表面肌电信号数字传感器
- 格式:doc
- 大小:140.00 KB
- 文档页数:4
表面肌电仪主要技术参数传感器:无线;传感器数量:4-16个肌肉信号通道数:16通道充电式锂电池;内置加速度传感器,总计通道数:≥48个;实时同步模拟信号输出:64通道;内置GPS功能:可显示纬度、经度、海拔等数据;A/D转换精度:16位;无线传输距离:≥20米;传感器重量:≤20 g;全传输模式下可连续工作时间:≥8小时;分辨率:16比特;采样频率:≥2000Hz;内存空间:8GB;传感器间延迟:<500us;加速度计量程可选:±1.5, 4g, 6g & 12g;Overall Channel Noise <0.75Uv;实时反馈功能:信号强度及电池状态,声音/可视化提示;可以在同一块肌肉中的测试氧气和肌电信号,肌电传感器内置在肌氧传感器,并进行同步分析;记录数据:数据存储/无线实时;无线使用ANT建立通信;*数据计算方式:可以实现本地计算和云端计算两种功能;*拥有二次开发接口,可以为眼动仪、综合心理测试仪进行二次开发;主要软件性能:功能齐全的数据采集软件包;实时显示综合控制;用于构建心理学实验程序,采集与分析各类心理-生理指标。
防水防湿,适合所有运动包括水下运动可以在同一块肌肉中的测试氧气和肌电信号,肌电传感器内置在肌氧传感器,并进行同步分析。
用于人体背部双侧的表面肌电(s EMG)的静态分析与扫描。
分析部位始于后颈,贯穿整个脊柱。
可以实现肌肉活动的高清定位、脊柱左右侧肌肉的活动差异及其平衡状态等功能。
用于产生和度量不同的脑力任务,并记录和分析相应的生物反馈指标。
专业用于研究认知心理过程。
特别针对于专业研究者和熟练技术人员,支持用户基于原始生物电信号,对其数据进行自主编程和深入分析。
对心电信号展开专门分析,如心率变异性、脉搏间隙等。
直观图形用户界面;提供采集协议,RMS反馈,触发器功能;分析可分析包括:均方根,绝对均值,移动平均。
基于机器学习的肌电信号识别技术近年来,随着人工智能技术的不断发展,机器学习已经成为了许多领域的基石。
其中一项应用就是基于机器学习的肌电信号(EMG)识别技术。
这项技术通过分析人体肌肉电信号的特征,可以识别不同的肌肉运动,为康复训练、智能外骨骼、假肢控制等领域提供了重要的支持。
一、肌电信号的特点肌电信号是人体肌肉的电生理信号,其强度和频率都反映了肌肉收缩的程度。
我们可以通过将肌电信号传感器放在皮肤表面,测量肌肉收缩时肌电信号的变化来了解肌肉的状态。
肌电信号的信号特征包括信号的振幅、频率和时域。
在进行肌电信号识别时,需要提取信号的特征,并使用机器学习算法进行分类。
二、肌电信号识别的应用基于机器学习的肌电信号识别技术是近年来人工智能技术快速发展的一个领域。
应用广泛,主要包括五个方面:1. 康复训练:通过肌电信号识别,可为康复训练提供支持,使病患者在训练过程中获得更准确的肌肉控制,从而加速康复进程。
2. 智能外骨骼:肌电信号识别技术可用于智能外骨骼的研发,将肌电信号转化为机器控制信号,使外骨骼能够根据人体肌肉的运动模式移动。
3. 假肢控制:肌电信号识别可用于假肢控制。
将肌电信号转化为假肢的控制信号,使假肢能够随着人体肌肉运动而移动。
4. 游戏娱乐:肌电信号识别技术还可用于游戏娱乐,通过测量玩家的肌肉运动来控制游戏角色的动作,增强游戏的娱乐性和参与感。
5. 无线电子设备控制:最后,肌电信号识别技术还可用于控制电子设备,通过肌肉信号与电子设备之间的交互实现设备的远程控制。
三、肌电信号的采集和识别肌电信号的采集和识别是基于机器学习的肌电信号识别技术的关键步骤。
在采集方面,需要使用肌电信号传感器将肌电信号转化为数字信号,并将其输入计算机系统。
在信号识别方面,需要清洗、分离和提取信号特征,然后将特征输入到机器学习算法中进行分类和识别。
四、肌电信号识别技术的发展和趋势随着人工智能技术的快速发展,基于机器学习的肌电信号识别技术也在不断发展和壮大。
表面肌电信号检测电路的频率特性分析与优化表面肌电信号(Surface Electromyography, sEMG)检测电路的频率特性分析与优化一、引言表面肌电信号检测电路是一种用于测量肌肉活动的电子装置。
通过采集肌肉活动时的电位变化,可以分析肌肉的收缩与放松情况,对于康复医学、人机交互、运动控制等领域具有重要的应用价值。
而表面肌电信号的频率特性对于检测电路的性能具有直接影响,因此对其进行分析与优化是十分必要的。
二、表面肌电信号的频率特性表面肌电信号是由肌肉收缩导致的电位变化,其频率范围通常在0.5 Hz至500 Hz之间。
其中低频分量主要反映了肌肉的疲劳、收缩强度、放松程度等信息,而高频分量主要反映了肌肉的快速收缩与放松情况。
因此,表面肌电信号检测电路需要拥有较宽的频率响应范围,以保证对不同肌肉活动的准确检测。
三、表面肌电信号检测电路的频率特性分析方法为了分析表面肌电信号检测电路的频率特性,我们可以采用非线性系统的频率响应分析方法。
具体步骤如下:1. 设计频率扫描信号源:使用一个可调频率的正弦波信号源,以一定的频率范围扫描输入信号。
2. 构建频率响应测试系统:将频率扫描信号源的输出与表面肌电信号检测电路的输入相连接,将检测电路的输出与示波器相连接,通过示波器观察输出信号的幅值与相位响应。
3. 进行频率扫描:通过调节频率扫描信号源的频率,逐步扫描整个信号范围,并记录所得到的幅值与相位响应。
4. 分析频率特性:根据记录的幅值与相位响应数据,可以绘制频率响应曲线,并通过曲线解读得到表面肌电信号检测电路的频率特性。
四、表面肌电信号检测电路的频率特性优化方法在分析了表面肌电信号检测电路的频率特性之后,我们可以采取以下方法进行优化:1. 增大通频带:根据频率特性分析结果,确定信号检测电路的通频带范围。
可以通过增加电路的带宽,采用更高的采样频率等方式来增大通频带。
2. 降低噪声干扰:噪声是影响肌肉信号检测的主要干扰源之一。
表面肌电信号特征表面肌电信号(Surface Electromyography,简称sEMG)是通过测量肌肉表面电位变化来反映肌肉活动的技术。
在运动学、工程学、物理学、医学、运动康复等领域,sEMG技术被广泛应用于肌肉活动的研究中。
下面将介绍sEMG信号的特征。
一、频率特征sEMG信号的频率特征是指信号中包含的频率成分。
sEMG信号频率范围通常为10-500 Hz。
通常将sEMG信号分为三个频带,即低频段(10-100 Hz)、中频段(100-250 Hz)和高频段(250-500 Hz)。
其中,低频段反映了肌肉的肌力变化,中频段反映了肌肉的疲劳状态,高频段反映了肌肉的颤动和抖动。
二、幅值特征sEMG信号的幅值特征是指信号电位的均方根值(Root Mean Square,简称RMS)。
RMS值越大,代表肌肉收缩的力度越强,反之,RMS值越小,肌肉收缩的力度越弱。
三、时域特征时域特征分为两个方面:幅度分布特征和波形轮廓特征。
幅度分布特征是指sEMG信号在时间轴上的分布情况,可以反映肌肉收缩的强度和肌肉的功能。
波形轮廓特征是指sEMG信号波形的上升、下降、持续时间等特征,可以反映肌肉收缩的速度和肌肉的协调性。
四、空间特征空间特征是指不同位置肌肉间的sEMG信号差异。
当肌肉活动时,sEMG 信号的强度和形态在不同的位置上可能会有所不同。
综上所述,sEMG信号与肌肉活动密切相关,sEMG信号的频率、幅值、时域和空间特征等特征均可用来量化肌肉收缩的情况,进而为肌肉活动的研究提供依据。
在未来的发展中,sEMG技术将会得到更广泛的应用。
表面肌电信号检测电路的多通道与多传感器设计表面肌电(surface electromyography,sEMG)信号是一种用于检测肌肉活动的信号,常用于医学、康复和运动科学等领域。
在设计表面肌电信号检测电路时,采用多通道与多传感器的设计方案能够提高信号质量和测量准确度,本文将就此进行探讨。
一、多通道设计在表面肌电信号检测电路中,多通道设计能够同时采集来自不同位置的肌肉信号,从而提供更全面和准确的肌肉活动信息。
多通道设计的核心是模拟前端电路,它能够放大和滤波输入信号,并将信号转化为数字形式供后续处理。
为了实现多通道设计,可以采用多路放大器来处理不同通道的信号。
每个放大器的增益和滤波频率可以针对不同通道进行调整,以满足不同肌肉信号的特征。
此外,为了减少通道间的干扰,还可以采用差动放大器架构。
差动放大器通过比较两个输入信号的差异来消除共模干扰,提高信号的抗干扰能力。
二、多传感器设计多传感器设计能够进一步提高表面肌电信号的检测能力。
通过在不同位置放置多个传感器,可以同时监测多个肌肉的活动情况,从而获得更为准确的肌肉活动模式。
多传感器设计需要考虑传感器的选型和布局。
选择合适的传感器能够提高信号的灵敏度和稳定性。
常用的肌电传感器包括干式电极和湿式电极,它们具有不同的特点和适用范围。
在布局方面,应根据监测目标和肌肉结构来确定传感器的位置,确保能够充分覆盖所需监测的肌肉区域。
为了实现多个传感器的数据采集和处理,可以采用多通道数据采集系统。
该系统能够同时读取并存储多个传感器的信号,以供后续的信号处理和分析。
在选择数据采集系统时,需要考虑输入通道数、采样频率和数据传输方式等因素,以满足实际需求。
三、综合设计方案在实际应用中,多通道与多传感器的设计方案可以综合使用,以实现更为全面和准确的表面肌电信号检测。
这样的设计方案能够充分利用现有的技术手段,提高信号的采集和处理效果。
综合设计方案的实现需要兼顾多通道电路和多传感器布局的要求。
表面肌电信号检测电路的原理与设计方法表面肌电信号(Surface Electromyographic Signals, sEMG)是一种用于检测人体肌肉活动的生物电信号。
sEMG信号检测电路的设计是为了提取和测量这些信号,用于各种应用,如康复医学、运动控制、人机交互等。
本文将介绍sEMG信号检测电路的原理、设计方法和相关考虑因素。
一、表面肌电信号简介表面肌电信号是通过肌肉纤维活动而产生的电信号,由肌肉活动引起的离子流动引起了肌肉组织的生物电势变化。
sEMG信号具有较低的幅度和较高的噪声水平,需要通过合适的电路设计和信号处理技术来提取有用的信息。
二、表面肌电信号检测电路的原理表面肌电信号检测电路主要由前置放大器、滤波器和增益控制器组成。
其工作原理如下:1. 前置放大器:前置放大器用于增强sEMG信号的幅度,以便后续的信号处理。
由于sEMG信号的幅度较小,前置放大器应具有高放大倍数、低噪声和宽频带特性。
常用的前置放大器电路包括差分放大器和双电源放大器。
2. 滤波器:滤波器用于去除sEMG信号中的噪声和无关频率成分,以提取感兴趣的信号。
常用的滤波器包括低通滤波器和带通滤波器。
低通滤波器主要用于去除高频噪声,带通滤波器可选择性地通过感兴趣的频率范围。
3. 增益控制器:增益控制器可根据需求调整sEMG信号的放大倍数,以适应不同的应用场景。
它可以通过选择不同的反馈电阻或电压增益控制电路来实现。
三、表面肌电信号检测电路的设计方法在设计表面肌电信号检测电路时,需要考虑以下因素:1. 电源选择:应选择适宜的电源电压和电流,以满足电路的工作要求,并保证信号的质量和稳定性。
2. 前置放大器设计:根据sEMG信号的幅度和噪声水平,选择合适的放大倍数和前置放大器电路。
同时,注意选择低噪声、宽频带的运算放大器和适当的反馈电路。
3. 滤波器设计:根据应用需求,选择合适的滤波器类型和截止频率。
滤波器的设计应考虑滤波器特性、阶数和滤波器电路的实现方式。
表面肌电信号信号处理方法及其应用全文共四篇示例,供读者参考第一篇示例:表面肌电信号(Surface Electromyography,简称sEMG)是通过将一对电极放置在人体表面以测量肌肉电活动的一种技术。
sEMG 可以用来研究肌肉收缩模式、运动控制、疼痛评估以及康复训练等领域。
为了提取和处理sEMG信号,需要一系列信号处理方法来识别和分析特定的生物特征。
sEMG信号的种类繁多,包括静态和动态信号、噪声信号、交叉传导干扰等。
如何有效地处理sEMG信号成为了研究和实践中的关键问题。
sEMG信号的处理方法可以分为前端处理和后端处理两个阶段。
前端处理主要包括信号获取、预处理和特征提取。
在信号获取阶段,需要选择合适电极类型、布置和放置位置以保证信号的准确性和稳定性。
预处理阶段包括滤波、放大、降噪等步骤,旨在将原始信号进行去噪和增强。
特征提取阶段则是从预处理后的信号中提取出有价值的特征,如幅度、频率、时域或频域特征等。
后端处理主要包括模式识别、分类和应用。
模式识别技术通过机器学习算法将特征化的sEMG信号与肌肉运动模式进行关联,实现对肌肉运动的识别和分类。
常见的模式识别方法包括支持向量机、人工神经网络、模糊逻辑等。
分类技术则进一步将不同的肌肉运动模式进行区分和识别,为康复训练和疾病诊断提供依据。
应用阶段将处理后的sEMG信号应用于康复训练、人机交互、假肢控制等领域,从而提高生活质量和康复效果。
除了传统的处理方法,近年来还出现了一些新的sEMG信号处理技术。
基于深度学习的特征提取和分类方法已经在sEMG信号处理中取得了很好的效果。
深度学习通过构建多层神经网络进行特征从原始信号中学习和提取,能够更有效地处理复杂的sEMG信号。
生物信息学技术也开始应用于sEMG信号处理中,通过对生物特征的分析和模拟,实现对sEMG信号更深层次的理解和处理。
表面肌电信号的处理方法及其应用是一个不断发展和创新的领域。
随着研究和技术的进步,我们相信在未来,sEMG信号处理将更加高效和智能化,为康复训练、生物医学工程和健康管理等领域带来更多的应用和推动。
表面肌电信号数字传感器
介绍了表面肌电信号数字传感器的设计方法。
根据表面肌电信号产生特点和采集技术的基本要求,研究电极的形状和正确的放置方法,采用仪用放大器INA128设计前置放大电路。
设计有源滤波器,应用串行A/D转换芯片输出数字信号。
实验表明,该方法可以提高信噪比,减小噪声,有效地提取出表面肌电信号。
1 引言
表面肌电(surface electromyography, sEMG)信号是神经肌肉系统在进行随意性和非随意性活动时的生物电变化经表面电极引导、放大、显示和记录所获得的一维电压时间序列信号,其振幅约为0-5000μV,频率0-1000Hz,信号形态具有较强的随机性和不稳定性。
与传统的针式肌电图相比,sEMG的空间分辨率相对较低,但是探测空间较大,重复性较好,对于体育科学研究、康复医学临床和基础研究等具有重要的学术价值和应用意义[1]。
人体是一导电体,工频干扰及体外的电场、磁场感应都会在人体内形成测量噪声,干扰sEMG的检测,所以信号的滤波和电路的屏蔽成为表面肌电信号数字传感器设计的重点。
分为几个部分:电极、放大电路、滤波电路、A/D转换。
2 电极的设计
本文电极极片的基体用铜制作,表面镀银,其形式采用常用的双极型,并在两个电极中间插入了一个参考电极,也称作无关电极,以利于降低噪声,提高对共模信号的抑制能力。
为了消除来自电源线的噪声,采用差动放大的方法。
肌电信号由两个电极来检测,两个输入信号“相减”,去掉相同的“共模”成份,只放大不同的“差模”成份。
任何噪声如果离检测点很远,在检测点上将表现为“共模”信号;而检测表面附近的信号表现为不同,将被放大。
因此,相对较远处的电力线噪声将被消除,而相对比较近处的肌电信号将被放大。
其准确性由共模抑制比(CMRR)来衡量[2]。
肌电信息在人体组织(容积导体)内的传递,会随着距离的增加而很快衰减。
因此电极宜贴放在肌电发放最强的肌腹部,以减少邻近肌肉的肌电干扰(串音)。
采用较小的电极可提高选择性,但会增加电极与皮肤间的接触阻抗。
3 放大电路的设计
人体肌肉组织是皮表肌电的信号源,它发放的肌电经过皮下软组织的体电阻传输至皮肤表面,体电阻约数百欧姆,但是,表面电极与皮肤之间的接触阻抗比较高,约几千欧姆。
接触电阻还受接触松紧程度、皮肤清洁程度、湿度、四季时令变化等多种因素影响,变化很大[3]。
由此可见,对于放大器来说,肌电信号源是一个高内阻的信号源。
在设计肌电信号放大电路时,着重考虑了以下问题:1.高增益:表面肌电信号幅度约在分布μV~mV数量级之间,是一种极其微弱的信号,要将其放大到一伏左右才能方便使用,所以将放大器的增益设置在80dB。
2.高共模抑制比:表面肌电信号的采集易受50Hz工频电源及其它高频电噪声的干扰。
但这些干扰信号在放大器的输入端表现为同幅同相的信号——共模信号,因此选用高共模抑制比的放大电路对干扰信号进行抑制。
3.高输入阻抗:肌肉组织与电极之间的接触阻抗可能在相当大的范围内变化,天气干燥地区,接触电阻甚至高达几万欧姆,在这种条件下,即使放大器的共模比极优良,如果输入阻抗不够高,共模干扰信号也会造成输出误差。
因此必须提高放大器的输入阻抗。
根据以上所述,设计的肌电信号采集电路要求具有高增益、高输入阻抗、高共摸抑制比(CMRR)、低零漂、低失调、低功耗、尤其是低的1/f噪声电压。
本文选用德州仪器(Texas
Instruments)公司的Burr-Brown系列的同相并联差动三运放仪表放大器INA128PA为核心器件搭建了前置放大电路,获得了良好的电路效果。
该芯片内部原理电路图如图1所示
图1 INA128内部原理图
表面肌电信号非常微弱,从电极引导出的信号夹杂着很强的干扰信号,为了避免在干扰较强时信号进入非线性区引起严重失真,应该采用两级放大。
仪用放大器INA128作为一级放大,设计比例运算放大器作为二级放大。
4 滤波器的设计
表面肌电信号一般只有毫伏级电压,信号中往往夹带着低频(接近直流)和高频的干扰信号,真正有用的肌电信号大致在10Hz-500Hz之间。
除此之外,50Hz的工频信号也是一个重要的干扰源,如果不去除可能会掩盖表面肌电信号,根据这些特殊要求,专用滤波器必须具有隔直、滤波功能,并且要求具有高共模抑制比和好的抗干扰性。
低通滤波器采用压控电压源型二阶低通滤波器。
50Hz工频信号对表面肌电信号的采集有很大的影响,它的频率恰好在表面肌电信号能量集中的频段,且其幅度比表面肌电信号大1-3个量级,因此必须除去。
本设计中采用双T 有源滤波器来滤除50Hz的工频信号,如图2所示。
下面来分析可能引入工频干扰的途径:1由空间辐射引入:空间的电磁场可以通过检测设备中的电极连线、印刷电路板上的连线、器件引脚或器件本身感应为相应频率成分的电流,成为噪声混入肌电信号。
空间的电磁场可能来自于多种源,最致命的是电网辐射造成的工频干扰。
2由直流电源引入:检测设备中,为有源器件供电的直流电源通常都是由工频交流电源变压、整流、稳压而得到的。
直流稳压电源不可能达到理想的滤波效果。
以纹波形式存在的工频(或其谐波)电流会通过电源引入到放大电路中。
3由受试者身体引入:暴露于空间电磁场中的受试者身体同样会感应电磁场而产生感应电流,受试者身体所感应的工频电流通过检测电极,与生物电信号一起加到放大器输入端,形成工频干扰。
针对直流电源引入的工频干扰,采用电池对有源器件进行供电。
采用电池供电不仅避免了整流稳压电源纹波所带来的工频干扰问题,而且还消除了因漏电而导致受试者被电击伤的可能。
由于电池的电压较低,用多节电池又会显得体积庞大,所以采用DC/DC模块来升压解决芯片的供电问题。
图2 双T有源滤波器电路
5 A/D转换
由于采样频率并不高,选用8位串行A/D转换器ADC0832即可。
ADC0832使用采样—数据—比较器的结构,采用逐次逼近方式进行转换。
根据多路器的软件配置,单端输入方式下,要转换的输入电压连到一个输入端和地端;差分输入方式下,要转换的输入电压连到一个输入端和另一输入端。
ADC0832 的两输入可以分配为正极或负极,可以由多路器进行软件配置。
但是要注意的是,当连到分配为端的输入电压低于分配为负端的输入电压时,转换结果为全0。
通过和控制处理器相连的串行数据链路传送控制命令,用软件对通道选择和输入端的配置。
串行通信格式在不增加封装大小的情况下,可以在转换器中包含更多的功能。
另外,可把转换器和模拟传感器放在一起,和远端的控制处理器串行通信,而不是进行低电平的模拟信号的远程传送。
这样的处理使返回到处理器的是无噪声的数字数据,避免了模拟信号远传的干扰。
整个采集系统的硬件结构设计完毕,具体电路图3所示:
图3 系统电路图
6 结论
表面肌电信号非常微弱,先要对微弱信号进行放大,才能达到AD采集单元的要求,而且由于人体是一导电体,工频干扰及体外的电场、磁场感应都会在人体内形成测量噪声,干
扰肌电信息的检测,严重影响了测量系统的工作和有用信号的正确测量。
本文根据表面肌电信号产生特点和采集技术的基本要求,设计了表面肌电信号数字传感器,取得了良好的试验效果。
参考文献
[1] 师硕,李锡杰,王旭. 肌电信号采集系统与计算机的串口通讯[J]. 微计算机信息,2006,1:226-227.
[2] Surface Electromyography: Detection and Recording,Delsys Incorporated, 2002
[3] 钱晓进,郑如冰,王传林. 高性能肌电检测前置放大器的设计. 现代科学仪器,2003,19(3):50-52。