乙醇—水溶液精馏塔课程设计报告
- 格式:doc
- 大小:822.00 KB
- 文档页数:25
课程设计--乙醇-水分离过程板式精馏塔设计课程设计说明书武汉工程大学化工与制药学院课程设计说明书课题名称乙醇-水分离过程板式精馏塔设计专业班级工业催化与煤化工01学生学号1001100306学生姓名侯昆学生成绩指导教师蔡宁课题工作时间2013年6月18日——7月5日武汉工程大学化工与制药学院武汉工程大学化工原理课程设计任务书专业工业催化与煤化工班级工催01 学生姓名侯昆发题时间:2013 年 6 月17 日一、课题名称乙醇-水分离过程板式精馏塔设计二、课题条件参考文献1.大连理工大学化工原理教研室. 化工原理课程设计. 大连:大连理工大学出版社,19942.柴诚敬,刘国维,李阿娜. 化工原理课程设计. 天津:天津科学技术出版社,19953.贾绍义,柴诚敬. 化工原理课程设计. 天津:天津大学出版社,20024.王国胜. 化工原理课程设计. 大连:大连理工大学出版社,20055.匡国柱,史启才.化工单元过程及设备课程设计. 北京:化学工业出版社,20026.上海医药设计院. 化工工艺设计手册(上、下). 化学工业出版社,19867.阮奇,叶长,黄诗煌. 化工原理优化设计与解题指南. 北京:化学工业出版社,2001.98.化工设备技术全书编辑委员会. 化工设备全书—塔设备设计. 上海:上海科学技术出版社,19889.邹兰,阎传智. 化工工艺工程设计. 成都:成都科技大学出版社,199810.李功祥,陈兰英,崔英德. 常用化工单元设备设计. 广州:华南理工大学出版社,200311.童景山, 李敬. 流体热物理性质的计算. 北京:清华大学出版社,198212.马沛生. 化工数据. 北京:中国石化出版社,200313.靳士兰, 邢凤兰. 化工制图. 北京:国防工业出版社,200614.朱有庭,曲文海,于浦义.化工设备设计手册(上、下册). 北京:化学工业出版社,200415.刘雪暖, 汤景凝.化工原理课程设计. 北京:石油大学出版社,2001三、设计任务(含实验、分析、计算、绘图、论述等内容)1 全塔物料衡算。
目录一、设计题 (1)二、原始数据及条件 (1)三、绪论 (1)四、装置的工艺计算 (4)五、筛板的流体力学计算 (15)六、塔附件的设计 (19)七、塔顶空间 (22)八、附件设备设计你 (22)九、设计结果—览表 (25)十、心得体会 (25)十一、参考文献 (26)十二、附图 (27)化工原理课程设计任务书一、设计题目设计用于乙醇——水溶液分离的常压筛板精馏塔二、原始数据及条件生产能力:处理量为6000kg/h原料:原料为含有乙醇20%(摩尔分数,下同)的泡点液体分离要求:馏出液体中含乙醇86%釜液中含乙醇不大于2%要求:取回流比为1.7倍的最小回流比,总板效率为0.6已知条件:x D=86% x F=20% x w=2%q=1R=1.7R min E T=0.6三、绪论:《化工原理》课程设计是学生在学完基础知识后所安排的工程实践性教学环节,是培养学生综合利用本门课程和有关选修课程知识去解决一次任务的一次训练,它是不仅与化工原理课程内容紧密相连,而且还与先修的物理化学,化工机械基础,计算机在化工中的应用等课程内容密切相关。
课程设计不同于平时的作业,它是通过设备的设计的基础程序和方法,选择流程,具备正确使用有关技术资料的能力,应用所学知识特别是本课程的有关知识解决化工实际问题的工作能力,使学生得到一次学习化工设计技能的初步训练,同时也起着培养学生独立工作能力的重要作用。
精馏操作时液体混合物分离方法之一,它是是根据混合物中的各组分的挥发度不同而达到分离的目的。
在工业上,这需要塔才能实现分离。
塔设备是化工,石油化工,生物化工,制药等生产过程中广泛采用的传质设备,根据塔内气体液体接触构件的结构形式,可分为板式塔和填料塔两大类。
工业上,塔设备主要用于蒸馏和吸收传质单元操作过程。
在传统的设计中,蒸馏过程多采用板式塔,而吸收过程多选用填料塔。
近年来随着塔设备设计水平的提高及新型塔构件的出现,上述传统已逐渐被打破。
目录一、概述 (2)二、设计方案的确定及流程说明 (3)2.1装置流程的确定 (3)2.2流程图 (3)2.3操作条件 (3)三、塔的工艺计算 (4)3.1塔的物料衡算 (6)3.2全塔物料衡算 (7)3.3塔板数的确定 (7)四、塔的工艺条件及物性数据计算 (10)五、气液负荷计算 (14)六、塔和塔板主要工艺尺寸计算 (15)七.浮阀塔板的流体力学验算 (21)八、塔板负荷性能图 (23)九、设计结果一览表 (28)十、设计评述及讨论 (30)十一、参考文献 (31)一、概述乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。
在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
本设计选用浮阀塔。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。
浮阀有很多种形式,但最常用的形式是F1型和V-4型。
F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68)内,F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,才用轻阀。
浮阀塔具有下列优点:1、生产能力大。
竭诚为您提供优质文档/双击可除乙醇-水精馏实验报告篇一:精馏法分离乙醇—水报告化工基础实验报告精馏法分离乙醇—水体系姓名:李伟峰学号:系别:_____化学工程系______专业:石油加工生产技术年级:20XX级同组人:_赖仪凤,周春丹,陈茂飞,李伟勇指导教师:_____陈少峰,梁燕,________20XX年11月13一、实验目的(1)熟悉板式塔的结构及精馏流程;(2)理论联系实际,掌握精馏塔的操作;(3)学会精馏塔塔效率的测定方法。
(4)了解填料精馏塔的基本结构,熟悉精馏的工艺流程。
(5)掌握精馏过程的基本操作及调节方法。
(6)掌握测定塔顶、塔釜溶液浓度的实验方法。
(7)掌握精馏塔性能参数的测定方法,并掌握其影响因素。
(8)掌握用图解法求取理论板数的方法。
二.实验方法本实验采用精馏法对乙醇—水混合液进行分离提纯,通过对全回流和部分回流条件下各参数的测定,进而由图解法求取其理论塔板数,确定出最适宜的精馏分离操作条件,并采用等板高度(heTp)来表示其分离能力。
1.实验装置与流程本实验装置的主体设备是填料精馏塔,配套的有加料系统、回流系统、产品出料管路、残液出料管路、进料泵和一些测量、控制仪表。
精馏装置由板式精馏塔主体(包括塔釜、塔身和塔顶冷凝器)、加料系统,产品贮槽及测量仪表所组成。
本精馏装置所采用的精馏塔为筛板塔,塔内径为50mm,塔板15块,板间距为100mm,开孔率4-6%、降液管管径φ14*2;塔釜以2支1kw的电加热棒进行加热,其中一支是常加热,而另一支通过自耦变压器可在0~1kw范围内调节;塔顶为盘管式冷凝器,上升蒸汽在盘管外冷凝,冷凝液流至分配器储槽,一部分回流至塔内,一部分作为产品输出。
料液由泵输送,经转子流量计计量后加入塔内。
本实验料液为乙醇溶液,由进料泵打入塔内,釜内液体由电加热器加热汽化,经填料层内填料完成传质传热过程,进入盘管式换热器管程,壳层的冷却水全部冷凝成液体,再从集液器流出,一部分作为回流液从塔顶流入塔内,另一部分作为产品馏出,进入产品贮罐;残液经釜液转子流量计流入釜液贮罐。
大连民族学院化工原理课程设计说明书题目: 乙醇-水连续精馏塔的设计设计人: 1104系别:生物工程班级:生物工程121班指导教师: 老师设计日期:2014 年10 月21 日~11月3日温馨提示:本设计有一小部分计算存在错误,但步骤应该没问题化工原理课程设计任务书一、设计题目乙醇—水精馏塔的设计。
二、设计任务及操作条件1.进精馏塔的料液含乙醇30%(质量),其余为水。
2.产品的乙醇含量不得低于92。
5%(质量)。
3。
残液中乙醇含量不得高于0.1%(质量).4.处理量为17500t/a,年生产时间为7200h。
5.操作条件(1)精馏塔顶端压强 4kPa(表压)。
(2)进料热状态泡点进料。
(3)回流比R=2R min。
(4)加热蒸汽低压蒸汽.(5)单板压降≯0。
7kPa.三、设备型式设备型式为筛板塔。
四、厂址厂址为大连地区。
五、设计内容1.设计方案的确定及流程说明2.塔的工艺计算3.塔和塔板主要工艺尺寸的设计(1)塔高、塔径及塔板结构尺寸的确定。
(2)塔板的流体力学验算.(3)塔板的负荷性能图。
4.设计结果概要或设计一览表5.辅助设备选型与计算6。
生产工艺流程图及精馏塔的工艺条件图7.对本设计的评述或有关问题的分析讨论目录前言 (1)第一章概述 (1)1。
1塔型选择 (1)1.2操作压强选择 (1)1.3进料热状态选择 (1)1。
4加热方式 (2)1。
5回流比的选择 (2)1.6精馏流程的确定 (2)第二章主要基础数据 (2)2。
1水和乙醇的物理性质 (2)2.2常压下乙醇—水的气液平衡数据 (3)2。
3 A,B,C—Antoine常数 (4)第三章设计计算 (4)3.1塔的物料衡算 (4)3.1。
1 料液及塔顶、塔底产品含乙醇摩尔分率 (4)3.1.2 平均分子量 (4)3。
1。
3 物料衡算 (4)3。
2塔板数的确定 (4)的求取 (4)3。
2。
1 理论塔板数NT3.2。
2 全塔效率E的求取 (5)T3.2.3 实际塔板数N (6)3。
化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
西安文理学院化工原理课程设计乙醇—水溶液连续筛板精馏塔设计系院名称:化学与化学工程学院专业班级: 12化工指导老师提交时间: 2014年12月10日目录1.化学原理课程设计任务书-------------------------------------------------------------------------------------- - 3 -2.概述 ---------------------------------------------------------------------------------------------------------------- - 4 -2.1精馏塔对塔设备的要求 ----------------------------------------------------------------- - 4 -2.2板式塔类型 ------------------------------------------------------------------------------------------ - 5 -2.3精馏塔的设计步骤------------------------------------------------------------------------------ - 5 -3.1计算原料液及其塔顶产品的摩尔分数 -------------------------------------------- - 6 -3.2计算原料液及其塔顶产品的平均摩尔质量------------------------------------ - 7 -4.精馏塔的工艺条件及有关物性数据的计算 --------------------------------------------- - 7 -4.1平均粘度的计算---------------------------------------------------------------------------------- - 7 -4.2平均表面张力的计算 ------------------------------------------------------------------------- - 8 -4.3操作温度的计算---------------------------------------------------------------------------------- - 9 -4.4气相组成的计算-------------------------------------------------------------------------------- - 10 -4.5相对挥发度的计算---------------------------------------------------------------------------- - 10 -4.6回流比的确定 ------------------------------------------------------------------------------------ - 10 -5.塔板数确定-------------------------------------------------------------------------------------------------- - 11 -5.1理论塔板数的确定---------------------------------------------------------------------------- - 11 -5.2实际塔板数确定-------------------------------------------------------------------------------- - 12 -6.精馏塔的热量衡算 ------------------------------------------------------------------------------------- - 12 -6.1蒸汽用量 -------------------------------------------------------------------------------------------- - 13 -6.2冷却水用量 ---------------------------------------------------------------------------------------- - 14 -7.精馏塔的塔体工艺尺寸计算------------------------------------------------------------------ - 15 -7.1精馏段与提馏段的体积流量 ----------------------------------------------------------- - 15 -7.2塔径的计算 ------------------------------------------------------------------------------------------ 17 -8.塔板主要工艺尺寸的计算--------------------------------------------------------------------------- 20 -8.1溢流装置计算 -------------------------------------------------------------------------------------- 20 -8.2塔板布置 ---------------------------------------------------------------------------------------------- 20 -8.3有效面积计算 ------------------------------------------------------------------------------------ - 21 -8.4筛孔计算与排列-------------------------------------------------------------------------------- - 21 -9.塔总体高度计算 ----------------------------------------------------------------------------------------- - 22 -9.1塔顶封头 -------------------------------------------------------------------------------------------- - 23 -9.2塔顶空间 -------------------------------------------------------------------------------------------- - 23 -9.3塔底空间 -------------------------------------------------------------------------------------------- - 23 -9.4人孔----------------------------------------------------------------------------------------------------- - 23 -9.5进料板处板间距-------------------------------------------------------------------------------- - 23 -9.6裙座----------------------------------------------------------------------------------------------------- - 23 -10.塔的接管 ---------------------------------------------------------------------------------------------------- - 24 -10.1进料管 ---------------------------------------------------------------------------------------------- - 24 -10.2回流管 ---------------------------------------------------------------------------------------------- - 24 -10.3塔底出料管 -------------------------------------------------------------------------------------- - 24 -10.4塔顶蒸汽出料管------------------------------------------------------------------------------ - 25 -10.5塔底蒸汽出料管------------------------------------------------------------------------------ - 25 -11.筛板的流体力学验算 ------------------------------------------------------------------------------- - 25 -11.1精馏段 ---------------------------------------------------------------------------------------------- - 25 -11.2提馏段 ---------------------------------------------------------------------------------------------- - 27 -12.塔板负荷性能图 --------------------------------------------------------------------------------------- - 29 -12.1精馏段 ---------------------------------------------------------------------------------------------- - 29 -12.2提馏段 ---------------------------------------------------------------------------------------------- - 32 -塔设计计算结果表(表十四)--------------------------------------------------------------------- - 35 -14.参考文献 ---------------------------------------------------------------------------------------------------- - 36 -15.设计总述 ----------------------------------------------------------------------------------------------------- - 37 -16.符号说明 ----------------------------------------------------------------------------------------------------- - 37 -17.思想及总结------------------------------------------------------------------------------------------------- - 40 -1.化学原理课程设计任务书1.1设计题目名称:乙醇—水溶液连续筛板精馏塔设计1.2设计条件:(1)处理量:8万吨/年;(2)料液组成(质量分数):42%;(3)塔顶产品组成(质量分数):95%;(4)塔顶易挥发组成回收率:99.5%;(5)年工作生产时间:330天;(6)常压精馏,泡点进料,泡点回流。
第1篇一、实验目的1. 了解萃取精馏的原理和操作方法。
2. 掌握萃取精馏在乙醇-水混合物分离中的应用。
3. 通过实验,提高对化工分离技术的实际操作能力。
二、实验原理萃取精馏是一种利用萃取剂改变混合物中组分挥发度差异,从而实现分离的方法。
在乙醇-水混合物的分离过程中,由于乙醇和水形成恒沸物,直接精馏难以得到无水乙醇。
本实验采用乙二醇作为萃取剂,通过萃取精馏方法实现乙醇的分离。
三、实验器材和药品1. 实验器材:- 萃取精馏装置一套- 温度计- 冷凝器- 冷却水- 加热装置- 计量筒- 容量瓶- 烧杯- 滤纸- 秒表2. 药品:- 乙醇(分析纯)- 水(分析纯)- 乙二醇(分析纯)四、实验步骤1. 将乙醇和水按一定比例混合,加入萃取精馏装置中。
2. 加入适量乙二醇作为萃取剂,并搅拌均匀。
3. 调节加热装置,控制塔顶温度在75℃左右。
4. 记录塔顶温度、塔底温度和回流比等参数。
5. 观察塔顶和塔底产物,分析分离效果。
6. 根据实验结果,调整操作参数,优化分离效果。
五、实验现象1. 在加热过程中,塔顶温度逐渐上升,回流比逐渐增大。
2. 塔顶产物颜色逐渐变浅,说明乙醇含量逐渐增加。
3. 塔底产物颜色逐渐加深,说明水含量逐渐增加。
4. 随着实验进行,塔顶产物中乙醇含量逐渐接近理论值。
六、实验结果与分析1. 通过实验,成功分离出无水乙醇,塔顶产物中乙醇含量达到99.5%以上。
2. 萃取精馏方法在乙醇-水混合物的分离中具有较好的效果,可以有效地提高乙醇的纯度。
3. 通过调整操作参数,可以优化分离效果,提高乙醇的产量。
七、实验结论1. 萃取精馏是一种有效的乙醇-水混合物分离方法,可以制备出高纯度的无水乙醇。
2. 通过调整操作参数,可以优化分离效果,提高乙醇的产量。
3. 本实验成功分离出无水乙醇,验证了萃取精馏方法的可行性。
八、实验讨论1. 实验过程中,温度控制对分离效果影响较大。
温度过高或过低都会影响分离效果。
2. 萃取剂的选择对分离效果也有一定影响。
乙醇-水精馏塔实验实验报告一、实验目的1.学习和掌握乙醇-水混合物精馏的基本原理和操作方法。
2.观察乙醇-水混合物在精馏过程中的相变和分离效果。
3.测定乙醇-水混合物在不同温度下的沸点,分析沸点与温度的关系。
4.通过实验数据分析,评估精馏过程的经济性和可行性。
二、实验原理精馏是一种常用的分离液体混合物的方法,其原理基于混合物中各组分的沸点不同。
在加热过程中,沸点低的组分首先被汽化,随着温度的升高,沸点高的组分也会逐渐汽化。
通过对蒸汽进行冷凝,使得蒸汽中的重组分冷凝为液体,从而实现组分的分离。
乙醇-水混合物是一种常见的混合物,其沸点与温度的关系受到乙醇含量和压力的影响。
在常压下,当乙醇含量低于65%时,混合物的沸点随着乙醇含量的增加而升高;当乙醇含量高于65%时,混合物的沸点随着乙醇含量的增加而降低。
因此,在精馏过程中,可以根据混合物的沸点与温度的关系,控制适当的操作温度,实现乙醇-水的分离。
三、实验步骤1.准备实验设备:乙醇-水混合物精馏塔、加热器、冷凝器、收集瓶、温度计、泵、实验数据记录表等。
2.将乙醇-水混合物加入精馏塔中,启动加热器加热。
3.当混合物开始沸腾时,打开泵将蒸汽导入冷凝器中,并对冷凝器进行冷却。
4.观察并记录实验数据,包括蒸汽温度、压力、流量以及收集瓶中液体的体积和组成。
5.停止加热,结束实验。
四、实验结果与分析1.实验数据记录表(1)随着加热时间的延长,混合物的温度逐渐升高,蒸汽流量逐渐减小。
这是由于混合物中的水分逐渐蒸发,乙醇含量增加,导致混合物的沸点升高。
同时,随着压力的降低,蒸汽流量也会减小。
(2)随着蒸汽流量的变化,收集瓶中液体的体积逐渐增加。
这是由于蒸汽中的重组分冷凝为液体,被收集在收集瓶中。
同时,随着加热时间的延长,收集瓶中液体的乙醇含量逐渐增加。
这是由于乙醇的沸点较低,更容易蒸发并冷凝在收集瓶中。
(3)在实验过程中,我们可以观察到精馏塔顶部的蒸汽温度较高,而底部的蒸汽温度较低。
食品工程原理课程设计乙醇水精馏塔SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#食品工程原理课程设计题目乙醇-水精馏塔的设计课程名称食品工程原理课程设计学号学生姓名所在专业食品科学与工程所在班级指导老师目录任务书乙醇—水精馏搭的设计(一)设计任务1、生产能力:日产(24h)40吨93%乙醇产品。
2、产品要求:塔釜排出的残液中要求乙醇的浓度不大于%(质量分率)。
3、设备型式:筛板塔(二)操作条件1、精馏塔顶压强:P=1 atm(绝压)2、进料热状况:原料来至上游的粗馏塔,为95-96℃的饱和蒸气R3、回流比:操作回流比R=—min4、加热蒸汽:接蒸汽加热5、单板压降:不大于(三)设计内容1、方案确定流程说明2、塔的工艺计算3、塔和塔板主要工艺尺寸的设计4、辅助设备选型(四)设计成果1、设计说明书一份2、设计图纸,包括流程图,负荷性能图,塔盘布置图,浮阀塔工艺条件图。
一、方案确定流程说明1、生产时日设计要求塔日产40吨93%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。
2、选择塔型精馏塔属气—液传质设备。
气—液传质设备主要分为板式塔和填料塔两大类。
该塔设计生产时日要求较大,由板式塔与填料塔比较知:板式塔直径放大时,塔板效率较稳定,且持液量较大,液气比适应范围大,因此本次精馏塔设备选择板式塔。
筛板塔是降液管塔板中结构最简单的,它与泡罩塔相比较具有下列优点:生产能力大10-15%,板效率提高15%左右,而压降可降低30%左右,另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右,安装容易,也便于清洗检修。
因此,本设计采用筛板塔比较合适。
3、精馏方式由设计要求知,本精馏塔为连续精馏方式。
4、操作压力常压操作可减少因加压或减压操作所增加的增、减压设备费用和操作费用,提高经济效益, 在条件允许下常采用常压操作,因此本精馏设计选择在常压下操作。
5、加热方式在本物系中,水为难挥发液体,选用直接蒸汽加热,可节省再沸器。
南京工程学院课程设计说明书(论文)题目乙醇—水连续精馏塔的设计课程名称化工原理院(系、部、中心)环境工程系专业环境工程班级环境081学生姓名丁浩澎学号*********设计地点实验楼D201 ,文理楼A404指导教师张东平设计起止时间:2010年12月20日至 2010 年12月31日第一章绪论 (3)一、目的: (3)二、已知参数: (3)三、设计内容: (3)第二章课程设计报告内容 (4)一、精馏流程的确定 (4)二、塔的物料衡算 (4)三、塔板数的确定 (5)四、塔的工艺条件及物性数据计算 (7)五、精馏段气液负荷计算 (11)六、塔和塔板主要工艺尺寸计算 (11)七、筛板的流体力学验算 (16)八、塔板负荷性能图 (19)九、筛板塔的工艺设计计算结果总表 (23)十、精馏塔的附属设备及接管尺寸 (23)第三章总结 (24).乙醇——水连续精馏塔的设计第一章绪论一、目的:通过课程设计进一步巩固课本所学的内容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的内容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。
在常压连续精馏塔中精馏分离含乙醇25%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于0.1%(均为质量分数)。
二、已知参数:(1)设计任务●进料乙醇 X = 25 %(质量分数,下同)●生产能力 Q = 80t/d●塔顶产品组成 > 94 %●塔底产品组成 < 0.1 %(2)操作条件●操作压强:常压●精馏塔塔顶压强:Z = 4 KPa●进料热状态:泡点进料●回流比:自定待测●冷却水: 20 ℃●加热蒸汽:低压蒸汽,0.2 MPa●单板压强:≤ 0.7●全塔效率:E T = 52 %●建厂地址:南京地区●塔顶为全凝器,中间泡点进料,筛板式连续精馏三、设计内容:(1) 设计方案的确定及流程说明 (2) 塔的工艺计算(3) 塔和塔板主要工艺尺寸的计算(a 、塔高、塔径及塔板结构尺寸的确定;b 、塔板的流体力学验算;c 、塔板的负荷性能图) (4) 设计结果概要或设计一览表 (5) 精馏塔工艺条件图(6) 对本设计的评论或有关问题的分析讨论第二章 课程设计报告内容一、精馏流程的确定乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。
塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。
二、塔的物料衡算(一) 料液及塔顶、塔底产品含乙醇摩尔分数115.018/7546/2546/25=+=F x86.018/646/9446/94=+=D x0004.018/9.9946/1.046/1.0=+=W x(二) 平均摩尔质量kmol kg M F /22.2118)115.01(46115.0=⨯-+⨯= kmol kg M D /08.4218)86.01(4686.0=⨯-+⨯= kmol kg M W /01.1818)0004.01(460004.0=⨯-+⨯=(三) 物料衡算总物料衡算 F W D =+ 易挥发组分物料衡算 F x W x D x F w D =+日生产能力Y=90吨 h kmol T M m D D /21.792408.4280000=⨯=•=联立以上三式得h kmol F /20.621= h kmol D /21.79= h kmol W /99.541=三、塔板数的确定(一) 理论塔板数T N 的求取乙醇、水属理想物系,可采用M.T.图解法求T N1.根据乙醇、水的气液平衡数据作y-x 图附表 乙醇—水气液平衡数据图:乙醇—水的y-x 图及图解理论板2. 乙醇—水体系的平衡曲线有下凹部分,求最小回流比自a (,,,D D x x )作平衡线的切线并延长与y 轴相交,截距2796.01min =+R x D08.2min =R取操作回流比12.308.25.15.1min =⨯==R R 故精馏段操作线方程 11+++=R x R Ry D即209.0757.0+=x y3.作图法求理论塔板数T N 得层27=T N (包括再沸器)。
其中精馏段理论板数为22层,提留段为5层(包括再沸器),第18层为加料板。
(二)全塔效率T E已知T E =52% (三)实际塔板数N精馏段4352.022==精N 层 提留段1052.05==提N 层 四、塔的工艺条件及物性数据计算以精馏段为例进行计算 (一)操作压强P m塔顶压力kPa P D 3.1053.1014=+= 取每层塔板压强降Pa 7.0k P =△则进料板压强kPa P F 4.1357.0433.105=⨯+= 精馏段平均操作压强kPa P m 35.12024.1353.105=+=(二)温度t m依据操作压力,通过方程试差法计算出泡点温度,其中水、乙醇的饱和蒸汽压由安托尼方程计算。
① 方程为B B A Ax p x p P 00+= 式中:x —溶液中组分的摩尔分数;P —溶液上方的总压,Pa ;0p —同温度下纯组分的饱和蒸汽压,Pa 。
(下标A 表示易挥发组分,B 表示难挥发组分)② 安托因方程为CT BA p +-=0lg 式中:0p —在温度为T 时的饱和蒸汽压,mmHgT —温度,℃A,B,C —Antoine 常数,其值见下表。
附表 Antoine 常数计算结果如下: 塔顶温度 公式:33.10514.0133.01086.0133.01022821.166896681.765.2223.155404496.8=⨯⨯+⨯⨯+-+-t t℃48.81=D t进料板温度 公式:4.1359356.0133.0100644.0133.01022821.166896681.765.2223.155404496.8=⨯⨯+⨯⨯+-+-t t℃5.104=F t则精馏段平均温度℃99.9225.10448.81=+=M t(三)平均摩尔质量M m塔顶 86.01==y x D查气液平衡曲线,可得85.01=x 2kmol kg M VDm /08.4218)86.01(4686.0=⨯-+⨯= kmol kg M LDm /856.4118)852.01(46852.0=⨯-+⨯=进料板 即查气液平衡曲线,可得3526.0=F y 0644.0=F xkmol kg M VDm /87.2718)3526.01(463526.0=⨯-+⨯= kmol kg M LDm /80.1918)0644.01(460644.0=⨯-+⨯=则精馏段平均摩尔质量:kmol kg M Vm /975.34287.2708.42(=+=精)kmol kg M Lm /828.30280.19856.41(=+=精)(四)平均密度m ρ1.液体密度Lm ρ附表 乙醇与水的密度已知:LB ραραρ///1B LA A Lm +=(α为质量分数) 塔顶 因为 ℃48.81=D t所以7358048.817357308090--=--乙ρ 3/26.734m kg =乙ρ8.9718048.818.9713.9658090--=--水ρ 3/84.970m kg =水ρ84.97006.026.73494.01+=LmDρ 3/16.745m kg LmD =ρ进料板 由加料板液相组成0644.0=A x150.018)0644.01(460644.0460644.0=⨯-+⨯⨯=A α因为℃5.104=F t 所以7161005.104716703100110--=--乙ρ 3/15.710m kg =乙ρ4.9581005.1044.9580.951100110--=--水ρ 3/07.955m kg =水ρ07.955150.0115.710150.01-+=LmFρ 3/09.908m kg LmF =ρ故精馏段平均液相密度3(/63.82609.90816.74521m kg Lm =+=)(精)ρ2.气相密度mV ρ3(/38.1)15.27399.92(314.8975.3435.120m kg RT M P Vm m Vm =+⨯⨯==精)ρ (五)液体表面张力m σ附表 乙醇与水的表面张力塔顶 因为 ℃48.81=D t所以15.178048.8115.172.168090--=--乙σ m mN /01.17=乙σ6.628048.816.627.608090--=--水σ m mN /32.62=水σ进料板 因为 ℃5.104=F t所以2.151005.1042.154.14100110--=--乙σ m mN /84.14=乙σ8.581005.1048.589.56100110--=--水σ m mN /945.57=水σ∑==ni i i m x 1σσm mN m /35.2332.6286.0101.1786.0(=⨯-+⨯=)(顶)σm mN m /17.55945.570644.0181.140644.0(=⨯-+⨯=)(进)σ 则精馏段平均表面张力为m mN m /26.39217.5535.23(=+=精)σ(六)液体黏度Lm μ已知:BAT A -=1lg μ 乙醇的A=686.64 B=300.88 塔顶 88.30064.68648.811.27364.686lg -+=乙μ 451.0=乙μs a m ⋅P水的黏度65.358048.8165.3565.318090--=--水μ 350.0=水μs a m ⋅P进料板 88.30064.6865.1041.27364.686lg -+=乙μ 344.0=乙μs a m ⋅P水的黏度65.311005.10465.3138.28100110--=--水μ 302.0=水μs a m ⋅P∑==ni ii Lm x 1μμ437.0350.086.01451.086.0(=⨯-+⨯=)(顶)L μs a m ⋅P304.0302.00644.010644.0344.0(=⨯-+⨯=)(进)L μs a m ⋅P 则精馏段平均液相黏度为3705.02304.0437.0(=+=精)Lm μs a m ⋅P五、精馏段气液负荷计算h kmol D R V /35.32621.79)112.3()1(=⨯+=+=s m VM V Vm Vm S /298.238.13600975.3435.32636003((=⨯⨯==精)精)ρh kmol RD L /14.24721.7912.3=⨯== s m LM L Lm Lm S /0026.063.8263600828.3014.24736003((=⨯⨯==精)精)ρh m L L S h /36.936000026.036003=⨯=⋅=六、塔和塔板主要工艺尺寸计算(一)塔径D参考表4-1,初选板间距m H T 45.0=,取板上液层高度m h L 07.0=表4-1 板间距与塔径的关系m h H T T 38.007.045.0=-=-0277.038.163.826298.20026.0))((2121=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=V L S S V L ρρ图4-5 Sminth 关联图查图4-5可知,076.020=C ,依照下式校正C087.02026.39076.0)20(2.02.020=⎪⎭⎫⎝⎛⨯==σC Cs m Cu V V L /81.138.138.163.826087.0max =-=-=ρρρ 取安全系数为0.70,则s m u u /267.181.17.070.0max =⨯==故m u V D S52.1267.114.3298.244=⨯⨯==π按标准,塔径圆整为1.6m , 则空塔气速s m D V u S /14.16.114.3298.24422=⨯⨯=='π (二)溢流装置采用单溢流、弓形降液管、平行受液盘及平行溢流堰,不设进口堰。