计算:﹣2等于2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.12.已知函数:y=,当x=2时,函数值y为 5 .【考点】函数值.【分析】先判断出x=2时,所符合的关系式,然后将x=2代入对应的函数关系式即可.【解答】解:∵x=2>0,∴y=2x+1=2×2+1=5.故答案为:5.13.若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD 的对角线长为 5 .【考点】矩形的性质;解一元二次方程-因式分解法;勾股定理.【分析】首先解方程求得方程的两个根,即可求得矩形的两边长,然后利用勾股定理即可求得对角线长.【解答】解:方程x2﹣7x+12=0,即(x﹣3)(x﹣4)=0,则x﹣3=0,x﹣4=0,解得:x1=3,x2=4.则矩形ABCD的对角线长是: =5.故答案是:5.14.2016年济宁市常住人口约为820万人,与2010年第六次人口普查的808.19万人略有提升,820万用科学记数法表示为8.2×10n,则n= 6 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵820万=820 0000=8.2×106,∴n=6,故答案为:6.15.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是 6 .【考点】反比例函数系数k的几何意义.【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,由题意知:a﹣b=2•OE,a﹣b=3•OF,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三、解答题:本大题共7小题,共55分.16.先化简,再求值:÷(2+),其中x=﹣1.【考点】分式的化简求值.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.17.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【考点】相似三角形的应用;平行投影.【分析】(1)这是利用了平行投影的有关知识;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.利用矩形的性质和平行投影的知识可以得到比例式: =,即=,由此求得CD即电线杆的高度即可.【解答】解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以AM=10﹣2=8,由平行投影可知, =,即=,解得CD=7,即电线杆的高度为7米.18.济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?【考点】一次函数的应用.【分析】(1)根据题意可以直接写出y1与x,y2与x的函数关系式;(2)令y1=y2,解出相应的x的值,从而可以解答本题;(3)令y1小于y2,求得相应的x的取值范围,从而可以解答本题.【解答】解:(1)由题意可得,y1与x的函数关系式是:y1=0.15x+58,y2与x的函数关系式是:y2=0.19x;(2)0.15x+58=0.19x解得,x=1450即月通话时间为1450分钟时,两种套餐收费一样;(3)由题意可得,0.15x+58<0.19x,解得,x>1450,即当月通话时间多于1450分钟时,“世界风吉祥58A套餐”更省钱.19.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M 在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)【考点】解直角三角形的应用-方向角问题.【分析】根据题意,在△ABM中,∠BAM=30°,∠ABM=45°,AB=300(+l)米.过点M 作MN⊥AB于N,设MN=x米,用含x的代数式分别表示AN,BN,根据AN+BN=AB建立方程,解方程求出x的值,进而求出MA与MB的长.【解答】解:过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN=MN=x.在Rt△BMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,MB=MN=x.∵AN+BN=AB,∴x+x=300(+l),∴x=300,∴MA=2x=600,MB=x=300.故供水站M到小区A的距离是600米,到小区B的距离是300米.20.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【考点】折线统计图;条形统计图.【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.【解答】解:(1)根据题意得:50×=40(双).答:一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.21.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】四边形综合题.【分析】(1)先证出△ABP≌△CBP,根据全等三角形的性质得到∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(2)根据菱形的性质得到AB=BC,∠ABP=∠CBP=60°,根据全等三角形的性质得到PA=PC,∠BAP=∠BCP,根据等腰三角形的性质得到∠DAP=∠DCP,∠DAP=∠AEP,等量代换得到∠DCP=∠AEP推出△EPC是等边三角形,即可得到结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,PA=PE,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(2)解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可.【解答】解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当P1C⊥CB时,△P1BC为直角三角形,∵直线BC的斜率为﹣,∴直线P1C斜率为,∴直线P1C解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P2B⊥BC时,△BCP2为直角三角形,同理得到直线P2B的斜率为,∴直线P2B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P2(,﹣2).综上所示,P1(,)或P2(,﹣2).当点P为直角顶点时,设P(,y),∵B(4,0),C(0,3),∴BC=5,∴BC2=PC2+PB2,即25=()2+(y﹣3)2+(﹣4)2+y2,解得y=,∴P3(,),P4(,).综上所述,P1(,),P2(,﹣2),P3(,),P4(,).。
2016年山东省济宁市中考数学三模试卷一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14 B.0 C.1 D.22.下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n3.下列四个几何图形中,俯视图是矩形的是()A. B.C.D.4.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.5.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°6.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣18.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)二、填空题:本大题共5小题,每小题3分.共15分.11.计算:﹣2等于.12.已知函数:y=,当x=2时,函数值y为.13.若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD 的对角线长为.14.2016年济宁市常住人口约为820万人,与2010年第六次人口普查的808.19万人略有提升,820万用科学记数法表示为8.2×10n,则n= .15.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.三、解答题:本大题共7小题,共55分.16.先化简,再求值:÷(2+),其中x=﹣1.17.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.18.济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?19.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)20.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.21.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学三模试卷参考答案与试题解析一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14 B.0 C.1 D.2【考点】正数和负数.【分析】根据负数是小于0的数,可得答案.【解答】解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,故选:A.2.下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.【解答】解:A、4m﹣m=3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)2=m6,故此选项错误;D、﹣(m+2n)=﹣m﹣2n,故此选项错误;故选:B.3.下列四个几何图形中,俯视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】从上面看到的图叫做俯视图.【解答】解:A、球体的俯视图是圆,故本选项错误;B、平放在地面上的圆柱的俯视图是矩形,故本选项正确;C、圆锥的俯视图是一个带有圆心的圆形,故本选项错误;D、圆台的俯视图是两个同心圆,故本选项错误;故选:B.4.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解的不等式,然后在数轴上表示出来.【解答】解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.5.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=÷2=÷2=35°,故选:A.6.如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【考点】函数的图象;中心投影.【分析】根据中心投影的性质得出小红在灯下走的过程中影长随路程之间的变化,进而得出符合要求的图象.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1【考点】二次函数的性质.【分析】根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.【解答】解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.8.下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式【考点】方差;全面调查与抽样调查;随机事件;概率的意义.【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.9.多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻找它们的公因式.【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.10.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.二、填空题:本大题共5小题,每小题3分.共15分.11.计算:﹣2等于2.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.12.已知函数:y=,当x=2时,函数值y为 5 .【考点】函数值.【分析】先判断出x=2时,所符合的关系式,然后将x=2代入对应的函数关系式即可.【解答】解:∵x=2>0,∴y=2x+1=2×2+1=5.故答案为:5.13.若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD 的对角线长为 5 .【考点】矩形的性质;解一元二次方程-因式分解法;勾股定理.【分析】首先解方程求得方程的两个根,即可求得矩形的两边长,然后利用勾股定理即可求得对角线长.【解答】解:方程x2﹣7x+12=0,即(x﹣3)(x﹣4)=0,则x﹣3=0,x﹣4=0,解得:x1=3,x2=4.则矩形ABCD的对角线长是: =5.故答案是:5.14.2016年济宁市常住人口约为820万人,与2010年第六次人口普查的808.19万人略有提升,820万用科学记数法表示为8.2×10n,则n= 6 .【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵820万=820 0000=8.2×106,∴n=6,故答案为:6.15.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是 6 .【考点】反比例函数系数k的几何意义.【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,由题意知:a﹣b=2•OE,a﹣b=3•OF,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三、解答题:本大题共7小题,共55分.16.先化简,再求值:÷(2+),其中x=﹣1.【考点】分式的化简求值.【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解,约分后得到原式=,再把x的值代入计算.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.17.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【考点】相似三角形的应用;平行投影.【分析】(1)这是利用了平行投影的有关知识;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.利用矩形的性质和平行投影的知识可以得到比例式: =,即=,由此求得CD即电线杆的高度即可.【解答】解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以AM=10﹣2=8,由平行投影可知, =,即=,解得CD=7,即电线杆的高度为7米.18.济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?【考点】一次函数的应用.【分析】(1)根据题意可以直接写出y1与x,y2与x的函数关系式;(2)令y1=y2,解出相应的x的值,从而可以解答本题;(3)令y1小于y2,求得相应的x的取值范围,从而可以解答本题.【解答】解:(1)由题意可得,y1与x的函数关系式是:y1=0.15x+58,y2与x的函数关系式是:y2=0.19x;(2)0.15x+58=0.19x解得,x=1450即月通话时间为1450分钟时,两种套餐收费一样;(3)由题意可得,0.15x+58<0.19x,解得,x>1450,即当月通话时间多于1450分钟时,“世界风吉祥58A套餐”更省钱.19.如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M 在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)【考点】解直角三角形的应用-方向角问题.【分析】根据题意,在△ABM中,∠BAM=30°,∠ABM=45°,AB=300(+l)米.过点M 作MN⊥AB于N,设MN=x米,用含x的代数式分别表示AN,BN,根据AN+BN=AB建立方程,解方程求出x的值,进而求出MA与MB的长.【解答】解:过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN=MN=x.在Rt△BMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,MB=MN=x.∵AN+BN=AB,∴x+x=300(+l),∴x=300,∴MA=2x=600,MB=x=300.故供水站M到小区A的距离是600米,到小区B的距离是300米.20.某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【考点】折线统计图;条形统计图.【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.【解答】解:(1)根据题意得:50×=40(双).答:一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.21.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【考点】四边形综合题.【分析】(1)先证出△ABP≌△CBP,根据全等三角形的性质得到∠BAP=∠BCP,进而得∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(2)根据菱形的性质得到AB=BC,∠ABP=∠CBP=60°,根据全等三角形的性质得到PA=PC,∠BAP=∠BCP,根据等腰三角形的性质得到∠DAP=∠DCP,∠DAP=∠AEP,等量代换得到∠DCP=∠AEP推出△EPC是等边三角形,即可得到结论.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,PA=PE,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(2)解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可.【解答】解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当P1C⊥CB时,△P1BC为直角三角形,∵直线BC的斜率为﹣,∴直线P1C斜率为,∴直线P1C解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P2B⊥BC时,△BCP2为直角三角形,同理得到直线P2B的斜率为,∴直线P2B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P2(,﹣2).综上所示,P1(,)或P2(,﹣2).当点P为直角顶点时,设P(,y),∵B(4,0),C(0,3),∴BC=5,∴BC2=PC2+PB2,即25=()2+(y﹣3)2+(﹣4)2+y2,解得y=,∴P3(,),P4(,).综上所述,P1(,),P2(,﹣2),P3(,),P4(,).。
中考数学模试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)4的倒数的相反数是()A.﹣4 B.4 C.D.2.(3分)提出了未来5年“精准扶贫”的构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为()A.1.17×106B.1.17×107C.1.17×108D.11.7×1063.(3分)在一次数学测试中,某学校小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95,关于这组数据,下列说法错误的是()A.众数是82 B.中位数是82 C.方差8.4 D.平均数是814.(3分)如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是()A.B.C.D.5.(3分)下列运算正确的是()A.a6+a3=a9 B.a2•a3=a6 C.(2a)3=8a3D.(a﹣b)2=a2﹣b26.(3分)如图,是一个带有方形空洞和圆形空洞的儿童玩具,如果用下列几何体作为塞子,那么既可以堵住方形空洞,又可以堵住圆形空洞的几何体是()A. B.C.D.7.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=45°,∠1=65°,则∠2的度数为()A.45°B.65°C.70°D.110°8.(3分)如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.169.(3分)不等式组的解集为x<2,则k的取值范围为()A.k>1 B.k<1 C.k≥1 D.k≤110.(3分)如图,分别延长圆内接四边形ABDE的两组对边,延长线相交于点F、C,若∠F=27°,∠A=53°,则∠C的度数为()A.30°B.43°C.47°D.53°11.(3分)二次函数y=ax2+bx+c图象上部分点的坐标满足表格:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的顶点坐标为()A.(﹣3,﹣3)B.(﹣2,﹣2)C.(﹣1,﹣3)D.(0,﹣6)12.(3分)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.13.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个14.(3分)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题3分,共15分)15.(3分)分解因式:a2b+2ab2+b3=.16.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为.17.(3分)如图,在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,将Rt△ABC 绕A点顺时针旋转90°得到Rt△ADE,则BC扫过的面积为.18.(3分)如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数y=的图象经过点E,则k的值是.19.(3分)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.三、解答题(本大题共7小题,共计63分)20.(6分)+()﹣1﹣﹣|﹣2|21.(7分)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?22.(7分)如图,热气球的探测器显示,从热气球看一栋高楼的顶部B的仰角为45°,看这栋高楼底部C的俯角为60°,热气球与高楼的水平距离AD为20m,求这栋楼的高度.(结果保留根号)23.(9分)如图,⊙O是△ABC的外接圆,AC为直径,=,BE⊥DC交DC 的延长线于点E.(1)求证:∠1=∠BCE;(2)求证:BE是⊙O的切线;(3)若EC=1,CD=3,求cos∠DBA.24.(10分)甲、乙两辆汽车沿同一路线赶赴出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图象(线段AB表示甲出发不足2小时因故停车检修),请根据图象所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)25.(11分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB 上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.26.(13分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求△ABC的面积;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.【考点】17:倒数;14:相反数.【分析】先求出4的倒数,再根据相反数即可解答.【解答】解:4的倒数是,的相反数﹣,故选:C.【点评】本题考查了倒数和相反数,解决本题的关键是熟记相反数,倒数的定义.2.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:11700000用科学记数法表示为1.17×107,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据方差、中位数、众数及平均数的定义,结合数据进行分析即可.【解答】解:将数据重新排列为65、76、82、82、86、95,A、数据的众数为82,此选项正确;B、数据的中位数为=82,此选项正确;C、数据的平均数为=81,所以方差为×[(65﹣81)2+(76﹣81)2+2×(82﹣81)2+(86﹣81)2+(95﹣81)2]=84,此选项错误;D、由C选项知此选项正确;故选:C.【点评】本题考查了众数、中位数、平均数、方差,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.4.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、同底数幂的乘法法则、积的乘方与完全平方公式逐一计算可得.【解答】解:A、a6与a3不是同类项,不能合并,此选项错误;B、a2•a3=a5,此选项错误;C、(2a)3=8a3,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握合并同类项法则、同底数幂的乘法法则、积的乘方与完全平方公式.6.【考点】U1:简单几何体的三视图.【分析】根据从正面看得到的图形是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:圆柱从上边看是一个圆,从正面看是一个矩形,既可以堵住方形空洞,又可以堵住圆形空洞,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从上边看得到的图形是俯视图.7.【考点】JA:平行线的性质.【分析】根据平行线的性质求出∠AEF,根据三角形内角和定理求出∠AFE,即可得出答案.【解答】解:如图,∵直线l1∥l2,∠1=65°,∴∠AEF=∠1=65°,∵∠A=45°,∴∠2=∠AFE=180°﹣∠A﹣∠AEF=70°,故选:C.【点评】本题考查了平行线的性质,三角形的内角和定理,对顶角相等的应用,解此题的关键是求出∠AEF的度数,注意:两直线平行,同位角相等.8.【考点】Q2:平移的性质;KH:等腰三角形的性质.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选:C.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.9.【考点】CB:解一元一次不等式组.【分析】求出每个不等式的解集,根据已知得出关于k的不等式,求出不等式的解集即可.【解答】解:解不等式组,得.∵不等式组的解集为x<2,∴k+1≥2,解得k≥1.故选:C.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集和已知得出关于k的不等式,难度适中.10.【考点】M6:圆内接四边形的性质.【分析】先根据三角形外角性质∠CBD=∠A+∠F=80°,根据圆内接四边形的性质得到∠A+∠BDE=180°,求得∠BDE=180°﹣53°=127°,根据三角形的外角的性质即可得到结论.【解答】解:∵∠A=53°,∠F=27°,∴∠CBD=∠A+∠F=80°,∵∠A+∠BDE=180°,∴∠BDE=180°﹣53°=127°,∵∠BDE=∠C+∠CBD,∴∠C=127°﹣80°=47°.故选:C.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.也考查了三角形外角性质.11.【考点】H5:二次函数图象上点的坐标特征.【分析】根据二次函数的对称性确定出二次函数的对称轴,然后解答即可.【解答】解:∵x=﹣3和﹣1时的函数值都是﹣3,相等,∴二次函数的对称轴为直线x=﹣2,∴顶点坐标为(﹣2,﹣2).故选:B.【点评】本题考查了二次函数的性质,主要利用了二次函数的对称性,仔细观察表格数据确定出对称轴是解题的关键.12.【考点】E6:函数的图象.【分析】由点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,可得A 与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选:B.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.13.【考点】S9:相似三角形的判定与性质;KB:全等三角形的判定;LE:正方形的性质.【分析】由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE;由△DGO与△DCE相似即可判定③错误,证明△EFO∽△DGO,即可求得④正确;即可得出结论.【解答】解:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,CD∥EF,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),故①正确;②延长BG交DE于点H,如图所示:∵△BCG≌△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形,∴GF∥CE,∴,是错误的.故③错误;④∵DC∥EF,∴△EFO∽△DGO,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;正确的有3个,故选:B.【点评】本题主要考查正方形的性质、全等三角形的判定和性质及相似三角形的判定和性质,综合性较强,掌握三角形全等、相似的判定和性质是解题的关键.14.【考点】H4:二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共5小题,每小题3分,共15分)15.【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式,再利用公式法把原式进行因式分解即可.【解答】解:原式=b(a+b)2.故答案为:b(a+b)2.【点评】本题考查的是提公因式法与公式法的综合运用,熟记完全平方公式是解答此题的关键.16.【考点】X3:概率的意义.【分析】设红球有x个,根据摸出一个球是蓝球的概率是,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【解答】解:∵在一个不透明的口袋里有红、黄、蓝三种颜色的小球,三种球除颜色外其他完全相同,其中有5个黄球,4个蓝球,随机摸出一个蓝球的概率是,设红球有x个,∴=,解得:x=3∴随机摸出一个红球的概率是:=.故答案为:.【点评】此题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.17.【考点】MO:扇形面积的计算;KO:含30度角的直角三角形;R2:旋转的性质.【分析】根据题意可以求得AC和AB的长,然后根据旋转的性质即可求得BC扫过的面积.【解答】解:∵在Rt△ABC中,∠BCA=90°,∠BAC=30°,BC=2,∴AB=4,AC=2,∴BC扫过的面积为:=π,故答案为:π.【点评】本题考查扇形面积的计算、含30度角的直角三角形、旋转的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18.【考点】G6:反比例函数图象上点的坐标特征;G4:反比例函数的性质;LE:正方形的性质.【分析】作EH⊥x轴于H,求出AB的长,根据△AOB∽△BCG,求出DG的长,再根据△AOB∽△EHA,求出AE的长,得到答案.【解答】解:作EH⊥x轴于H,∵OA=1,OB=2,由勾股定理得,AB=,∵AB∥CD,∴△AOB∽△BCG,∴CG=2BC=2,∴DG=3,AE=4,∵∠AOB=∠BAD=∠EHA=90°,∴△AOB∽△EHA,∴AH=2EH,又AE=4,∴EH=4,AH=8,∴点E的坐标为(9,4),则k=36,故答案为:36.【点评】本题考查的是正方形的性质和反比例函数图象上点的特征,运用相似三角形求出图中直角三角形两直角边是关系是解题的关键,解答时,要认真观察图形,找出两正方形边长之间的关系.19.【考点】18:有理数大小比较.【分析】分五种情况讨论x的范围:①﹣1<x<﹣0.5,②﹣0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.【点评】本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.三、解答题(本大题共7小题,共计63分)20.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及负指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2+2﹣﹣(2﹣)=2+2﹣(2+)﹣2+=2+2﹣2﹣﹣2+=2﹣2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.【考点】VC:条形统计图;V3:总体、个体、样本、样本容量;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据统计图可以得到抽查的学生数,从而可以求得样本容量,由扇形统计图可以求得扇形圆心角的度数;(2)根据统计图可以求得C类学生数和C类与D类所占的百分比,从而可以将统计图补充完整;(3)根据统计图可以估计该校九年级男生“引体向上”项目成绩为C类的有多少名.【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.【点评】本题考查条形统计图、扇形统计图、用本估计总体,解题的关键是明确题意,利用数形结合的思想解答.22.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△ABD中,求出BD,在Rt△ACD中,求出CD,二者相加即为楼高BC【解答】解:在Rt△ABD中,∠BDA=90°,∠BAD=45°,∴BD=AD=20.在Rt△ACD中,∠ADC=90°,∠CAD=60°,∴CD=AD=20.∴BC=BD+CD=20+20(m).答:这栋楼高为(20+20)m.【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,将原三角形转化为两个直角三角形是解题的关键.23.【考点】ME:切线的判定与性质;M5:圆周角定理;T7:解直角三角形.【分析】(1)过点B作BF⊥AC于点F,易证△ABF≌△DBE(AAS),所以BF=BE,从而可证明∠1=∠BCE;(2)连接OB,易证∠BAC=∠EBC,由于OA=OB,所以∠BAC=∠OBA,所以∠EBC=∠OBA,从而可知∠EBC+∠CBO=∠OBA+∠CBO=90°,所以BE是⊙O的切线;(3)易证:△EBC≌△FBC(AAS),所以CF=CE=1,由(1)可知:AF=DE=1+3=4,所以AC=CF+AF=1+4=5,利用锐角三角函数的定义即可求出答案.【解答】解:(1)过点B作BF⊥AC于点F,在△ABF与△DBE中,∴△ABF≌△DBE(AAS)∴BF=BE,∵BE⊥DC,BF⊥AC,∴∠1=∠BCE(2)连接OB,∵AC是⊙O的直径,∴∠ABC=90°,即∠1+∠BAC=90°,∵∠BCE+∠EBC=90°,且∠1=∠BCE,∴∠BAC=∠EBC∵OA=OB,∴∠BAC=∠OBA,∴∠EBC=∠OBA,∴∠EBC+∠CBO=∠OBA+∠CBO=90°,∴BE是⊙O的切线(3)由(2)可知:∠EBC=∠CBF=∠BAC,在△EBC与△FBC中,∴△EBC≌△FBC(AAS)∴CF=CE=1由(1)可知:AF=DE=1+3=4,∴AC=CF+AF=1+4=5,∴cos∠DBA=cos∠DCA==【点评】本题考查圆的综合问题,涉及圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识.24.【考点】FH:一次函数的应用.【分析】(1)由图可看出,乙车所行路程y与时间x的成一次函数,使用待定系数法可求得一次函数关系式;(2)由图可得,交点F表示第二次相遇,F点横坐标为6,代入(1)中的函数即可求得距出发地的路程;(3)交点P表示第一次相遇,即甲车故障停车检修时相遇,点P的横坐标表示时间,纵坐标表示离出发地的距离,要求时间,则需要把点P的纵坐标先求出;从图中看出,点P的纵坐标与点B的纵坐标相等,而点B在线段BC上,BC对应的函数关系可通过待定系数法求解,点B的横坐标已知,则纵坐标可求.【解答】解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,把(2,0)和(10,480)代入,得,解得:,故y与x的函数关系式为y=60x﹣120;(2)由图可得,交点F表示第二次相遇,F点的横坐标为6,此时y=60×6=120=240,则F点坐标为(6,240),故两车在途中第二次相遇时它们距出发地的路程为240千米;(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得,解得,故y与x的函数关系式为y=120x﹣480,则当x=4.5时,y=120×4.5﹣480=60.可得:点B的纵坐标为60,∵AB表示因故停车检修,∴交点P的纵坐标为60,把y=60代入y=60x﹣120中,有60=60x﹣120,解得x=3,则交点P的坐标为(3,60),∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从坐标系中提取信息的能力,是道综合性较强的代数应用题,对学生能力要求比较高.25.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KQ:勾股定理;LI:直角梯形.【分析】(1)由四边形是ABCD正方形,易证得△CBE≌△CDF(SAS),即可得CE=CF;(2)首先延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,易证得∠ECF=∠BCD=90°,又由∠GCE=45°,可得∠GCF=∠GCE=45°,即可证得△ECG≌△FCG,继而可得GE=BE+GD;(3)首先过C作CG⊥AD,交AD延长线于G,易证得四边形ABCG为正方形,由(1)(2)可知,ED=BE+DG,即可求得DG的长,设AB=x,在Rt△AED中,由勾股定理DE2=AD2+AE2,可得方程,解方程即可求得AB的长,继而求得直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)∴AB=12.=(AD+BC)•AB=×(6+12)×12=108.∴S梯形ABCD即梯形ABCD的面积为108.…(10分)【点评】此题考查了正方形的性质与判定、全等三角形的判定与性质、直角梯形的性质以及勾股定理等知识.此题综合性较强,难度较大,注意掌握辅助线的作法是解此题的关键,注意数形结合思想与方程思想的应用.26.【考点】HF:二次函数综合题.【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)设直线AC的解析式为y=kx+b,与x轴交于D,得到y=2x﹣1,求得BD=2﹣=于是得到结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得=或=,可求得N点的坐标.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3);(2)设直线AC的解析式为y=kx+b,与x轴交于D,把A(1,1),C(﹣1,﹣3)的坐标代入得,解得:,∴y=2x﹣1,当y=0,即2x﹣1=0,解得:x=,∴D(,0),∴BD=2﹣=∴△ABC 的面积=S △ABD +S △BCD =××1+××3=3;(3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x |,MN=|﹣x 2+2x |,由(2)知,AB=,BC=3,∵MN ⊥x 轴于点N ,∴∠ABC=∠MNO=90°,∴当△ABC 和△MNO 相似时,有=或=, ①当=时, ∴=,即|x ||﹣x +2|=|x |,∵当x=0时M 、O 、N 不能构成三角形,∴x ≠0,∴|﹣x +2|=,∴﹣x +2=±,解得x=或x=,此时N 点坐标为(,0)或(,0); ②当或=,时, ∴=,即|x ||﹣x +2|=3|x |,∴|﹣x +2|=3,∴﹣x +2=±3,解得x=5或x=﹣1,此时N 点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N 点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理及逆定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.。
2024年山东省日照市东港区日照港中学中考数学三模试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在−12024,−1,0,12024这四个数中,最大的数是( )A. −12024B. −1C. 0D. 120242.某物体如图所示,其主视图是( )A. B. C. D.3.芯片技术作为当今社会信息化的核心基础,其在各个领域的应用已经愈发广泛.然而,由于长期以来受制于技术和市场等多重因素的制约,中国芯片技术存在着“卡脖子现象”,目前中国的芯片制造工艺达到了14纳米(其中1纳米=0.000000001米),这是国内半导体产业中的主流技术,而世界最先进芯片制造工艺已经达到了3纳米.其中14纳米用科学记数法表示为( )A. 14×10−9米B. 1.4×10−8米C. 0.14×10−10米D. 1.4×10−7米4.下列运算正确的是( )A. x 3⋅x 2=x 6B. 3xy−xy =3C. (x +1)2=x 2+1D. (−x 3)2=x 65.我市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB ,CD 都与地面l 平行,∠BCD =60°,∠BAC =50°,当∠MAC 为( )度时,AM//BE .A. 15B. 65C. 70D. 1156.下列四个选项中所表示的x 的取值范围与如图中表示的x 的取值范围相同的是( )A. 满足{x≥12x<8的xB. 代数式x−1+3−x中的xC. △ABC的三边长分别为1.5、2.5和xD. 到2.5所表示的点的距离不大于1.5的点所表示的x7.《九章算术》是中国传统数学最重要的著作,书中有一个关于门和竹竿的问题,简译为:今有一扇门,不知门的高和宽.另有一竹竿,也不知竹竿的长短.竹竿横着放时比门的宽长4尺,竹竿竖着放时比门的高长2尺,竹竿斜着放时与门的对角线恰好相等,求门的对角线长.若设门的对角线长为x尺,则可列方程为( ) A. (x+4)2=x2+(x−2)2 B. x2=(x−4)2+(x−2)2C. (x+2)2=(x−4)2+x2D. (x+4)2=(x+2)2+x28.若关于x的分式方程2xx−1−3=m1−x的解为正数,则m的取值范围是( )A. m<−2且m≠−3B. m<2且m≠−3C. m>−3且m≠−2D. m>−3且m≠29.下表是小颖填写的实践活动报告的部分内容:题目测量孔子像的高度测量目标及其示意图相关数据BE=1.8m,CD=2m,∠α=20°,∠β=60°根据以上信息,可求出孔子像AE的高度约为( )(结果精确到0.1m,参考数据:tan20°≈0.36,tan60°≈1.73)A. 2.8mB. 3.0mC. 3.2mD. 3.4m10.如图,在菱形ABCD中,AB=2cm,∠D=60°,点P,Q同时从点A出发,点P以1cm/s的速度沿A−C−D的方向运动,点Q以2cm/s的速度沿A−B−C−D的方向运动,当其中一点到达D点时,两点停止运动.设运动时间为x(s),△APQ的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )A. B.C. D.11.如图,半径为2,圆心角为90°的扇形OAB的弧AB上有一动点P,从点P作PH⊥OA于点H,设△OPH的三个内角平分线交于点M,当点P在弧AB上从点A运动到点B时,点M所经过的路径长是( )π C. 2π D. 2πA. πB. 2212.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(x1,0),(2,0),其中0<x1<1下列四个结论:①abc<0;②a+b+c>0;③2b+3c<0;④不等式ax2+bx+c<−cx+c的解集为0<x<2.其中正确结论的个数是2( )A. 1B. 2C. 3D. 4二、填空题:本题共4小题,每小题4分,共16分。
2016年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20° B.30° C.35° D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.5.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16cm B.18cm C.20cm D.21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同)A.96,88, B.86,86 C.88,86 D.86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20° B.30° C.35° D.50°【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中, =,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD 的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a, a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b, b).∵点B在反比例函数y=的图象上,∴(10+b)×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN﹣OM=﹣1.S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=(AM+FN)•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D.二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是x≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,D F=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 80 km/h .【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h ,由题意列出分式方程,解方程求出x 的值即可.【解答】解:设这辆汽车原来的速度是xkm/h ,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h .故答案为:80.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为 . 【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,( ),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.先化简,再求值:a (a ﹣2b )+(a+b )2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a 与b 的值代入计算即可求出值.【解答】解:原式=a 2﹣2ab+a 2+2ab+b 2=2a 2+b 2,当a=﹣1,b=时,原式=2+2=4.17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠B CN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q 坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x ﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).。
2016年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.(3分)下列计算正确的是()A.x2•x3=x5B.x6+x6=x12C.(x2)3=x5D.x﹣1=x3.(3分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20° B.30° C.35° D.50°4.(3分)如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.5.(3分)如图,在⊙O中, =,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°6.(3分)已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.(3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.(3分)在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:1 2 3 4 5参赛者编号成绩/96 88 86 93 86分那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,889.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.10.(3分)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若式子有意义,则实数x的取值范围是.12.(3分)如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.(3分)按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.(6分)先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.(6分)2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.(7分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.(8分)某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元. (1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少? (2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励? 20.(8分)如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF=CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO . (1)已知BD=,求正方形ABCD 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.21.(9分)已知点P (x 0,y 0)和直线y=kx+b ,则点P 到直线y=kx+b 的距离证明可用公式d=计算.例如:求点P (﹣1,2)到直线y=3x+7的距离. 解:因为直线y=3x+7,其中k=3,b=7.所以点P (﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P (1,﹣1)到直线y=x ﹣1的距离; (2)已知⊙Q 的圆心Q 坐标为(0,5),半径r 为2,判断⊙Q 与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x ﹣6平行,求这两条直线之间的距离.22.(11分)如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中, =,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM==a,∴点A的坐标为(a, a).∵点A在反比例函数y=的图象上,∴a×a==48,解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F的坐标为(10+b, b).∵点B在反比例函数y=的图象上,∴(10+b)×b=48,解得:b=,或b=(舍去).∴FN=,BN=﹣5,MN=OB+BN ﹣OM=﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =(AM+FN )•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D .二、填空题:本大题共5小题,每小题3分,共15分 11.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x ﹣1是非负数,由此即可求解. 【解答】解:依题意得 x ﹣1≥0, ∴x≥1.故答案为:x≥1. 12.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH 与△CEB 有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D 、E , ∴∠BEC=∠AEC=90°,在Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE,在Rt△AEH 和Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS 添加AH=CB 或EH=EB ; 根据ASA 添加AE=CE . 可证△AEH≌△CEB.故填空答案:AH=CB 或EH=EB 或AE=CE . 13.【考点】平行线分线段成比例. 【分析】首先求出AD 的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1, ∴AD=3,∵AB∥CD∥EF, ∴=,故答案为:.14.【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠B CN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q 坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P 坐标为(3,);(3)∵y=﹣x+与x 轴交于点D ,∴点D 坐标为(7,0), ∵y=﹣x+与抛物线m 的对称轴l 交于点F ,∴点F 坐标为(3,2),求得FD 的直线解析式为y=﹣x+,若以FQ 为直径的圆经过点D ,可得∠FDQ=90°,则DQ 的直线解析式的k 值为2,设DQ 的直线解析式为y=2x+b ,把(7,0)代入解得b=﹣14,则DQ 的直线解析式为y=2x ﹣14,设点Q 的坐标为(a ,),把点Q 代入y=2x ﹣14得=2a ﹣14解得a 1=9,a 2=15.∴点Q 坐标为(9,4)或(15,16).。
2016年山东省济宁市中考数学三模试卷一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14 B.0 C.1 D.22.(3分)下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n 3.(3分)下列四个几何图形中,俯视图是矩形的是()A. B.C.D.4.(3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.5.(3分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°6.(3分)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.7.(3分)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣18.(3分)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式9.(3分)多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)210.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x 轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)二、填空题:本大题共5小题,每小题3分.共15分.11.(3分)计算:﹣2等于.12.(3分)已知函数:y=,当x=2时,函数值y为.13.(3分)若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为.14.(3分)2016年济宁市常住人口约为820万人,与2010年第六次人口普查的808.19万人略有提升,820万用科学记数法表示为8.2×10n,则n=.15.(3分)如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D 在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.三、解答题:本大题共7小题,共55分.16.(5分)先化简,再求值:÷(2+),其中x=﹣1.17.(7分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.18.(7分)济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?19.(8分)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)20.(8分)某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.21.(9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.22.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学三模试卷参考答案与试题解析一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)四个数﹣3.14,0,1,2中为负数的是()A.﹣3.14 B.0 C.1 D.2【解答】解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,故选:A.2.(3分)下列运算正确的是()A.4m﹣m=3 B.2m2•m3=2m5C.(﹣m3)2=m9D.﹣(m+2n)=﹣m+2n 【解答】解:A、4m﹣m=3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)2=m6,故此选项错误;D、﹣(m+2n)=﹣m﹣2n,故此选项错误;故选:B.3.(3分)下列四个几何图形中,俯视图是矩形的是()A. B.C.D.【解答】解:A、球体的俯视图是圆,故本选项错误;B、平放在地面上的圆柱的俯视图是矩形,故本选项正确;C、圆锥的俯视图是一个带有圆心的圆形,故本选项错误;D、圆台的俯视图是两个同心圆,故本选项错误;故选:B.4.(3分)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C.D.【解答】解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.5.(3分)如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35°B.40°C.45°D.50°【解答】解:∵△ABD中,AB=AD,∠B=70°,∴∠B=∠ADB=70°,∴∠ADC=180°﹣∠ADB=110°,∵AD=CD,∴∠C=(180°﹣∠ADC)÷2=(180°﹣110°)÷2=35°,故选:A.6.(3分)如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系用图象刻画出来,大致图象是()A.B.C.D.【解答】解:∵小路的正中间有一路灯,晚上小红由A处径直走到B处,她在灯光照射下的影长l与行走的路程S之间的变化关系应为:当小红走到灯下以前:l随S的增大而减小;当小红走到灯下以后再往前走时:l随S的增大而增大,∴用图象刻画出来应为C.故选:C.7.(3分)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1【解答】解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,由图象可知:﹣≤1,解得m≥﹣1.故选D.8.(3分)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.9.(3分)多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【解答】解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.10.(3分)如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x 轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,) B.(﹣2,) C.(﹣,1) D.(﹣,2)【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.二、填空题:本大题共5小题,每小题3分.共15分.11.(3分)计算:﹣2等于2.【解答】解:原式=3﹣=2.故答案为:2.12.(3分)已知函数:y=,当x=2时,函数值y为5.【解答】解:∵x=2>0,∴y=2x+1=2×2+1=5.故答案为:5.13.(3分)若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为5.【解答】解:方程x2﹣7x+12=0,即(x﹣3)(x﹣4)=0,则x﹣3=0,x﹣4=0,解得:x1=3,x2=4.则矩形ABCD的对角线长是:=5.故答案是:5.14.(3分)2016年济宁市常住人口约为820万人,与2010年第六次人口普查的808.19万人略有提升,820万用科学记数法表示为8.2×10n,则n=6.【解答】解:∵820万=820 0000=8.2×106,∴n=6,故答案为:6.15.(3分)如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D 在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是6.【解答】解:如图,设CD交y轴于E,AB交y轴于F.连接OD、OC.由题意知:DE•OE=﹣b,CE•OE=a,∴a﹣b=OE(DE+CE)=OE•CD=2OE,同法:a﹣b=3•O F,∴2OE=3OF,∴OE:OF=3:2,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三、解答题:本大题共7小题,共55分.16.(5分)先化简,再求值:÷(2+),其中x=﹣1.【解答】解:原式=÷=÷=•=,当x=﹣1时,原式==.17.(7分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【解答】解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以AM=10﹣2=8,由平行投影可知,=,即=,解得CD=7,即电线杆的高度为7米.18.(7分)济宁移动公司手机话费“世界风吉祥58A套餐(月租费58元,通话费每分0.15元)”和“预付费全球通本地套餐(月租费0元,通话费每分钟0.19元)”两种.设“世界风吉祥58A套餐”每月话费为y1(元),“预付费全球通本地套餐”每月话费为y2(元),月通话时间为35分钟.(1)分别表示出y1与x,y2与x的函数关系式.(2)月通话时间为多长时,两种套餐收费一样?(3)什么情况下用“世界风吉祥58A套餐”更省钱?【解答】解:(1)由题意可得,y 1与x的函数关系式是:y1=0.15x+58,y2与x的函数关系式是:y2=0.19x;(2)0.15x+58=0.19x解得,x=1450即月通话时间为1450分钟时,两种套餐收费一样;(3)由题意可得,0.15x+58<0.19x,解得,x>1450,即当月通话时间多于1450分钟时,“世界风吉祥58A套餐”更省钱.19.(8分)如图,某市对位于笔直公路AC上两个小区A、B的供水路线进行优化改造.供水站M在笔直公路AD上,测得供水站M在小区A的南偏东60°方向,在小区B的西南方向,小区A、B之间的距离为300(+l)米,求供水站M分别到小区A、B的距离.(结果可保留根号)【解答】解:过点M作MN⊥AB于N,设MN=x米.在Rt△AMN中,∵∠ANM=90°,∠MAN=30°,∴MA=2MN=2x,AN=MN=x.在Rt△BMN中,∵∠BNM=90°,∠MBN=45°,∴BN=MN=x,MB=MN=x.∵AN+BN=AB,∴x+x=300(+l),∴x=300,∴MA=2x=600,MB=x=300.故供水站M到小区A的距离是600米,到小区B的距离是300米.20.(8分)某运动品牌店对第一季度A、B两款运动鞋的销售情况进行统计.两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的,则一月份B款运动鞋销售了多少双?(2)第一节度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)综合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.【解答】解:(1)根据题意得:50×=40(双).答:一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.21.(9分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,PA=PE,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(2)解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.22.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当P1C⊥CB时,△P1BC为直角三角形,∵直线BC的斜率为﹣,∴直线P1C斜率为,∴直线P1C解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P2B⊥BC时,△BCP2为直角三角形,同理得到直线P2B的斜率为,∴直线P2B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P 2(,﹣2). 综上所示,P 1(,)或P 2(,﹣2).当点P 为直角顶点时,设P (,y ), ∵B (4,0),C (0,3), ∴BC=5,∴BC 2=PC 2+PB 2,即25=()2+(y ﹣3)2+(﹣4)2+y 2,解得y=,∴P 3(,),P 4(,).综上所述,P 1(,),P 2(,﹣2),P 3(,),P 4(,).。