弹簧问题(能量)
- 格式:doc
- 大小:118.00 KB
- 文档页数:4
物体拉弹簧能量守恒方程
当一个物体受到弹簧的拉力并移动时,能量守恒方程可以用来
描述这一过程。
假设弹簧的劲度系数为k,物体在弹簧上的位移为x。
在这种情况下,弹簧的势能可以表示为(1/2)kx^2。
当物体受到弹簧
的拉力移动时,它的动能可以表示为(1/2)mv^2,其中m是物体的质量,v是物体的速度。
根据能量守恒定律,系统的机械能在运动过程中保持不变。
因此,当物体受到弹簧的拉力移动时,弹簧的势能和物体的动能之和
保持不变。
这可以用以下方程表示:
(1/2)kx^2 + (1/2)mv^2 = E.
其中E表示系统的总机械能,它在整个过程中保持不变。
这个
方程描述了弹簧和物体之间的能量转化过程,其中弹簧的势能和物
体的动能相互转化,但它们的总和保持不变。
这个方程可以用来解决各种与弹簧和物体运动相关的问题,例
如计算物体在弹簧上的位移、速度或者弹簧的劲度系数等。
它是描
述弹簧振动和弹簧系统动力学行为的重要工具,能够帮助我们理解
和预测弹簧系统的运动规律。
总之,能量守恒方程在描述物体受到弹簧拉力移动时的能量转
化过程中起着重要作用,它是描述弹簧系统动力学行为的基础之一。
通过应用这个方程,我们可以更好地理解和分析弹簧系统的运动特性。
弹簧的能量专题1、如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环•圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹 簧原长为L ,圆环下滑到最大距离时弹簧的长度变为 2L (未超过弹性限度),则在圆环下滑到最大距离的过程中 ,圆环的机械能守恒F — kdmB.该过程中,物块 A 的速度逐渐增大A. B. 弹簧弹性势能变化了mgLC. D. 2、圆环下滑到最大距离时•所受合力为零圆环重力势能与弹簧弹性势能之和保持不变 如图所示,轻质弹簧一端固定,另一端与质量为 m 套在粗糙竖直固定杆 A 处的圆环相 连,弹簧水平且处于原长。
圆环从 A 处由静止开始下滑, 经过B 处的速度最大,到达 C 处的 速度为零,AC=h 。
圆环在C 处获得一竖直向上的速度 v ,恰好能回到 A;弹簧始终在弹性限度之内,重力加速度为 g ,则圆环d _____ 4A. 下滑过程中,加速度一直减小B. 下滑过程中,克服摩擦力做功为1 2 mv 4C. 在C 处,1 弹簧的弹性势能为1mv 2-mghD. 上滑经过 B 的速度大于下滑经过 B 的速度3、在倾角为 m ( m v m ),弹簧的劲度系数为 用一恒力F 沿斜面方向拉物块 为d ,速度为v .则()m 、0的光滑斜面上放有两个用轻弹簧相连接的物块 A 、B , k , C 为一固定挡板,系统处于静止状态, A 使之向上运动,当物块B 刚要离开C 时,物块A 运动的距离它们的质量分别为 如图所示.现开始 A.此时物块A 的加速度为R h CA 所受重力做功的功率为 m i gv弹簧弹性势能的增加量为120 — - m i v24、如图5-4-7所示,固定斜面的倾角 0 = 30°,物体A 与斜面之间的动摩擦因数□=#,轻弹簧下端固定在斜面底端, 弹簧处于原长时上端位于 C 点。
用一根不可伸长的轻绳通过轻 质光滑的定滑轮连接物体 A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2mB 的质量为m初始时物体A 到C 点的距离为L 。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
1.如图所示,一物体质量m =2 kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3 m/s 下滑,A 点距弹簧上端B 的距离AB =4 m 。
当物体到达B 点后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点的距离AD =3 m 。
挡板及弹簧质量不计,g 取10 m/s 2,sin37°=0.6,求: (1)物体与斜面间的动摩擦因数μ; (2)弹簧的最大弹性势能E pm 。
【解析】(1)物体从开始位置A 点到最后D 点的过程中,弹性势能没有发生变化,动能和重力势能减少,机械能的减少量为ΔE =ΔE k +ΔE p =12mv 20+mgl AD sin37①物体克服摩擦力产生的热量为:Q =F f x ② 其中x 为物体的路程,即x =5.4 m ③ F f =μmg cos37°④由能量守恒定律可得ΔE =Q ⑤ 由①②③④⑤式解得μ=0.52。
(2)由A 到C 的过程中,动能减少ΔE k ′=12mv 20⑥重力势能减少ΔE p ′=mgl AC sin37°⑦ 摩擦生热Q ′=F f l AC =μmg cos37°l AC ⑧由能量守恒定律得弹簧的最大弹性势能为: ΔE pm =ΔE k ′+ΔE p ′-Q ′⑨联立⑥⑦⑧⑨解得ΔE pm =24.5 J 。
【答案】(1)μ=0.52 (2)24.5 J 3.[2017·黄冈调研]如图所示,竖直平面内,长为L =2 m 的水平传送带AB 以v =5 m/s 顺时针传送,其右下方有固定光滑斜面CD ,斜面倾角θ=37°,顶点C 与传送带右端B 点竖直方向高度差h =0.45 m ,下端D 点固定一挡板。
一轻弹簧下端与挡板相连,上端自然伸长至E 点,且C 、E 相距0.4 m 。
现让质量m =2 kg 的小物块以v 0=2 m/s 的水平速度从A 点滑上传送带,小物块传送至B 点后飞出恰好落至斜面顶点C 且与斜面无碰撞,之后向下运动。
我成功,因为我志在成功!一:形变量相同时,弹性势能相同1.如图所示,质量mB =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k =100N /m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA =1.6kg 的小球A 连接。
已知直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°。
初始时使小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的张力F 为45N 。
已知AO1=0.5m ,重力加速度g 取10m /s2,绳子不可伸长.现将小球A 从静止释放,则:(1)在释放小球A 之前弹簧的形变量;(2)若直线CO1与杆垂直,求物体A 运动到C 点的过程中绳子拉力对物体A 所做的功;(3)求小球A 运动到底端D 点时的速度。
二.两过程代换2.(20分)如图所示,A 、B 两个矩形木块用轻弹簧相接静止在水 平地面上,弹簧的劲度系数为k ,木块A 和木块B 的质量均为m.(1)若用力将木块A 缓慢地竖直向上提起,木块A 向上提起多大高 度时,木块B 将离开水平地面.(2)若弹簧的劲度系数k 是未知的,将一物块C 从A 的正上方某位 置处无初速释放与A 相碰后,立即粘在一起(不再分离)向下运动,它 们到达最低点后又向上运动。
已知C 的质量为m 时,把它从距A 高H 处释放,则最终能使B 刚好要离开地面。
若C 的质量为2m,要使B 始终不离开地面,则释放时,C 距A 的高度h 不能超过多少? 三、完全压紧不能再压缩:3、如图6-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为v0. (1)求弹簧所释放的势能ΔE.(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE ′是多少? (3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为2v0,A 的初速度v 应为多大?变式:如图所示,在足够长的光滑水平轨道上静止三个小木块A 、B 、C ,质量分别为mA=1kg ,mB=1kg ,mC=2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失).现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在B 、C 之间的弹簧第一次恢复到原长时追上B ,并且与B 发生碰撞后粘在一起.求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值.四、弹簧中的临界问题:4、多过程分析(11分)在赛车场上,为了安全起见,在车道外围一定距离处一般都放有废旧的轮胎组成的围栏。
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
弹簧振子的能量问题一、弹簧振子的能量组成1. 动能- 弹簧振子做简谐运动时,其动能E_k=(1)/(2)mv^2,其中m是振子的质量,v 是振子的速度。
- 在平衡位置时,振子的速度最大。
根据简谐运动的特点x = Asin(ω t+φ)(x 是位移,A是振幅,ω是角频率,φ是初相),对x求导可得速度v=ω Acos(ω t+φ)。
在平衡位置x = 0时,cos(ω t+φ)= ±1,速度v=±ω A,此时动能E_kmax=(1)/(2)mω^2A^2。
2. 弹性势能- 对于弹簧,其弹性势能E_p=(1)/(2)kx^2,其中k是弹簧的劲度系数,x是弹簧的形变量。
- 在最大位移处(即x=± A),弹性势能最大,E_pmax=(1)/(2)kA^2。
3. 总能量- 根据机械能守恒定律,弹簧振子在做简谐运动过程中,总能量E = E_k+E_p 保持不变。
- 由于E_kmax=(1)/(2)mω^2A^2,E_pmax=(1)/(2)kA^2,又因为ω=√(frac{k){m}},所以E = E_k+E_p=(1)/(2)kA^2。
二、题目解析1. 例题1:- 题目:一个弹簧振子,弹簧的劲度系数k = 100N/m,振子质量m = 1kg,振幅A = 0.1m。
求弹簧振子的总能量、最大动能和最大弹性势能。
- 解析:- 总能量E=(1)/(2)kA^2,将k = 100N/m,A = 0.1m代入可得E=(1)/(2)×100×(0.1)^2=0.5J。
- 最大动能E_kmax=(1)/(2)mω^2A^2,先求ω=√(frac{k){m}}=√(frac{100){1}} = 10rad/s,则E_kmax=(1)/(2)mω^2A^2=(1)/(2)×1×10^2×(0.1)^2=0.5J。
- 最大弹性势能E_pmax=(1)/(2)kA^2=0.5J。
弹簧类问题〔一〕——常见弹簧类问题分析轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考察力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题打破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧〔尤其是软质弹簧〕其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进展计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-〔21kx 22-21kx 12E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进展分析。
一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚分开上面弹簧.在这过程中下面木块挪动的间隔 为( )1g/k 12g/k 2 C.m 1g/k 22g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间间隔 的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1分开上面的弹簧.开场时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚分开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因此m2挪动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2.此题假设求m l挪动的间隔又当如何求解?参考答案:Ck1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为1和S2表示劲度系数分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大那么应使( ).1在上,A在上1在上,B在上2在上,A在上2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长,它们的一端固定,另一端自由,如下图,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如下图,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2程度拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)假设将图中的细线L l改为长度一样、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全一样,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如下图,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的互相作用)那么M与m之间的关系必定为 ( )参考答案:B6.如下图,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,那么重物将被弹簧弹射出去,那么在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进展准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者别离.7.如下图,一轻质弹簧竖直放在程度地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开场压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的选项是( ) 参考答案:C(试分析小球在最低点的加速度与重力加速度的大小关系)8.如下图,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与程度地面间的动摩擦因数恒定,试判断以下说法正确的选项是 ( )A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动参考答案:C9.如下图,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。
专题5-7 弹簧能量问题例1.如图所示,轻弹簧下端固定,竖立在水平面上。
其正上方A位置有一只小球。
小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。
小球下降阶段下列判断中正确的是A.在B位置小球动能最大B.在C位置小球加速度最大C.从A→C位置小球重力势能的减少等于小球动能的增加D.从B→D位置小球重力势能的减少小于弹簧弹性势能的增加例2如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了多少?物块1的重力势能增加了多少?例3. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248J,求这一过程F对木块做的功.4.如图所示,一弹簧振子.物块质量为m,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧处于伸状态,然后放手,当弹簧回到原长时物块速度为v1,当弹簧再次回到原长时物块速度为v2,求这两次为原长运动过程中弹簧的最大弹性势能.5.如图,水平弹簧一端固定,另一端系一质量为m的小球,弹簧的劲度系数为k,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O点,开始时小球位于O点右方的A点,O与A之间的距离为l0,从静止释放小球。
1.为使小球能通过O点,而且只能通过O点一次,试问μ值应在什么范围?2.在上述条件下,小球在O点左方的停住点B点与O点的最大距离l1是多少? 例6.如图所示,质量均为m的木块A、B用轻弹簧相连,竖直放置在水平面上,静止时弹簧的压缩量为l。
弹簧类问题中动量守恒和能量守恒的综合应用河北省鸡泽县第一中学 吴社英邮 编 057350手 机两个或两个以上的物体与弹簧组成的系统相互作用的物理过程,具有以下一些特点:能量变化上,如果只有重力和系统内弹簧弹力做功,系统的机械能守恒;如果系统所受合外力为零,则系统动量守恒;若系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩最大程度时两物体速度相同(如光滑水平面上的弹簧连结体问题),且当弹簧为自然状态时系统内某一端的物体具有最大速度(如弹簧锁定的系统由静止释放)。
例1 如图1所示,物体A 和B 质量相等,它们连在一个轻质弹簧两端,置于左侧有一竖直挡板的光滑水平面上,B 与竖直挡板接触,此时弹簧处于原长,A 此时以速度v 0压缩弹簧,然后反弹回去。
若全过程始终未超过弹簧的弹性限度,对A 、B 和弹簧组成的系统,则(A) 从A 压缩弹簧开始,动量和机械能守恒(B) 弹簧第一次恢复原长开始,动量和机械能都守恒(C) 弹簧第一次拉伸最长时,弹簧的弹性势能与A 、B 此时的动能之和相等(D) 弹簧第二次恢复原长时,A 、B 的动量大小相等分析与解答 从A 开始压缩弹簧开始,至弹簧第一次变为原长,这个过程中挡板对系 统有向右的作用力,故系统动量不守恒,但这个作用力对系统并不作功,故系统机械能守恒,A 选项错。
从弹簧第一次恢复原长开始,挡板对系统不再有力的作用,系统所受合外力为零,除弹簧弹力对A 、B 做功外,无其它力做功,故系统机械能守恒,B 选项正确。
弹簧第一次拉伸最长时,AB 速度相同,设为v ,则mv 0=2mv (1),E P =21mv 02—212mv 2 (2) 由(1) (2) 得 E P =41mv 02此时的动能之和为E K =212mv 2=41mv 02,所以C 选项正确。
当弹簧恢复原长时,即A 、B 相互作用结束时,二者速度应交换,所以必有一个物体的速度为零,D 选项错。
答案 BC点拨:本题一定要注意挡板对系统有向右的作用力时,系统动量不守恒,但因为不做功,所以机械能守恒。
有关弹簧的能量问题1.如图所示,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧,弹簧左侧挡板的质量不计.设A以速度v0朝B运动,压缩弹簧;当A、 B速度相等时,B与C恰好相碰并粘接在一起,且B与C碰撞时间极短.此后A继续压缩弹簧,直至弹簧被压缩到最短.在上述过程中,求:(1)B与C相碰后的瞬间,B与C粘接在一起时的速度大小;(2)整个系统损失的机械能;(3)弹簧被压缩到最短时的弹性势能.2.如图所示,质量M=4 kg的滑板B静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5 m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.小木块A以速度v0=10 m/s由滑板B左端开始沿滑板B表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.3.如图所示,质量M=3.5 kg的小车静止于光滑水平面上靠近桌子处,其上表面与水平桌面相平,小车长L=1.2 m,其左端放有一质量为0.5 kg的滑块Q.水平放置的轻弹簧左端固定,质量为1 kg的小物块P置于桌面上的A点并与弹簧的右端接触.此时弹簧处于原长,现用水平向左的推力将P缓慢推至B点(弹簧仍在弹性限度内)时,推力做的功为WF=6 J,撤去推力后,P沿桌面滑到小车上并与Q相碰,最后Q停在小车的右端,P停在距小车左端0.5 m 处.已知AB间距L1=5 cm,A点离桌子边沿C点距离L2=90 cm,P与桌面间的动摩擦因数μ1=0.4,P、Q与小车表面间的动摩擦因数μ2=0.1.(g=10 m/s2)求:(1)P到达C点时的速度 vC的大小;(2)P与Q碰撞后瞬间Q的速度大小.4、如图所示,光滑的水平面AB与半径为R=0.32 m的光滑竖直半圆轨道BCD在B点相切,D为轨道最高点.用轻质细线连接甲、乙两小球(图中细线未画出),中间夹一轻质弹簧,弹簧与甲、乙两球不拴接.甲球的质量为m1=0.1 kg,乙球的质量为m2=0.3 kg,甲、乙两球静止在光滑的水平面上.现固定甲球,烧断细线,乙球离开弹簧后进入半圆轨道恰好能通过D点.重力加速度g取10 m/s2,甲、乙两球可看做质点.(1)求细线烧断前弹簧的弹性势能;(2)若甲球不固定,烧断细线,求乙球离开弹簧后进入半圆轨道能达到的最大高度;(3)若给甲、乙两球一向右的初速度v0的同时烧断细线,乙球离开弹簧后进入半圆轨道仍恰好能通过D点,求v0的大小.5、如图所示,光滑水平台面MN上放两个相同小物块A、B,右端N处与水平传送带理想连接,传送带水平部分长度L=8 m,沿逆时针方向以恒定速度v0=2 m/s匀速转动.物块A、B(大小不计,视作质点)与传送带间的动摩擦因数均为μ=0.2,物块A、B质量均为m=1 kg.开始时A、B静止,A、B间压缩一轻质短弹簧.现解除锁定,弹簧弹开A、B,弹开后B滑上传送带,A掉落到地面上的Q点,已知水平台面高h=0.8 m,Q点与水平台面右端间的距离x=1.6 m,g取10 m/s2.(1)求物块A脱离弹簧时速度的大小;(2)求弹簧储存的弹性势能;(3)求物块B在水平传送带上运动的时间.解析 (1)从A 压缩弹簧到A 与B 具有相同速度v 1时,由动量守恒定律得: m v 0=2m v 1设碰撞后瞬间B 与C 的速度为v 2,由动量守恒定律得:m v 1=2m v 2解得:v 2=v 04(2)设B 与C 碰撞损失的机械能为ΔE .由能量守恒定律得:12m v 21=ΔE +12(2m )v 22 整个系统损失的机械能为ΔE =116m v 20(3)由于v 2<v 1,A 将继续压缩弹簧,直至A 、B 、C 三者速度相同,设此时速度为v 3,弹簧被压缩至最短,其弹性势能为E p ,由动量守恒定律和能量守恒定律得:m v 0=3m v 312m v 20-ΔE =12(3m )v 23+E p 解得:E p =1348m v 202、解析 (1)A 、B 组成的系统在水平方向所受合外力为零,系统水平方向动量守恒,弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为v ,从木块A 开始沿滑板B 表面向右运动至弹簧被压缩到最短的过程中,根据动量守恒,m v 0=(M +m )v ,解得:v =m m +M v 0 代入数据得木块A 的速度v =2 m/s.(2)木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大.根据能量守恒定律可得:最大弹性势能为E p =12m v 20-12(m +M )v 2-μmgL 代入数据解得:E p =39 J1、解析 (1)对P ,在A →B →C 过程中应用动能定理,得W F -μ1m 1g (2L 1+L 2)=12m 1v 2C所以v C =2 m/s(2)设P 、Q 碰后速度分别为v 1、v 2,小车最后速度为v ,由动量守恒定律得,m 1v C =m 1v 1+m 2v 2m 1v C =(m 1+m 2+M )v由能量守恒得:-μ2m 1gx -μ2m 2gL =12(M +m 1+m 2)v 2-(12m 1v 21+12m 2v 22)解得v 2=2 m/s ,v 2′=23 m/s当v 2′=23 m/s 时,v 1=53 m/s>v 2′不合题意,舍去.即P 与Q 碰撞后瞬间Q 的速度大小为v 2=2 m/s.4、解析 (1)设乙球恰好能通过D 点的速度为v D ,m 2g =m 2v 2D R ,v D =gR设弹簧的弹性势能为E p ,水平面为零势能面.由机械能守恒得E p =m 2g ×2R +12m 2v 2D解得E p =2.4 J.(2)甲、乙两球和弹簧组成的系统动量守恒、机械能守恒,以乙球运动的方向为正方向 m 2v 2-m 1v 1=0E p =12m 1v 21+12m 2v 22 由机械能守恒得m 2gh =12m 2v 22解得h =0.2 mh <R ,乙球不会脱离半圆轨道,乙球能达到的最大高度h =0.2 m(3)甲、乙两球和弹簧组成的系统动量守恒、机械能守恒 (m 1+m 2)v 0=m 1v 1′+m 2v 2′12(m 1+m 2)v 20+E p =12m 1v 1′2+12m 2v 2′2 12m 2v 2′2=12m 2v 2D +2m 2gR 解得v 2′=4 m/s ,v 1′=-2v 0(v 1′=2v 0舍去), v 0=2 m/s5、解析 (1)A 做平抛运动,竖直方向:h =12gt 2水平方向:x =v A t解得:v A =4 m/s(2)解锁过程系统动量守恒:m v A =m v B由能量守恒定律:E p =12m v 2A +12m v 2B 解得:E p =16 J(3)B 做匀变速运动,由牛顿第二定律,μmg =ma解得:a =2 m/s 2B 向右匀减速至速度为零,由v 2B =2ax B ,解得x B =4 m <L =8 m ,所以B 最终回到水平台面.设B 向右匀减速的时间为t 1:v B =at 1设B 向左加速至与传送带共速的时间为t 2:v 0=at 2有v 20=2ax 2速度相同后做匀速运动的时间为t 3:x B -x 2=v 0t 3总时间:t =t 1+t 2+t 3=4.5 s。
弹簧问题中的能量与动量教学目的:1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况;2.物理答题规范的培养与指导;3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。
教学重难点:1.物理情景的分析方法2.分析过程中突出的物理问题中的“三变”教学方法:讲授、讨论、多媒体演示教学过程:在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。
在力学主干知识的考查中,能量与动量又永远是考查的重中之重。
一.弹簧基础知识弹簧类弹力:大小:F=kx (在弹性限度以内);方向:沿弹簧轴线而指向弹簧的恢复原状的方向二.弹簧问题中的能量与动量分析请学生看物理教材(必修加选修)第二册第10页“思考与讨论”: 在如图1所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。
若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒?机械能是否守恒?说明理由。
例1:如图1所示,若木块的质量为M,子弹的质量为m,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。
求弹簧可能具有的最大弹性势能。
分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。
运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。
对子弹A和木块B 构成的系统,在子弹A 射入木块B的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有:10)(v m M mv +=①对子弹A、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有:()21max 21v m M E P +=②图1联立①②两式得:弹簧具有的最大弹性势能为()m M v m E P +=2202max小结:例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。
物理实验能量转换能量在自然界中无处不在,它在各种物理现象中扮演着至关重要的角色。
物理实验是研究能量转换的有效工具,通过实验我们可以深入了解能量在物理系统中转换和流动的过程。
下面我们将从实验中的步骤来详细分析物理实验中的能量转化过程。
第一步:给弹簧加劲在弹簧上绑上一定质量的砝码,这样就为弹簧加上了能量。
我们可以通过物理公式计算其势能:E=1/2*k*x^2,其中E为弹簧势能,k为弹簧的弹性系数,x为弹簧伸长的长度。
可见,弹簧势能与弹簧的弹性系数和伸长长度都有关系,弹性系数越高,伸长长度越大,势能就越大。
第二步:释放弹簧现在,我们松开绑在弹簧上的砝码,弹簧就开始回弹了。
这时,弹簧势能被转化为了运动能。
弹簧开始回弹时速度很慢,但随着运动,它的速度逐渐增大,直到最高点时速度最大,同时弹簧的弹性系数也在逐渐减小,势能也随之减小。
第三步:砝码受重力作用在弹簧绕回原点时,继续观察砝码的运动,可以看到砝码下落的过程。
这时,能量又被转换成了重力势能。
重力势能与砝码的重量和高度有关系,砝码越重,下落的高度越高,重力势能就越大。
第四步:砝码撞击地面最后,砝码落到了地面,这时能量又变成了地磁势能和与地面摩擦力的热能。
地磁势能指的是在地面附近的重物的重力势能,摩擦力的热能则又被转换为了地面和空气之间的热能,最终能量扩散到整个空气中。
总结起来,物理实验中加强实践与理论的结合,能够通过实验获得实际效果。
通过实验,我们不仅能够了解到能量转化的过程,更能够通过具体案例来理解抽象概念。
同时,这也对我们在生活中对于能量的利用和保护有着重要的启示作用。
专题6.10与弹簧相关的能量问题(基础篇)一.选择题1。
(2019河南郑州二模)蹦极是一项考验体力、智力和心理承受能力的空中极限运动。
跳跃者站在约50m高的塔台上,把一根原长为L的弹性绳的一端绑在双腿的踝关节处,另一端固定在塔台上,跳跃者头朝下跳下去。
若弹性绳的弹力遵守胡克定律,不计空气阻力,则在跳跃者从起跳到第一次下落到最低点的过程中,跳跃者的动能Ek(图线①)和弹性绳的弹性势能Ep(图线②)随下落高度的变化图象中,大致正确的是()【参考答案】B【命题意图】本题以蹦极为情景,考查蹦极过程中动能和弹性绳的弹性势能随下落高度的变化的分析及其相关知识点.【解题思路】在跳跃者起跳到下落到弹性绳刚伸直(0~L)的过程中动能随下落高度h的增加线性增大;再往下落时动能和弹性势能都增大,当弹性绳的弹力等于跳跃者的重力时,速度最大,动能最大;继续向下落时动能减小,弹性绳的弹性势能增大,图象B正确。
【易错警示】解答此题常见错误主要有:没有考虑到弹性绳伸直后动能还要增大,导致错选C或A或D.2。
(2018•江苏)如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块()A。
加速度先减小后增大 B. 经过O点时的速度最大C. 所受弹簧弹力始终做正D. 所受弹簧弹力做的功等于克服摩擦力做的功【参考答案】A,D【名师解析】物体从A点到O点过程,弹力逐渐减为零,刚开始弹簧弹力大于摩擦力,故可分为弹力大于摩擦力过程和弹力小于摩擦力过程:弹力大于摩擦力过程,合力向右,加速度也向右,由于弹力减小,摩擦力不变,小球所受合力减小加速度减小,弹力等于摩擦力时速度最大,此位置在A点与O点之间;弹力小于摩擦力过程,合力方向与运动方向相反,弹力减小,摩擦力大小不变,物体所受合力增大,物体的加速度随弹簧形变量的减小而增加,物体作减速运动;从O点到B点的过程弹力增大,合力向左,加速度继续增大, A符合题意、B不符合题意;从A点到O点过程,弹簧由压缩恢复原长弹力做正功,从O点到B点的过程,弹簧伸长,弹力做负功,C不符合题意;从A到B的过程中根据动能定理弹簧弹力做的功等于物体克服摩擦力做的功,【分析】先明确从A到O的过程,弹簧压缩量先变小后伸长量变大,可知对物体先做正功后做负功,然后对物体进行受力分析,结合牛顿第二定律可确定加速度的变化情况,有动能定理可知从A到B的过程中弹簧弹力做功与克服摩擦力做功的关系。
弹簧的能量专题
1、如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环.圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。
现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到 最大距离的过程中
A .圆环的机械能守恒
B .弹簧弹性势能变化了mgL
C .圆环下滑到最大距离时.所受合力为零
D .圆环重力势能与弹簧弹性势能之和保持不变
2、如图所示,轻质弹簧一端固定,另一端与质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长。
圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC=h 。
圆环在C 处获得一竖直向上的速度v ,恰好能回到A ;弹簧始终在弹性限度之内,重力加速度为g ,则圆环
A .下滑过程中,加速度一直减小
B .下滑过程中,克服摩擦力做功为214
mv C .在C 处,弹簧的弹性势能为214
mv mgh D .上滑经过B 的速度大于下滑经过B 的速度
3、在倾角为θ的光滑斜面上放有两个用轻弹簧相连接的物块A 、B ,它们的质量分别为m 1、m 2(m 1<m 2),弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,如图所示.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,当物块B 刚要离开C 时,物块A 运动的距离为d ,速度为v .则( )
A .此时物块A 的加速度为F -kd m 1
B .该过程中,物块A 的速度逐渐增大
C .此时物块A 所受重力做功的功率为m 1gv
D .该过程中,弹簧弹性势能的增加量为
Fd -m 1gd sin θ-12m 1v 2
4、如图547所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点。
用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L 。
现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点。
已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:
图547
(1)物体A 向下运动刚到C 点时的速度;
(2)弹簧的最大压缩量;
(3)弹簧的最大弹性势能。
5、如图所示,质量m B =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k=100N/m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O 1、O 2后,另一端与套在光滑直杆顶端的、质量m A =1.6kg 的小球A 连接.已知
直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°.初始时使
小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的
张力F 为45N .已知AO 1=0.5m ,重力加速度g 取10m/s 2
,绳子
不可伸长.现将小球A 从静止释放,则:
(1)在释放小球A 之前弹簧的形变量;
(2)若直线CO 1与杆垂直,求物体A 运动到C 点的过程中绳子
拉力对物体A 所做的功;
(3)求小球A 运动到底端D 点时的速度.
6、如图所示,质量为m 1的物体A 经一轻质弹簧与下方斜面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,斜面是光滑的,其倾角为θ.A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿斜面方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开挡板但不继续上升.若将C 换成另一个质量为(m 1+m 3)的物体D ,仍从上述初始位置由静止状态释放,已知重力加速度为g .求:
(1)当B 刚离开挡板时物体A 的加速度
(2)当B 刚离开挡板时D 的速度大小是多少?
7、如图所示,倾角为θ的直角斜面体固定在水平地面上,其顶端固定有一轻质定滑轮,轻质弹簧和轻质细绳相连,一端接质量为m2的物块B,物块B放在地面上且使滑轮和物块间的细绳竖直,一端连接质量为m1的物块A,物块A放在光滑斜面上的P点保持静止,弹簧和斜面平行,此时弹簧具有的弹性势能为E p.不计定滑轮、细绳、弹簧的质量,不计斜面、滑轮的摩擦,已知弹簧劲度系数为k,P点到斜面底端的距离为L.现将物块A缓慢斜向上移动,直到弹簧刚恢复原长时的位置,并由静止释放物块A,当物块B刚要离开地面时,物块A的速度即变为零,求:在以后的运动过程中物块A最大速度的大小.
8、如图所示,倾角θ=37°的光滑且足够长的斜面固定在水平面上,在斜面顶端固定一个轮半径和质量不计的光滑定滑轮D,质量均为m=1kg的体A和B用一劲度系数Bk=240N/m 的轻弹簧连接,物体B被位于斜面底端且垂直于斜面P的挡板P挡住.用一不可伸长的轻绳使物体A跨过定滑轮与质量为M的小环C连接,小环C穿过竖直固定的光滑均匀细杆,当整个系统静止时,环C位于Q处,绳与细杆的夹角α=53°,且物体B对挡板P的压力恰好为零.图中SD水平且长度为d=0.2m,位置R与位置Q关于位置S对称,轻弹簧和定滑轮右侧的绳均与斜面平行.现让环C从位置R由静止释放,sin37°=0.6,cos37°=0.8,g取10m/s2.求:
(1)小环C的质量M;
(2)小环C通过位置S时的动能Ek及环从位置R运动到位置S的过程中轻绳对环做的功W T;
(3)小环C运动到位置Q的速率v.
9、如图所示,在海滨游乐场里有一种滑沙运动.某人坐在滑板上从斜坡上的A点由静止开始下滑,经过时间t滑到斜坡上的B点,并与一减速弹簧相接触,滑板继续下滑距离x到达C点时速度减为零.已知斜坡的倾角为θ,重力加速度为g,滑板与人的总质量为m,滑板与沙的动摩擦因数为μ,不计弹簧的质量.求:
(1)定性说明滑板从接触弹簧到速度变为零的过程中加速度和速度的变化情况;
(2)由A到B过程中滑板克服摩擦力所做的功;
(3)由B到C过程中,人和滑板总共损失的机械能以及弹簧的最大弹性势能各为多大?
10、如图所示,AB是与水平方向成θ=37°的斜面轨道,轨道的AC部分光滑,CB部分粗糙,BP为圆心角等于143°,半径R=3m的竖直光滑圆弧形轨道,两轨道相切于B点,P、O两点在同一竖直线上,轻弹簧一端固定在A点,另一端在斜面上C点处,现有一质量m=4kg 的物块在外力作用下将弹簧缓慢压缩到D点后(不栓接)释放,物块经过C点时速度为18m/s,
=2m,物块与斜面CB部分之间的动摩擦因数μ=0.5,X BC=9m,P处安装一个竖直弹性薄挡板,小物块与挡板碰撞后以原速率弹回,sin37°=0.6,cos37°=0.8,g取10m/s2.
(1)物块从D点运动到C点的过程中,弹簧对物块所做的功;
(2)物块第一次到达P点的速度;
(3)物块第一次返回斜面后将弹簧压缩至最短点E(E为DC的中点),则此时弹簧的弹性势能;
(4)整个运动过程中,物块在斜面上运动时可以有多少次通过CB之间的M点(M与C
相距0.5m)。