第十二讲---全等三角形辅助线作法全攻略
- 格式:doc
- 大小:117.00 KB
- 文档页数:7
全等三角形常见辅助线作法【例1】.已知:如图6,△BCE 、△ACD 分别是以BE 、AD 为斜边的直角三角形,且BE AD =,△CDE 是等边三角形.求证:△ABC 是等边三角形.【例2】、如图,已知BC > AB ,AD=DC 。
BD 平分∠ABC 。
求证:∠A+∠C=180°.一、线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。
1、倍长中线法【例. 3】如图,已知在△ABC 中,90C ︒∠=,30B ︒∠=,AD 平分BAC ∠,交BC 于点D . 求证:2BD CD =证明:延长DC 到E ,使得CE=CD,联结AE ∵∠ADE=60°∵∠C=90° ∴△ADE 为等边三角形 ∴AC ⊥CD ∴AD=DE ∵CD=CE ∵DB=DA∴AD=AE ∴BD=DE ∵∠B=30°∠C=90° ∴BD=2DC ∴∠BAC=60° ∵AD 平分∠BAC ∴∠BAD=30°∴DB=DA ∠ADE=60°DCBADCB EA【例4.】 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
证明:延长AE 到点F,使得EF=AE 联结DF在△ABE 和△FDE 中 ∴∠ADC=∠ABD+∠BDABE =DE∵∠ABE=∠FDE∠AEB=∠FED ∴∠ADC=∠ADB+∠FDE AE=FE 即 ∠ADC = ∠ADF ∴△ABE ≌ △FDE (SAS ) 在△ADF 和△ADC 中 ∴AB=FD ∠ABE=∠FDE AD=AD ∵AB=DC ∠ADF = ∠ADC ∴ FD = DC DF =DC∵∠ADC=∠ABD+∠BAD ∴△ ADF ≌ ADC(SAS) ∵ADB BAD ∠=∠ ∴AF=AC ∴AC=2AE【变式练习】、 如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法,倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。
全等三角形添加辅助线的方法要向一个全等三角形添加辅助线,只需在三角形内或外画直线,以切割或连接三角形的一些部分。
这些辅助线可以帮助我们更好地理解和分析三角形的特性和属性。
接下来,我将介绍几种常见的方法来添加辅助线。
1.三角形中线:连接每个顶点与对边中点的线段。
这条线段将三角形划分为两个全等的三角形。
它们的边长相等,角度相等。
2.三角形的角平分线:从每个顶点作出形成该顶点角的两个邻边的角平分线。
这些角平分线会相交于三角形内部的一点,该点是三角形内角平分线的交点。
3.三角形的高线:从每个顶点作出与对边垂直相交的线段。
这些线段的交点将构成三角形的三条高线,它们的长度相等,且垂直于对边。
4.三角形的中线:从每个顶点作出与对边平行的线段。
这些线段的交点将构成三角形的三条中线,它们的长度相等,且平行于对边。
5.三角形的中心:连接三角形的三个顶点与重心的线段。
重心是三角形内部所有高线的交点。
三角形的重心被定义为三边中点的连线的交点,其坐标为三个顶点的坐标之和的1/3这些辅助线有助于我们更好地理解和分析全等三角形的特性和属性。
它们可以帮助我们推导出一些重要的结论和公式,还可以用于证明和解决三角形的相关问题。
例如,通过添加辅助线可以证明全等三角形的性质:全等三角形的对应边长相等,对应角度相等,对应角内的三角形也全等。
此外,辅助线还可以帮助我们解决一些基于全等三角形的问题。
比如,如果两个三角形的一对对应边长和一对对应角度都相等,我们可以利用辅助线来证明它们是全等三角形。
因此,通过添加辅助线,我们可以更好地理解和分析全等三角形的性质和问题。
在解决相关问题时,辅助线可以作为重要的工具来简化问题和得出正确的答案。
全等三角形添加辅助线的方法1.中线法:将两条边的中点相连并延长,然后证明其与其他一条边的边长和角度相等。
具体步骤如下:a.连接三角形两条边的中点,并延长至交于一点O。
b.证明∆ABC与∆ADB全等,其中∠CAB=∠DAB(两对顶点角),且AB =AD各一边。
c.推导出AC=BD(全等三角形的边)2.垂直平分线法:通过构造两条垂直平分线使其中两个角相等,从而推导出三角形全等。
具体步骤如下:a.根据题意连接一个角的两边,并找出该两边的垂直平分线。
b.证明∆ABC的两个∠BAC和∠BCA各自与∠ACD和∠ACB相等(垂直平分线构成等腰三角形),即∠BAC=∠ACD,∠BCA=∠ACB。
c.推导出∆ABC和∆ACD的三个角相等,从而两个三角形全等。
3.夹边法(重心法):通过构造两个辅助三角形,使两个夹角相等,从而推导出三角形全等。
具体步骤如下:a.过三角形一边的顶点作该边对边的平行线,分别与另两边相交得到两个辅助三角形。
b.证明这两个辅助三角形的两个夹角分别与原三角形的两个对应夹角相等(平行线与三角形两边的交角),即∠BAC=∠EAB,∠CBA=∠DBA。
c.推导出∠ABC和∠EDB相等,从而两个三角形全等。
4.等腰三角形法:通过构造两个等腰三角形,使它们的顶点与原三角形的顶点相连,从而推导出三角形全等。
a.根据题意找到一个角的顶点为原三角形的顶点,并构造一个等腰三角形,顶点为该角的顶点。
b.构造另一个等腰三角形,顶点为原三角形的顶点,并使这两个等腰三角形的顶点分别与原三角形的顶点相连。
c.证明这两个等腰三角形的两个底边与原三角形的两个对应边相等,即AC=DE,BC=DF。
d.推导出∆ABC和∆DEF的三个角相等,从而两个三角形全等。
通过以上几种常见的方法,可以添加辅助线来证明三角形的全等关系。
在实际问题中,根据具体的几何信息和条件,选择合适的辅助线构造方法,可以简化证明过程,并加深对全等三角形的理解。
全等三角形-----辅助线图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
一、截长补短法(和,差,倍,分)例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。
求证:AB=AC+CD。
2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD.二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中一个图形为基础,添加线段)构建图形。
(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。
三、延长已知边构造三角形例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BCDBA110图OA BC DE6图O四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等)例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。
求证:∠B+∠ADC=180。
五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等)例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。
(三角形一边上的中线小 于其他两边之和的一半)2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。
3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE.六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等,可试着连接垂直平分线上的点)例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。
全等三角形中做协助线技巧重点大汇总口诀:三角形图中有角均分线,可向两边作垂线。
也可将图对折看,对称此后关系现。
角均分线平行线,等腰三角形来添。
角均分线加垂线,三线合一试一试看。
线段垂直均分线,常向两头把线连。
线段和差及倍半,延伸缩短可试验。
线段和差不等式,移到同一三角去。
三角形中两中点,连结则成中位线。
三角形中有中线,延伸中线等中线。
一、由角均分线想到的协助线口诀:图中有角均分线,可向两边作垂线。
也可将图对折看,对称此后关系现。
角均分线平行线,等腰三角形来添。
角均分线加垂线,三线合一试一试看。
角均分线拥有两条性质: a 、对称性; b 、角均分线上的点到角两边的距离相等。
对于有角均分线的协助线的作法,一般有两种。
①从角均分线上一点向两边作垂线;②利用角均分线,结构对称图形(如作法是在一侧的长边上截取短边)。
往常状况下, 出现了直角或是垂直等条件时, 一般考虑作垂线; 其余状况下考虑结构对称图形。
至于选用哪一种方法,要联合题目图形和已知条件。
与角有关的协助线EA(一)、截取构全等如图 1-1 ,∠ AOC=∠BOC ,如取 OE=OF ,并连 ODC接 DE 、 DF ,则有△ OED ≌△ OFD ,从而为我们证FBA图1-1明线段、角相等创建了条件。
E例1. 如图 1-2 ,AB//CD , BE 均分∠ BCD ,CE 均分∠ BCD ,点 E 在 AD 上,求证:BC=AB+CD 。
BF例2.已知:如图 1-3 , AB=2AC ,∠ BAD=图1-2∠ CAD ,DA=DB ,求证 DC ⊥ACD C.\例3.已知:如图1-4,在△ ABC中,∠ C=2∠ B,AD均分∠ BAC,求证:AB-AC=CD剖析:本题的条件中还有角的均分线,在证明A中还要用到结构全等三角形,本题仍是证明线段的和差倍分问题。
用到的是截取法来证明的,在长的E线段上截取短的线段,来证明。
试一试看能否把短的延伸来证明呢?CB D练习图 1-41.已知在△ ABC中,AD均分∠ BAC,∠ B=2∠C,求证: AB+BD=AC2.已知:在△ ABC中,∠ CAB=2∠B,AE均分∠ CAB交BC于E,AB=2AC,求证: AE=2CE3.已知:在△ ABC中,AB>AC,AD为∠ BAC的均分线,M为AD上任一点。
第12讲 全等三角形的综合本节课通过推理和专题训练,学会运用全等三角形的判定方法去解决三角形全等的综合问题.通过添加辅助线解决相关的边角证明问题,本节的内容相对综合,难度稍大.模块一:全等三角形判定的综合知识精讲全等三角形综合主要是通过全等得出结论,进而求出相应的边和角之间的关系.对于稍复杂的会通过添加平行线,倍长中线或截长补短等方法,解决综合问题.例题解析例1.已知:AE =ED ,BD =AB ,试说明:CA =CD .【难度】★【解析】在△ABE 与△DBE 中,AE ED AB BD BE BE =⎧⎪=⎨⎪=⎩, ()ABE DBE SSS ∴∆≅∆,AEB DEB ∴∠=∠, AEC DEC ∴∠=∠.在△ACE 与△DCE 中,AE ED AEC DEC CE CE =⎧⎪∠=∠⎨⎪=⎩, ()AEC DEC SAS ∴∆≅,CA CD ∴=(全等三角形的对应边相等). 【总结】本题主要考查了全等三角形判定定理的应用.例2.如图,已知AB =DC ,AC =DB ,BE =CE ,试说明:AE =DE .【难度】★【解析】在△ABC 和△DCB 中,AB DC AC DB BC CB =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△DCB (S.S.S ), ∴∠ABC=∠DCB .在△ABE 和△DCE 中,AB DC ABC DCB BE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△DCE (S.A.S ), ∴AE=DE (全等三角形的对应边相等).【总结】本题主要考查了全等三角形判定定理的应用.例3.已知:AB ∥CD ,OE =OF ,试说明:AB =CD .【难度】★【解析】//AB CD ,A D B C ∴∠=∠∠=∠,.(..)A D B CA D AOE DOF AOE DOF OE OF AOE DOF A A S AO DO∴∠=∠∠=∠∠=∠⎧⎪∆∆∠=∠⎨⎪=⎩∴∆≅∆∴=,在和中,,(..)AO DO AOB DOC A DB C AOB DOC A A S =⎧⎪∆∆∠=∠⎨⎪∠=∠⎩∴∆≅∆在和中,AB CD ∴=(全等三角形的对应边相等). 【总结】本题主要考查了全等三角形判定定理和性质定理的综合应用.例4.如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB =CD ,AB ∥CD .试说明:BD 平分EF .【难度】★★【解析】∵AB ∥CD ,∴∠A=∠C .在△AGB 和△CGD 中,A C AGB CGD AB CD ∠=∠∠=∠=⎧⎪⎨⎪⎩∴ΔAGB ≌ΔCGD(AAS), ∴BG=DG .∵BE ⊥AC ,DF ⊥AC , ∴∠BEG=∠DFG=90°.在△BGE 和△DGF 中,BGE DGF BEG DGF BG DG ∠=∠∠=∠=⎧⎪⎨⎪⎩∴ΔBGE ≌ΔDGF (A .A .S ), ∴GE=GF , 即BD 平分EF .【总结】本题主要考查了全等三角形判定定理和性质定理的应用.例5.如图,已知AD =AE ,AB =AC .试说明:BF =FC .【难度】★★【解析】ABE ACD ∆∆在和中,AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩,()ABE ACD SAS ∴∆≅∆, B C ∴∠=∠.BD AB AD CE AC AE BD CE =-=-∴=,,.BDF CEF ∆∆在和中,DFB EFC B CBD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,(..)BDF CEF A A S ∴∆≅∆ , .BF CF ∴= 【总结】本题主要考查了全等三角形判定定理和性质定理的应用.例6.(2018·山东济南市·七年级期中)如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠ ∴EAF BAD ∠=∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.例7.(2020·山东东营市·七年级期中)如图,点E 在CD 上,BC 与AE 交于点F ,AB=CB ,BE=BD ,∠1=∠2.(1)求证:ABE CBD ≅△△;(2)证明:∠1=∠3.【分析】(1)先根据角的和差可得ABE CBD ∠=∠,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得A C ∠=∠,再根据对顶角相等可得AFB CFE ∠=∠,然后根据三角形的内角和定理、等量代换即可得证.【详解】(1)12∠=∠,12CBE CBE ∴∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE △和CBD 中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,()ABE CBD SAS ∴≅;(2)由(1)已证:ABE CBD ≅△△,A C ∴∠=∠,由对顶角相等得:AFB CFE ∠=∠,又11803180A AFB C CFE ∠=︒-∠-∠⎧⎨∠=︒-∠-∠⎩, 13∠∠∴=.【点睛】本题考查了三角形全等的判定定理与性质、对顶角相等、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.例8.(2020·山东济南市·七年级期末)已知Rt △ABC 和Rt △DBE ,∠ABC =∠DBE =90°,AB =CB ,DB =EB , CE 所在的直线交AD 于点F .(1)如图1,若点D 在△ABC 外,点B 在AB 边上,求证:AD =CE ,AD ⊥CE .(2)若将图1中的△DBE 绕点B 顺时针旋转,使点B 在△ABC 内部,如图2,求证:AD =CE ,AD ⊥CE .(3)若将图1中的△DBE 绕点B 逆时针旋转,使点D 、E 都在△ABC 外部,如图3,请直出AD和CE 的数量和位置关系.【答案】(1)证明见解析;(2)证明见解析;(3)AD CE =,AD CE ⊥【分析】(1)证明ABD CBE ≌,根据全等三角形的性质得到AD CE =,BAD BCE ∠=∠,根据垂直的定义证明即可;(2)证明ABD CBE ∠=∠,同(1)的方法证明;(3)证明ABD CBE ∠=∠,同(2)的方法证明结论.【详解】(1)证明:在ABD △和CBE △中,90DB EB ABD CBE AB CB =⎧⎪∠=∠=︒⎨⎪=⎩, ()ABD CBE SAS ∴△≌△AD CE ∴=,BAD BCE ∠=∠,90ABD ∠=︒,90ADB BAD ∴∠+∠=︒,90ADB BCE ∴∠+∠=︒,90CFD ∴∠=︒,AD CE ∴⊥,AD CE ∴=,AD CE ⊥;(2)证明:ABC DBE ∠=∠,ABC ABE DBE ABE ∴∠-∠=∠-∠,即ABD CBE ∠=∠,在ABD △和CBE △中,DB EB ABD CBE AB CB =⎧⎪∠=∠⎨⎪=⎩,()ABD CBE SAS ∴△≌△AD CE ∴=,BAD BCE ∠=∠,90ABC ∠=︒,90BOC BAE ∴∠+∠=︒,BOC AOF ∠=∠,90BAD AOF ∴∠+∠=︒,90AFO ∴∠=︒,AD CE ∴⊥,AD CE ∴=,AD CE ⊥;(3)AD CE =,AD CE ⊥;理由如下:ABC DBE ∠=∠,ABC ABE DBE ABE ∴∠+∠=∠+∠,即ABD CBE ∠=∠,在ABD △和CBE △中,DB EB ABD CBE AB CB =⎧⎪∠=∠⎨⎪=⎩, ()ABD CBE SAS ∴△≌△AD CE ∴=,BAD BCE ∠=∠,90ABC ∠=︒,90BOC BAE ∴∠+∠=︒,BOC AOF ∠=∠,90BAD AOF ∴∠+∠=︒,90AFO ∴∠=︒,AD CE ∴⊥,AD CE ∴=,AD CE ⊥.【点睛】本题考查的是全等三角形的判定和性质、旋转变换的性质,掌握全等三角形的判定定理和性质定理是解题的关键.例9.(2020·山东枣庄市·七年级期末)如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)43t =时,点C 位于线段PQ 的垂直平分线上;(2)1t =;(3)不存在,理由见解析. 【分析】(1)根据题意求出BP ,CQ ,结合图形用含t 的代数式表示CP 的长度,根据线段垂直平分线的性质得到CP =CQ ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可.【详解】解:(1)由题意得3BP CQ t ==,则83CP t -=,当点C 位于线段PQ 的垂直平分线上时,CP CQ =,∴833t t -=, 解得,43t =, 则当43t =时,点C 位于线段PQ 的垂直平分线上; (2)∵D 为AB 的中点,10AB AC ==,∴5BD =,∵BPD CQP ≌,∴BD CP =,∴835t -=,解得,1t =, 则当BPD CQP ≌时,1t =; (3)不存在,∵BPD CPQ △≌△,∴BD CQ BP CP =,=,则35383t t t -=,= 解得,53t =,43t =, ∴不存在某一时刻t ,使BPD CPQ △≌△.【点睛】本题考查的是几何动点运动问题、全等三角形的性质、线段垂直平分线的性质、等腰三角形的性质,掌握全等三角形的对应边相等是解题的关键.模块二:添加辅助线构造全等三角形知识精讲1、 倍长中线法;2、 添加平行线构造全等三角形;3、 截长补短构造全等的三角形;4、 图形的运动构造全等三角形.例题解析例1.(2018·江西吉安市·七年级期中)如图,D 是△ABC 的BC 边上的中点,连接AD ,并延长到点E 使DE=AD ,再连接CE. 若AC=10,AB=6,求中线AD 的取值范围.【答案】2<AD <8.【分析】先证△ABD ≌△ECD(SAS),证得4<AE <16,由此即可求得AD 的取值范围.【详解】∵D 是BC 边的中点,∴BD=CD.又∠ADB 与∠EDC 是对顶角,∴∠ADB=∠EDC.在△ABD 和△ECD 中,ADB EDC BD CD,AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ECD(SAS),∴CE=AB=6.在△ACE 中,AE >AC-CE,且AE <AC+CE,∴4<AE <16,即4<2AD <16,∴2<AD <8.【点睛】此题考查三角形的中线的性质,根据全等证得中线的2倍线段AE 的取值范围是解题的关键.例2.(2019·沂源县中庄中学七年级月考)仔细阅读下面的解题过程,并完成填空:如图13,AD 为△ABC 的中线,已知AD=4cm,试确定AB+AC 的取值范围.解:延长AD 到E,使DE = AD,连接BE.因为AD 为△ABC 的中线,所以BD=CD .在△ACD和△EBD中,因为AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(__________). 所以BE=AC(_____________________).因为AB+BE>AE(_____________________),所以AB+AC>AE.因为AE=2AD=8cm,所以AB+AC>_______cm.【分析】根据三角形全等的判定与性质以及三角形的内角和,即可得出答案.【详解】解:延长AD到E,使DE = AD,连接BE.因为AD为△ABC的中线,所以BD=CD.在△ACD和△EBD中,因为AD=DE,∠ADC=∠EDB,CD=BD,所以△ACD≌△EBD(SAS).所以BE=AC(全等三角形的性质).因为AB+BE>AE(两边之和大于第三边),所以AB+AC>AE.因为AE=2AD=8cm,所以AB+AC>8cm.【点睛】本题考查的是全等三角形的判定与性质以及三角形边的性质,需要熟练掌握各种性质与定理.例3.(2020·辽宁锦州市·)在ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD ⊥MN于D,BE⊥MN于E.(1)如图1所示位置时判断ADC与CEB是否全等,并说明理由;(2)如图2所示位置时判断ADC与CEB是否全等,并说明理由.【答案】(1)全等,见解析;(2)全等,见解析【分析】(1)首先根据同角的余角证明∠DAC =∠BCE ,再利用AAS 定理证明△DAC ≌△ECB ;(2)首先根据同角的余角证明∠DAC =∠BCE ,进而利用HL 定理证明△ACD ≌△CBE .【详解】(1)如图1,全等,理由:∵∠ACB =90°,AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠DAC+∠DCA =∠BCE+∠DCA ,∴∠DAC =∠BCE ,在△DAC 与△ECB 中,∵90DAC BCE ADC CEB AC BC ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△DAC ≌△ECB (AAS );(2)如图2,全等,理由:∵∠ACB =90°,AD ⊥MN ,∴∠DAC+∠ACD =∠ACD+∠BCE ,∴∠DAC =∠BCE ,在△ACD 与△CBE 中,∵DAC ECB ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ).【点睛】本题考查全等三角形的判定及其性质定理的同时,还渗透了对旋转变换的考查;解题的关键是灵活运用全等三角形的判定定理解题.4.(2020·辽宁丹东市·七年级期末)已知:如图1,在ABC ∆和ADE ∆中,C E ∠=∠,CAE DAB ∠=∠,BC DE =.(1)请说明ABC ADE ∆∆≌.(2)如图2,连接CE 和BD ,DE ,AD 与BC 分别交于点M 和N ,56DMB ∠=︒,求ACE ∠的度数.(3)在(2)的条件下,若CN EM =,请直接写出CBA ∠的度数.【答案】(1)证明见解析;(2)∠ACE =62°;(3)∠CBA =6°.【分析】(1)根据已知条件可以确定∠CAB =∠EAD ,结合已知条件,用AAS 可判定△ABC ≌△ADE ;(2)由(1)中△ABC ≌△ADE 可得∠CBA=∠EDA ,AC=AE ,在△MND 和△ANB 中,用三角形内角和定理由∠MND=∠ANB 可得∠DAB=∠DMB=56°,即∠CAE =∠DAB=56°,由AC=AE ,可得∠ACE =∠AEC=1(18056)622︒-︒=︒; (3) 连接AM ,先证NCA MEA ≅(SAS),得到AM=AN,EAM CAN ∠=∠,进而可得EAC MAN ∠=∠,由(2)可知=56EAC MAN ︒∠=∠,根据等腰三角形内角和可得ANM ∠= 1(18056)622︒︒︒-=,由三角形外角定理可得CBA ANM DAB ∠=∠-∠=62︒-56︒= 6︒.【详解】解:(1)∵∠CAE =∠DAB ,∴∠CAE +∠CAD =∠DAB +∠CAD ,即∠CAB =∠EAD ,在△ABC 和△ADE 中,C E CAB EAD BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (AAS ),(2)∵△ABC ≌△ADE ,∴∠CBA=∠EDA ,AC=AE ,在△MND 和△ANB 中,∵∠EDA +∠MND+∠DMB =180︒,∠CBA +∠ANB +∠DAB =180︒,又∵ ∠MND=∠ANB ,∴ ∠DAB=∠DMB=56︒,∴∠CAE =∠DAB=56︒,∵AC=AE ,∴∠ACE =∠AEC=1(18056)622︒︒︒-=, ∴∠ACE =62︒,(3)∠CBA=6︒,如图所示,连接AM ,NCA MEA ∠=∠,CN=EM,CA=EA,∴NCA MEA ≅(SAS),∴AM=AN,EAM CAN ∠=∠,∴EAM CAM ∠-∠=CAN CAM ∠-∠即EAC MAN ∠=∠,由(2)可得:=56EAC MAN ︒∠=∠,∴ANM ∠=1(18056)622︒︒︒-=, ∠CAE =∠DAB=56︒∴CBA ANM DAB ∠=∠-∠=62︒-56︒= 6︒.【点睛】本题综合考查了三角形的相关定理与证明,较为综合,熟练掌握三角形的内角和定理,外角定理,全等三角形的判定与性质是解题的关键.例5.(2020·山东济南市·七年级期中)在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D , BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:△ADC ≌△CEB ;(2)当直线MN 绕点C 旋转到图2的位置时,试问DE 、AD 、BE 的等量关系?并说明理由.【答案】(1)见解析;(2)DE=AD-BE ,理由见解析【分析】(1)由已知推出∠ADC=∠BEC=90°,因为∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,推出∠DAC=∠BCE ,根据AAS 即可得到答案;(2)与(1)证法类似可证出∠ACD=∠EBC ,能推出△ADC ≌△CEB ,得到AD=CE ,CD=BE ,即可得到答案.【详解】解:(1)证明:如图1,∵AD ⊥DE ,BE ⊥DE ,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE ,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS );(2)结论:DE=AD-BE .理由:如图2,∵BE ⊥EC ,AD ⊥CE ,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD=CE ,CD=BE ,∴DE=EC-CD=AD-BE .【点睛】本题主要考查了余角的性质,全等三角形的性质和判定等知识点,能根据已知证明△ACD ≌△CBE 是解此题的关键,题型较好,综合性比较强.6.(2018·四川达州市·七年级期末)如图,在ABC ∆中,AD BC ⊥,垂足为D ,E 为BD 上的一点,EG AD ,分别交AB 和CA 的延长线于点F ,G ,AFG G ∠=∠.(1)试说明ABD ACD ∆≅∆;(2)若40B ∠=︒,求G ∠和FAG ∠的大小.【答案】(1)见解析(2)50°,80°【分析】(1)根据题意利用角边角判断定理,证明ABD ACD ∆≅∆即可.(2)若40B ∠=︒,再证明50G AFG ∠=∠=︒,即可计算FAG ∠的度数.【详解】(1)∵AD EG ,∴AFG BAD ∠=∠,G DAC ∠=∠,又∵G AFG ∠=∠,∴DAC DAB ∠=∠,又∵AD BC ⊥,∴90ADB ADC ∠=∠=︒,又∵AD DA =,∴ABD ACD ∆≅∆.(2)∵AD BC ⊥,∴90ADB ∠=︒,又∵AD EG ,∴90FEB ∠=︒,又∵40B ∠=︒,∴50EFB ∠=︒,又∵EFB AFG ∠=∠,∴50G AFG ∠=∠=︒,∴80FAG ∠=︒.【点睛】本题主要考查三角形全等的证明,关键在于熟练的利用三角形全等的判定定理. 例7.(2019·全国七年级单元测试)在直角三角形ABC 中,90,30︒︒∠=∠=ACB BAC ,分别以AB 、AC 为边在ABC ∆外侧作等边ABE ∆和等边ACD ∆,DE 交AB 于点F ,求证:=EF FD .【分析】过点E 作EG AB ⊥于点G ,则有1122AG BG AE AB ===,再证 ()SAS ACB EGA ≅,得到EG AC =.从而得到90DAF DAC CAB ∠=∠+∠=︒,所以(AAS)ADF GEF ≅,即可完成证明。
五种辅助线助你证全等姚全刚在证明三角形全等时有时需增加辅助线,对学习几何证明不久的学生而言常常是难点.下面介绍证明全等常常有的五种辅助线,供同学们学习时参照.一、截长补短一般地,当所证结论为线段的和、差关系,且这两条线段不在同素来线上时,平时能够考虑用截长补短的方法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等.例 1.如图 1,在△ ABC 中,∠ ABC=60 °, AD 、CE 分别均分∠ BAC 、∠ ACB .求证:AC=AE+CD .解析:要证AC=AE+CD ,AE 、CD 不在同素来线上.故在AC 上截取 AF=AE ,则只要证明 CF=CD .证明:在 AC 上截取 AF=AE ,连接 OF.∵ AD 、 CE 分别均分∠ BAC 、∠ ACB ,∠ ABC=60 °∴∠ 1+∠ 2=60 °,∴∠ 4=∠ 6=∠ 1+∠ 2=60 °.显然,△ AEO ≌△ AFO ,∴∠ 5=∠4=60°,∴∠ 7=180°-(∠ 4+ ∠ 5) =60 °在△ DOC 与△ FOC 中,∠ 6=∠ 7=60°,∠ 2=∠ 3, OC=OC∴△ DOC ≌△ FOC, CF=CD∴ AC=AF+CF=AE+CD.截长法与补短法,详尽作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
例2:如图甲, AD∥BC,点 E 在线段 AB上,∠ ADE=∠CDE,∠ DCE=∠ECB。
求证: CD=AD+BC。
思路解析:1)题意解析:此题观察全等三角形常有辅助线的知识:截长法或补短法。
2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在 CD上截取 CF=CB,只要再证 DF=DA即可,这就转变成证明两线段相等的问题,进而达到简化问题的目的。
全等三角形问题中常有的辅助线的作法( 含答案 ) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角均分线,可向两边作垂线。
也可将图对折看,对称今后关系现。
角均分线平行线,等腰三角形来添。
角均分线加垂线,三线合一试一试看。
线段垂直均分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角均分线在三种添辅助线4.垂直均分线联系线段两端5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为 60 度或 120 度的把该角添线后构成等边三角形7. 角度数为 30、60 度的作垂线法:遇到三角形中的一个角为 30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特别直角三角形,尔后计算边的长度与角的度数,这样能够获取在数值上相等的二条边或二个角。
进而为证明全等三角形创立边、角之间的相等条件。
8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特别直角三角形,或40-60-80的特别直角三角形, 常计算边的长度与角的度数,这样能够获取在数值上相等的二条边或二个角,进而为证明全等三角形创立边、角之间的相等条件。
常有辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思想模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思想模式是全等变换中的“旋转”法构造全等三角形.3)遇到角均分线在三种添辅助线的方法,(1)能够自角均分线上的某一点向角的两边作垂线,利用的思想模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)能够在角均分线上的一点作该角均分线的垂线与角的两边订交,形成一对全等三角形。
倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。
三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。
本专题只讨论倍长中线的问题。
【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。
口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。
【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。
延长AD 至G 点,使DG=AD ,连接BG 。
在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。
求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。
试探究线段AB与AF、CF之间的数量关系,并证明你的结论。
截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。
①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。
【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。
求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。
第十二讲 几何中的辅助线技巧
三角形添加辅助线技巧
三角形辅助线做法
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
(一)作平行线
1、如图,ABCD 和CEFG 是两个正方形,AB=a ,CE=b ,则△BDF 的面积是 。
2、已知:如图,在△ABC 中,AB=AC ,D 点在AB 边上,E 在AC 边的延长线上,DE 交BC 于点F ,BD=CE ,求证:
DF=EF.
(二)作垂线
3、如图,已知OP 平分∠AOB ,C ,D 分别在OA 、OB 上,若∠PCO+∠PDO=180°, 求证:
PC=PD.
O
4、已知:如图,在△ABC 中,AB=2AC ,∠1=∠2,AD=BD ,求证:CD ⊥AC.
C
B
5、已知:如图,△ABC 中,AB=AC ,AB ⊥AC ,BM 是AC 边上的中线,AD ⊥BM ,分别交BC 、BM 于D 、E ,求证:∠CMD=∠
AMB.
B
(一)倍长中线(中点想倍长平行等长,中点连中点平行减半)
1、一个三角形两边长分别是a,b,a>b ,则第三边上的中线取值范围是 。
2、已知:如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:
AF=EF.
B C
3、如图,在△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE=CD ,EF=AC ,求证:EF ∥AB.
B
4、如图,已知:AD是△ABC的中线,且CD=AB,AE是△ABD的中线,求证:AC=2AE.
C
5、已知:如图,梯形ABCD中,M在CD上,以下五个论断:(1)AB=AD+BC;(2)BM 平分∠ABC;(3)AM平分∠BAD;(4)M是CD的中点;(5)AM⊥BM。
用其中两个做条件,推出另外三个,哪些命题是真命题,并简要说明理由。
(二)构造中位线
6.如图,在△ABC中,D是BC上的靠近B点的三等分点,E是AB的中点,直线AC与DE交
EF=3DE.
于点F,求证:
7.在△ABC中,∠B=2∠C,M为BC的中点,AD⊥BC,求证:
8.如图,在AB,AC上分别取D,E两点,使BD=CE,M,N分别为BE,CD的中点,直线MN分别交AB,AC于P,Q,求证:AP=AQ.
9.在正方形ABCD中,对角线AC,BD相交于点O, ∠CAB的平分线交BD于点F,交BC于点G,
CG=2OF.
求证:
10.如图,P是△ABC内一点,且PE⊥AB,PF⊥AC,D是BC边上的中点,若∠PBE=∠PCF,求
DE=DF.
证:
(一)截长: 和宜并之差宜贴,短则补之长则截
BAC,若∠C=2∠B,证明:AB=AC+CD.
1.已知:如图,△ABC中,AD平分∠
2.已知:如图,△ABC中,∠A=60°,∠B与∠C的平分线BE,CF交于点I,求证:
BC=BF+CE.
(二)补短 3.已知:如图,在正方形ABCD 中,E 为AD 上一点,BF 平分∠CBE 交CD 于F ,求证:BE=CF+AE.
4.已知:如图,在△ABC 中,AB=AC ,D 为△ABC 外一点,∠ABD=60°,AB=BD+DC ,求证:∠ACD=60°
.
5.已知:如图,四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°,求证:
BC+DC=AC.
D
1.如图,在锐角三角形ABC 中,CD ⊥AB ,BE ⊥AC
,且CD ,BE 交于点P ,若∠A=50°,求∠BPC 的度数。
2、过等腰直角三角形直角顶点A 作直线AM 平行于斜边BC ,在AM 上取点D ,使BD=BC ,且DB 与AC 所在直线交于E ,求证:CD=CE 。
3、Rt△ABC,AB=AC,BM是中线,AD⊥BM交BC于D
求证:∠AMB=∠CMD
4.如图,已知△ABC是等边三角形,∠BDC=120º,说明AD=BD+CD的理由
5. 如图14-29①,在ΔABC中∠ACB=900,AC=BC,M为AB中点,P为AB上一动点(P 不与A、B重合),PE⊥AC于点E,PF⊥BC于点F。
(1)求证:ME=MF,ME⊥MF;
(2)如点P移动至AB的延长线上,如图14-29②,是否仍有如上结论?请予以证明。
6.已知:如图,点D在△ABC的边CA的延长线上,点E在BA的延长线上,CF、EF分别是∠ACB、∠AED的平分线,且∠B=30°,∠D=40°,求∠F的度数。
7、等边三角形ABC和等边三角形DEF,D在AC边上。
延长BD交CE延长线于N,延长AE交BC延长线于M。
求证:CM=CN
8、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:线段BM、MN、NC之间的关系,并加以证明.。