化工原理课程设计(乙醇-水溶液连续精馏塔优化设计)
- 格式:doc
- 大小:1.07 MB
- 文档页数:24
12345678910 min(2)'0.7790.6780.789''0.6780.55D q q q x y R y x --===-- 所以,min min(2)0.854R R ==可取操作回流比min 1.2(/ 1.4)R R R ==3.2 塔顶产品产量、釜残液量的计算以年工作日为300天,每天开车24小时计,进料量为:3150001080.5/3002425.88F kmol h ⨯==⨯⨯ 由全塔的物料衡算方程可写出:F D W =+ 28.79/D kmol h =f D W Fx Dx Wx =+ 51.71/W kmol h =3.6 全塔效率的估算用奥康奈尔法('O conenell )对全塔效率进行估算: 由相平衡方程式1(1)xy xαα=+-可得(1)(1)y x x y α-=-根据乙醇~水体系的相平衡数据可以查得:10.7788D y x == 10.739x =(塔顶第一块板)0.511f y = 0.170f x =(加料板)0.002w x = 0.024w y =(塔釜)取'80t mm =时画出的阀孔数目只有60个,不能满足要求,取'65t mm =画出阀孔的排布图如图1所示,其中75,'65t mm t mm ==总阀孔数目为49N =个5.3.3 校核气体通过阀孔时的实际速度:02049.6/SV u m s d Nπ== 实际动能因数:09.6 1.03359.76F =⨯=(在9~12之间) 开孔率:220(0.039)49100%100%11.6%440.5024T d N A ππ⨯⨯⨯=⨯==⨯阀孔面积塔截面积开孔率在10%~14之间,满足要求。
6. 流体力学验算6.1 气体通过浮阀塔板的压力降(单板压降)p h33max min ()0.931/,()0.378/S S V m s V m s ==所以,塔的操作弹性为0.931/0.378 2.463=有关该浮阀塔的工艺设计计算结果汇总于表7表7 浮阀塔工艺设计计算结果项目 数值与说明备注 塔径,D m 0.8 板间距,T H m 0.4 塔板型式 单溢流弓形降液管 分块式塔板空塔气速,/u m s 1.476 溢流堰长度,W l m 0.600 溢流堰高度,W h m 0.05 板上液层高度,L h m0.0131。
课程设计说明书题目乙醇—水连续筛板式精馏塔的设计课程名称化工原理院(系、部、中心)化学化工系专业应用化学班级应化096学生姓名XXX学号XXXXXXXXXX设计地点逸夫实验楼B-536指导教师设计起止时间:2010年12月20日至 2010 年12月31日第一章绪论 (3)一、目的: (3)二、已知参数: (3)三、设计内容: (4)第二章课程设计报告内容 (4)一、精馏流程的确定 (4)二、塔的物料衡算 (4)三、塔板数的确定 (5)四、塔的工艺条件及物性数据计算 (7)五、精馏段气液负荷计算 (11)六、塔和塔板主要工艺尺寸计算 (11)七、筛板的流体力学验算 (16)八、塔板负荷性能图 (19)九、筛板塔的工艺设计计算结果总表 (23)十、精馏塔的附属设备及接管尺寸 (23)第三章总结 (24).乙醇——水连续精馏塔的设计第一章绪论一、目的:通过课程设计进一步巩固课本所学的内容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的内容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。
在常压连续精馏塔中精馏分离含乙醇25%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于0.1%(均为质量分数)。
二、已知参数:(1)设计任务●进料乙醇 X = 25 %(质量分数,下同)●生产能力 Q = 80t/d●塔顶产品组成 > 94 %●塔底产品组成 < 0.1 %(2)操作条件●操作压强:常压●精馏塔塔顶压强:Z = 4 KPa●进料热状态:泡点进料●回流比:自定待测●冷却水: 20 ℃●加热蒸汽:低压蒸汽,0.2 MPa●单板压强:≤ 0.7●全塔效率:E T = 52 %●建厂地址:南京地区●塔顶为全凝器,中间泡点进料,筛板式连续精馏三、设计内容:(1) 设计方案的确定及流程说明 (2) 塔的工艺计算(3) 塔和塔板主要工艺尺寸的计算(a 、塔高、塔径及塔板结构尺寸的确定;b 、塔板的流体力学验算;c 、塔板的负荷性能图) (4) 设计结果概要或设计一览表 (5) 精馏塔工艺条件图(6) 对本设计的评论或有关问题的分析讨论第二章 课程设计报告内容一、精馏流程的确定乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。
课程设计说明书课程名称:化工原理课程设计题目:乙醇-水分离过程板式连续精馏塔设计学生姓名:*** 学号: ************ 系别:环境与建筑工程系专业班级:指导老师:2012年5月目录1.设计方案确定 (1)2 操作条件和基础数据 (2)3 精馏塔的物料衡算 (2)3.1 原料液及塔顶、塔底产品的摩尔分率 (2)3.2 原料液及塔顶、塔底产品的平均摩尔质量 (2)3.3 料液及塔顶、塔底产品的摩尔流率 (2)3.4热量衡算 (3)4 塔板数的确定 (7)4.1 理论板层数NT的求取 (7)4.1.1求最小回流比及操作回流比 (7)5 精馏塔的工艺条件及相关物性数据的计算: (10)5.1填料的选择 (15)6 塔径设计计算 (16)7填料层高度的计算 (18)8附属设备及主要附件的选项计算 (19)8.1 冷凝器 (19)8.2 加热器 (20)8.3 塔管径的计算及选择 (20)8.4 液体分布器 (21)8.5 填料及支撑板的选择 (23)8.6 塔釜设计 (23)8.7塔的顶部空间高度 (24)8.8人孔的设计 (24)8.9裙座的设计 (24)9 对设计过程的评述和有关问题的讨论 (25)9.1 进料热状况的选取 (25)9.2 回流比的选取 (26)9.3 理论塔板数的确定 (26)10设计结果的自我总结与评价 (26)参考文献 (28)1 设计方案确定泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属易分离物系,回流比较大,故操作回流比取最小回流比的1.1倍。
塔釜采用直接蒸汽加热,塔底产品经冷却后送至储罐。
规整填料塔与筛板塔相比,有以下优点1)压降非常小。
气相在填料中的液相膜表面进行对流传热、传质不存在塔板上清液层及筛孔的阻力。
在正常情况下规整填料的阻力只有相应筛板塔阻力的1/5~1/62)热、质交换充分分离效率高使产品的提取率提高3)操作弹性大不产生液泛或漏液所以负荷调节范围大适应性强。
目录精馏塔优化设计任务书 (1)正文前言 (2)1、乙醇—水溶液连续精馏塔优化设计 (3)1.1 操作条件 (3)1.2精馏流程的确定32、乙醇—水溶液连续精馏塔优化设计计算 (3)2.1 精馏塔全塔物料衡算 (3)2.2 物性参数计算 (4)2.2.1 温度的确定2.2.3 密度的计算2.2.4 混合液体表面张力的计算2.2.5 混合物的粘度2.2.6 相对挥发度2.3理论塔板数及实际塔板数的计算 (11)2.3.1 理论塔板数确定2.3.2 实际塔板数的确定2.4 热量衡算 (13)2.4.1 加热介质的选择2.4.2 冷却剂的选择2.4.3 比热容及汽化潜热的计算2.4.4 热量衡算2.5 塔径的初步设计 (16)2.5.1 汽液相体积流量的计算2.5.2 塔径的计算与选择2.6 溢流装置 (18)2.6.1 堰长2.6.2 弓形降液管的宽度和横截面2.6.3 移液管底隙高度2.7 塔板分布、浮阀数目与排列 (19)2.7.1 塔板分布2.7.2 浮阀数目与排列2.8 塔板的流体力学计算 (21)2.8.1 汽相通过浮阀塔板的压降2.9 淹塔 (22)2.10 雾沫夹带 (23)3、塔板负荷性能图 (24)3.1 雾沫夹带线 (24)3.2 液泛线 (24)3.3 液相负荷上限线 (25)3.4 漏液线 (25)3.5 液相负荷下限 (25)4、塔总体高度利用下式计算 (27)4.1 塔顶封头 (27)4.2 塔顶空间 (28)4.3 塔底空间 (28)4.4人孔 (28)4.5 进料板处板间距 (28)4.6 裙座 (28)5、塔的接管 (29)5.1 进料管 (29)5.2 回流管 (29)5.3 塔底出料管 (29)5.4 塔顶蒸汽出料管 (29)5.5 塔底蒸汽进气管 (29)6、塔的附属设计 (30)6.1 冷凝器的选择 (30)6.2 再沸器的选择 (30)7、参考文献 (31)8、课设心得 (31)9、附图 (32)精馏塔优化任务书一、设计题目乙醇—水溶液连续精馏塔优化设计二、设计任务及操作条件1.设计任务处理量:55300吨/年料液浓度:30(wt%)产品浓度:95(wt%)易挥发组分回收率:99%2. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;3. 设备型式: 精馏塔4. 工作日:每年300天,每天24小时连续进行三、设计内容a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。
乙醇水溶液连续精馏塔《化工原理》课程设计任务书一、设计题目乙醇-水溶液连续板式精馏塔设计。
二、任务要求1、设计一连续板式精馏塔一分离乙醇和水,具体工艺参数如下:(1)原料乙醇含量:质量分率=29%(2)原料处理量:质量流量=10.8t/h(3)摩尔分率Xd=0.82;Xw=0.022、工艺操作条件:常压精馏,塔顶全凝,泡点进料,泡点回流,R=(1.2~2)Rmin。
三、设备形式筛板塔四、设计工作日每年330天,每天24小时连续运行六、主要内容1.确定全套精馏装置的流程,汇出流程示意图,标明所需的设备、管线及有关控制或观测所需的主要仪表与装置。
2.精馏塔的工艺计算与结构设计:(1).物料衡算确定理论板数和实际板数;(2).计算塔径并圆整;(3).确定塔板和降液管结构;(4).流体力学校核,并对特定板的结构进行个别调整;(5).全塔优化,要求操作弹性大于2。
3.计算塔高。
4.估算冷却水用量和冷凝器的换热面积、水蒸气用量和再沸器换热面积。
5.绘制塔板结构图。
6.列出设计参数表。
第一章设计概述1.1塔设备在化工生产中的作用与地位塔设备是是化工、石油化工和炼油等生产中最重要的设备之一。
它可使气液或液液两相间进行紧密接触,达到相际传质及传热的目的。
可在塔设备中完成常见的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却与回收、气体的湿法净制和干燥以及兼有气液两相传质和传热的增湿、减湿等。
在化工、石油化工、炼油厂中,塔设备的性能对于整个装置的产品质量和环境保护等各个方面都有重大影响。
塔设备的设计和研究受到化工炼油等行业的极大重视。
1.2塔设备的分类塔设备经过长期的发展,形成了形式繁多的结构,以满足各方面的特殊需要,为研究和比较的方便,人们从不同的角度对塔设备进行分类,按操作压力分为加压塔、常压塔和减压塔;按单元操作分为精馏塔、吸收塔、解吸塔、萃取塔、反应塔和干燥塔;按形成相际界面的方式分为具有固定相界面的塔和流动过程中形成相界面的塔,长期以来,人们最长用的分类按塔的内件结构分为板式塔、填料塔两大类。
前言转眼之间,我们已经结束了大三的学习。
在这三年的学习当中,我们系统的学习了化工原理,物理化学,无机化学,有机化学,分析化学,化工设备与机械基础,机械制图,化工热力学等方面的知识,初步掌握了化学生产与化学设备之间的相互关系。
在李志礼老师的指导下,我们开始了化工原理课程设计。
实践是检验真理的唯一标准,学习了那么多的理论知识以后,终于有机会在现实过程中运用自己学习到的知识。
在这次设计过程中,我们得到了老师学长学姐们很多的帮助,在此对他们表示衷心的感谢,由于我们所知识的有限和能力的不足,在设计过程中难免会遇到设计不合理,考虑不周全的地方,希望老师给予理解与指导,我们会更加努力,争取做得更好。
设计者: 2011.7.6目录第一章设计题目与要求1.1 设计题目…………………………………………………………………………1.2 任务要求与数据……………………………………………………………第二章筛板式精馏塔的工艺设计与计算2.1 塔板数的确定2.2 塔径的确定第一章设计题目与要求1.1设计题目:乙醇—水溶液连续板式精馏塔设计1.2任务要求与数据:1、设计一连续精馏塔分离乙醇和水,具体工艺参数如下:(1)原料乙醇含量:质量分率40%(2)年产量:30000t(3)摩尔分率:x D=0.82;x W=0.022、工艺操作条件:常压精馏,塔顶全凝,泡点进料,泡点回流,R=(1.2~2)R min。
3、设备形式筛板塔。
4、设计工作日每年330天,每天24小时连续运行。
第二章 筛板式精馏塔的工艺设计与计算2.1 塔板数的确定2.1.1全塔物料衡算原料液中:设 乙醇(A ); 水(B ) 查附表得: M A =46.07 M B =18.02由已知条件可知:x F =0.4 x D =0.82 x W =0.02 年产量:30000t 每年330天,每天24小时连续运行h /34kmol .92)02.18*18.007.46*82.0(*24*33030000000=+=D由 F = D + Wx F *F=xD*D+x W *W得 F=194.4(kmol/h ),W=102.6(kmol/h ),由t-x(y)图用内插法可知: 塔顶温度t D = 78.3℃,塔底温度t w = 95.3℃平均温度℃8.8623.953.78=+=t进料温度:=f t 80.7℃相对挥发度的确定当t=95.5℃时:1(1)0.17(10.019)(1)(10.17)0.019BAABy xy xy xy xα-⨯-===--⨯=10.58当t=89.0℃时:2(1)0.3891(10.0721)8.20(1)(10.3891)0.0721A BB Ay x y xy x y xα-⨯-====--⨯当t=86.7℃时:3(1)0.4375(10.0966)7.27(1)(10.4375)0.0966A BB Ay x y xy x y xα-⨯-====--⨯当t=85.3℃时:4(1)0.4704(10.1238) 6.29(1)(10.4704)0.1238A BB Ay x y xy x y xα-⨯-====--⨯当t=84.1℃时:5(1)0.5058(10.1661)(1)(10.5058)0.1661BAABy xy xy xy xα-⨯-===--⨯=5.20当t=82.7℃时:6(1)0.5445(10.2337) 3.92(1)(10.5445)0.2337A BB Ay x y xy x y xα-⨯-====--⨯当t=82.3℃时:7(1)0.558(10.2608) 3.58(1)(10.558)0.2608A BB Ay x y xy x y xα-⨯-====--⨯当t=81.5℃时:8(1)0.5826(10.3273) 2.87(1)(10.5826)0.3273A BB Ay x y xy x y xα-⨯-====--⨯当t=80.7℃时:9(1)0.6122(10.3965)(1)(10.6122)0.3965BAABy xy xy xy xα-⨯-===--⨯=2.40当t=79.8℃时:10(1)0.6564(10.5079) 1.85(1)(10.6564)0.5079A BB Ay x y xy x y xα-⨯-====--⨯当t=79.7℃时:11(1)0.6599(10.5198) 1.79(1)(10.6599)0.5198A BB Ay x y xy x y xα-⨯-====--⨯当t=79.3℃时:12(1)0.6841(10.5732) 1.61(1)(10.6841)0.5732A BB Ay x y x y x y x α-⨯-====--⨯当t=78.74℃时:13(1)0.7385(10.6763) 1.35(1)(10.7385)0.6763A BB Ay x y x y x y x α-⨯-====--⨯当t=78.41℃时:14(1)0.7815(10.7472)(1)(10.7815)0.7472BAABy x y xy xy xα-⨯-===--⨯=1.21平均相对挥发度n n αααα...21==29.321.135.1...20.858.1014=⨯⨯⨯⨯泡点进料,泡点回流4.0x x 1q q ==∴=FxD=0.82α=3.29∴0.69x 11x *y qq q =+=)—(αα 46.0min =--=qq q D x y y x R回流比系数我们取折中值1.6R=1.6Rmin=0.73根据理论板数的捷算法有m i n ()(1)R R R -+=0.156由吉利兰关联图54.4lg )]x x -1)(x -1x[(lg ww D D min==αN→得5.01min=+-NNN →N=10块操作方程的确定精馏段:V =(R+1)D =(0.73+1)⨯92.34=159.25(kmol/h ),L =RD =0.73×92.34 =67.41(kmol/h ),提馏段:V =V –(1-q)F =159.75kmol/h ),-L =L +qF = 67.41+ 1×194.4=261.8(kmol/h ), 则精馏段操作线方程: 111+++=+R x x R Ry D n n =0.422x n +0.474 提馏段操作线方程:y n+1 = 0128.0-639x .1x x n n =-+VF D X V L FD全塔效率塔顶温度t D = 78.3℃, 塔底温度t w = 95.3℃ , 进料温度:=f t 80.7℃平均温度℃8.8623.953.78=+=t[8]由表用内差法求86.8℃ 下的粘度:μA= 0.449mpas ,μB =0.332mpas①则平均粘度μL = x F μA +(1-x F )μB=0.4*0.449+(1-0.4)*0.332=0.379mpasαμL =3.29*0.379=1.246②求全塔效率E T由αμL =1.246,由《化学化工物性数据手册》164页图10-20查得464.0)246.1(*49.0)*(49.0245.0245.0===--L T E μα ③求实际板数由TTE N N =得N=21.5≈22块 2.2精馏段物料衡算物料组成:塔顶温度t D = 78.3℃, 塔底温度t w = 95.3℃ , 进料温度:=f t 80.7℃平均温度℃8.8623.953.78=+=t查表2-1 得(1)塔顶 y 1= X D = 0.82 α= 3.29 nnn y y )1(x --=αα x 1=0.58(2)进料 x f =0.3965 y f =0.6122平均分子量 m M(1)塔顶:MVDm=0.82⨯46.07+(1-0.82)⨯18.02=41.54(mol g /)MLDm=0.58⨯46.07+(1-058)⨯18.02=34.29(mol g /)(3)(2)进料: MVFm=0.6122⨯46.07+(1-0.6122)⨯18.02=35.19(mol g /)MLFm=0.3965⨯46.07+(1-0.3965)⨯18.02=29.14(mol g /)平均分子量MVm =2VFmVDm M M +=38.37(mol g /)MLm =2LFMLDM M M +=31.72(mol g /)平均密度m ρ 由书]3[:1/LM ρ=a A /LA ρ+a B /LB ρ 塔顶:在78.3℃下:LA ρ=744.5(3/m kg ) LB ρ=972.96(3/m kg )LMDρ1=0.82/744.5+0.18/972.96 则LMD ρ=777.36(3/m kg )进料:在进料温度80.7℃下:LA ρ=741.5 (3/m kg ) LB ρ=971.4(3/m kg )a A =627.002.18)3965.01(07.46*3965.007.46*3965.0=-+LMFρ1=4.971)627.01(5.741627.0-+ 则LMF ρ=813.01(3/m kg ) 即精馏段的平均液相密LM ρ=(777.36+813.01)/2=795.18(3/m kg ) 平均气相密度VM ρ=RT PM VM =30.1)8.8615.273(*314.837.38*325.101=+(3/m kg ) 液体表面张力m σ(1) 塔顶: 查图表求得在78.3℃下:(物化手册)9.17=A σm mN / 89.62=B σm mN /(mN/m)00.2689.62*18.09.17*82.0=+=MD σ(m mN /)(2) 进料: 在80.7℃下:m mN / m mN A /86.17=σ m mN B /47.62=σm mN MF /78.4447.62*)3965.01(86.17*3965.0=-+=σ (m mN /)则 m σ=(MD σ+MF σ)/2=(26.00+44.78)/2=35.39(m mN /)气液负荷的计算由已知条件V =159.75h kmol / L =67.41h kmol / 得S V =VMVMvm ρ3600=31.130.1*360037.38*75.159= (s m /3) S L =LM LM LM ρ3600=00075.018.795*360072.31*41.67= (s m /3)塔径D 的计算两相流动参数计算如下LV F =VsLs∴LV F =0142.030.118.79531.100075.0=参考化工原理下表10-1(p129),我们取板间距 H T =0.45m m 6.00=L h H T -m 39.0=L h参考化工原理下图10-42筛板的泛点关联得:C 20f =0.081f C =2.02020⎪⎭⎫⎝⎛σf C =091.0)2035.39(081.02.0= u =f 5.02.02020⎪⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛VVL f C ρρρσ=s m /25.2)30.130.118.795(*091.05.0=- 本物系不易起泡,取泛点百分率为85%,可求出设计气速n u '=0.85⨯2.25=1.91s m /)m u V D S 934.091.1*14.331.1*44===π 根据塔设备系列化规格,将D '圆整到D=1m 作为初选塔径,因此重新校核流速us m D V u s n /668.11*31.1*4422===ππ 实际泛点百分率为%3.74250.2668.1==f n u u222785.01785.04m D A T =⨯==π塔板详细设计由于S L =0.000753m /s ,D=1m ,所以2.7(m3/h )<45(m3/h).根据《化工原理(下)》表10-2选择单溢流,弓形降液管,不设进口堰。
精馏塔优化设计任务书一、设计题目乙醇—水溶液连续精馏塔优化设计二、设计条件1.处理量: 15000 (吨/年) 2.料液浓度: 35 (wt%) 3.产品浓度: 93 (wt%) 4.易挥发组分回收率: 99%5.每年实际生产时间:7200小时/年 6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a 流程的确定与说明;b 塔板和塔径计算;c 塔盘结精馏塔优化设计计算在常压连续浮阀精馏塔中精馏乙醇——水溶液,要求料液浓度为35%,产品浓度为93%,易挥发组分回收率99%。
年生产能力15000吨/年操作条件:①间接蒸汽加热②塔顶压强:1.03atm (绝对压强)③进料热状况:泡点进料一精馏流程的确定乙醇——水溶液经预热至泡点后,用泵送入精馏塔。
塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。
工艺流程图见图二塔的物料衡算1. 查阅文献,整理有关物性数据⑴水和乙醇的物理性质⑵常压下乙醇和水的气液平衡数据,见表常压下乙醇—水系统t —x —y 数据如表1—6所示。
乙醇相对分子质量:46;水相对分子质量:1825℃时的乙醇和水的混合液的表面张力与乙醇浓度之间的关系为:σ=67. 83364-2. 9726x +0. 09604x 2-0. 00163x 3+1. 348⨯10-5x 4-4. 314⨯10-8x 5式中σ——25℃时的乙醇和水的混合液的表面张力,N /m ; x ——乙醇质量分数,%。
其他温度下的表面张力可利用下式求得σ1⎛T C -T 2⎫⎪=σ2⎝T C -T 1⎪⎭式中σ1——温度为T 1时的表面张力;N /m ;σ2——温度为T 2时的表面张力;N /m ; T C ——混合物的临界温度,T C =∑x i T ci ,K ; x i ——组分i 的摩尔分数; T Ci ——组分i 的临界温度, K 。
化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。
该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。
乙醇的浓度要求为95%(质量分数),水含量要求低于5%。
二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。
同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。
3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。
4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。
三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。
2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。
3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。
4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。
5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。
6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。
西安文理学院化工原理课程设计乙醇—水溶液连续筛板精馏塔设计系院名称:化学与化学工程学院专业班级: 12化工指导老师提交时间: 2014年12月10日目录1.化学原理课程设计任务书-------------------------------------------------------------------------------------- - 3 -2.概述 ---------------------------------------------------------------------------------------------------------------- - 4 -2.1精馏塔对塔设备的要求 ----------------------------------------------------------------- - 4 -2.2板式塔类型 ------------------------------------------------------------------------------------------ - 5 -2.3精馏塔的设计步骤------------------------------------------------------------------------------ - 5 -3.1计算原料液及其塔顶产品的摩尔分数 -------------------------------------------- - 6 -3.2计算原料液及其塔顶产品的平均摩尔质量------------------------------------ - 7 -4.精馏塔的工艺条件及有关物性数据的计算 --------------------------------------------- - 7 -4.1平均粘度的计算---------------------------------------------------------------------------------- - 7 -4.2平均表面张力的计算 ------------------------------------------------------------------------- - 8 -4.3操作温度的计算---------------------------------------------------------------------------------- - 9 -4.4气相组成的计算-------------------------------------------------------------------------------- - 10 -4.5相对挥发度的计算---------------------------------------------------------------------------- - 10 -4.6回流比的确定 ------------------------------------------------------------------------------------ - 10 -5.塔板数确定-------------------------------------------------------------------------------------------------- - 11 -5.1理论塔板数的确定---------------------------------------------------------------------------- - 11 -5.2实际塔板数确定-------------------------------------------------------------------------------- - 12 -6.精馏塔的热量衡算 ------------------------------------------------------------------------------------- - 12 -6.1蒸汽用量 -------------------------------------------------------------------------------------------- - 13 -6.2冷却水用量 ---------------------------------------------------------------------------------------- - 14 -7.精馏塔的塔体工艺尺寸计算------------------------------------------------------------------ - 15 -7.1精馏段与提馏段的体积流量 ----------------------------------------------------------- - 15 -7.2塔径的计算 ------------------------------------------------------------------------------------------ 17 -8.塔板主要工艺尺寸的计算--------------------------------------------------------------------------- 20 -8.1溢流装置计算 -------------------------------------------------------------------------------------- 20 -8.2塔板布置 ---------------------------------------------------------------------------------------------- 20 -8.3有效面积计算 ------------------------------------------------------------------------------------ - 21 -8.4筛孔计算与排列-------------------------------------------------------------------------------- - 21 -9.塔总体高度计算 ----------------------------------------------------------------------------------------- - 22 -9.1塔顶封头 -------------------------------------------------------------------------------------------- - 23 -9.2塔顶空间 -------------------------------------------------------------------------------------------- - 23 -9.3塔底空间 -------------------------------------------------------------------------------------------- - 23 -9.4人孔----------------------------------------------------------------------------------------------------- - 23 -9.5进料板处板间距-------------------------------------------------------------------------------- - 23 -9.6裙座----------------------------------------------------------------------------------------------------- - 23 -10.塔的接管 ---------------------------------------------------------------------------------------------------- - 24 -10.1进料管 ---------------------------------------------------------------------------------------------- - 24 -10.2回流管 ---------------------------------------------------------------------------------------------- - 24 -10.3塔底出料管 -------------------------------------------------------------------------------------- - 24 -10.4塔顶蒸汽出料管------------------------------------------------------------------------------ - 25 -10.5塔底蒸汽出料管------------------------------------------------------------------------------ - 25 -11.筛板的流体力学验算 ------------------------------------------------------------------------------- - 25 -11.1精馏段 ---------------------------------------------------------------------------------------------- - 25 -11.2提馏段 ---------------------------------------------------------------------------------------------- - 27 -12.塔板负荷性能图 --------------------------------------------------------------------------------------- - 29 -12.1精馏段 ---------------------------------------------------------------------------------------------- - 29 -12.2提馏段 ---------------------------------------------------------------------------------------------- - 32 -塔设计计算结果表(表十四)--------------------------------------------------------------------- - 35 -14.参考文献 ---------------------------------------------------------------------------------------------------- - 36 -15.设计总述 ----------------------------------------------------------------------------------------------------- - 37 -16.符号说明 ----------------------------------------------------------------------------------------------------- - 37 -17.思想及总结------------------------------------------------------------------------------------------------- - 40 -1.化学原理课程设计任务书1.1设计题目名称:乙醇—水溶液连续筛板精馏塔设计1.2设计条件:(1)处理量:8万吨/年;(2)料液组成(质量分数):42%;(3)塔顶产品组成(质量分数):95%;(4)塔顶易挥发组成回收率:99.5%;(5)年工作生产时间:330天;(6)常压精馏,泡点进料,泡点回流。
化工原理课程设计-乙醇-水溶液连续精馏塔优化设计化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计目录1.设计任务书………………………………………………………………2.英文摘要前言……………………………………………………………3.前言 (1)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.附录 (23)9.致谢…………………………………………………………………10.课程设计心得……………………………………………………………精馏塔优化设计任务书一、设计题目乙醇—水溶液连续精馏塔优化设计二、设计条件1.处理量: 40000 (吨/年)2.料液浓度: 35 (wt%)3.产品浓度: 90 (wt%)4.易挥发组分回收率: 99.5%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。
d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
乙醇——水溶液连续精馏塔优化设计摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。
关键词:精馏塔,浮阀塔,精馏塔的附属设备。
(Department of Chemistry,University of South China,Hengyang 421001)Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.Keywords: rectification column, valve tower, accessory equipment of the rectification column.前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。
化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计目录1.设计任务书 (3)2.英文摘要前言 (4)3.前言 (4)4.精馏塔优化设计 (5)5.精馏塔优化设计计算 (5)6.设计计算结果总表 (22)7.参考文献 (23)8.课程设计心得 (23)精馏塔优化设计任务书一、设计题目乙醇—水溶液连续精馏塔优化设计二、设计条件1.处理量: 16000 (吨/年)2.料液浓度: 40 (wt%)3.产品浓度: 92 (wt%)4.易挥发组分回收率: 99.99%5.每年实际生产时间:7200小时/年6. 操作条件:①间接蒸汽加热;②塔顶压强:1.03 atm(绝对压强)③进料热状况:泡点进料;三、设计任务a) 流程的确定与说明;b) 塔板和塔径计算;c) 塔盘结构设计i. 浮阀塔盘工艺尺寸及布置简图;ii. 流体力学验算;iii. 塔板负荷性能图。
d) 其它i. 加热蒸汽消耗量;ii. 冷凝器的传热面积及冷却水的消耗量e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
乙醇——水溶液连续精馏塔优化设计(某大学化学化工学院)摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。
关键词:精馏塔,浮阀塔,精馏塔的附属设备。
(Department of Chemistry,University of South China,Hengyang 421001)Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.Keywords: rectification column, valve tower, accessory equipment of the rectification column.前言乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。
在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。
要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。
精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。
化工厂中精馏操作是在直立圆形的精馏塔进行的,塔装有若干层塔板或充填一定高度的填料。
为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。
可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。
浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国应用最广泛的塔型,特别是在石油、化学工业中使用最普遍。
浮阀有很多种形式,但最常用的形式是F1型和V-4型。
F1型浮阀的结果简单、制造方便、节省材料、性能良好,广泛应用在化工及炼油生产中,现已列入部颁标准(JB168-68),F1型浮阀又分轻阀和重阀两种,但一般情况下都采用重阀,只有处理量大且要求压强降很低的系统中,才用轻阀。
浮阀塔具有下列优点:1、生产能力大。
2、操作弹性大。
3、塔板效率高。
4、气体压强降及液面落差较小。
5、塔的造价低。
浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。
精馏塔优化设计计算在常压连续浮阀精馏塔中精馏乙醇——水溶液,要求料液浓度为35%,产品浓度为93%,易挥发组分回收率99%。
年生产能力15000吨/年操作条件:①间接蒸汽加热②塔顶压强:1.03atm(绝对压强)③进料热状况:泡点进料一精馏流程的确定乙醇——水溶液经预热至泡点后,用泵送入精馏塔。
塔顶上升蒸气采用全冷凝后,部分回流,其余作为塔顶产品经冷却器冷却后送至贮槽。
塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后送入贮槽。
工艺流程图见图二塔的物料衡算1.查阅文献,整理有关物性数据⑵常压下乙醇和水的气液平衡数据,见表常压下乙醇—水系统t—x—y数据如表1—6所示。
乙醇相对分子质量:46;水相对分子质量:1825℃时的乙醇和水的混合液的表面力与乙醇浓度之间的关系为:58453210314.410348.100163.009604.09726.283364.67x x x x x --⨯-⨯+-+-=σ 式中 σ——25℃时的乙醇和水的混合液的表面力,N /m ; x ——乙醇质量分数,%。
其他温度下的表面力可利用下式求得2.11221⎪⎪⎭⎫ ⎝⎛--T T T T C C =σσ式中 σ1——温度为T 1时的表面力;N /m ;σ2——温度为T 2时的表面力;N /m ;T C ——混合物的临界温度,T C =∑x i T ci ,K ; x i ——组分i 的摩尔分数; T Ci ——组分i 的临界温度, K 。
2. 料液及塔顶、塔底产品的摩尔分数X F =0.40/46.070.40/46.070.6/18.02+=0.207X D =0.92/46.070.92/46.070.08/18.02+=0.818X W =0.0001/46.070.0001/46.070.9999/18.02+=0.0000393. 平均摩尔质量M F =0.207⨯46.07+(1-0.207)⨯18.02=23.8 kg/kmolM D = 0.818⨯46.07+ (1-0.818) ⨯18.02=40.96kg/kmol M W =0.000039⨯46.07+(1-0.000039)⨯18.02=18.02kg/kmol4. 物料衡算已知:F=31600010720023.8⨯⨯=93.37/kmol h总物料衡算 F=D+W=93.37易挥发组分物料衡算 0.818D+0.000039W=93.37 0.207=19.33 联立以上二式得:D=23.63kg/kmol W=69.74kg/kmol三 塔板数的确定1. 理论塔板数T N 的求取⑴根据乙醇——水气液平衡表1-6,作图⑵求最小回流比R min 和操作回流比R 。
因为乙醇-水物系的曲线是不正常的平衡曲线,当操作线与q 线的交点尚未落到平衡线上之前,操作线已经与平衡线相切,如图g 点所示. 此时恒浓区出现在g 点附近, 对应的回流比为最小的回流比. 最小回流比的求法是由点a(D x ,D x )向平衡线作切线,再由切线的斜率或截距求min R因泡点进料,在图1中对角线上自点e (0.207,0.207)作垂线即为进料线(q 线),该线与平衡线的交点坐标为yq= 0.5330,xq= 0.207,此时最小回流比为 : ①由于此时乙醇—水系统的平衡曲线有下凹部分,求最小回流比自a 点(xD ,xD )作平衡线的切线aq 并延长与y 轴相交于c 点,截距为0.25,即②当最小回流比为①时,比②还要小,已出现恒浓区,需要无穷多块塔板才能达到g 点。
所以对具有下凹部分平衡曲线点物系求Rmin 时,不能以平衡数据(yq ,xq )代入 图1 M.T.图解法求NT 取操作回流比∴R min =2.3由工艺条件决定 R=2R m in 故取操作回流比 R=4.6⑶求理论板数T N塔顶,进料,塔底条件下纯组分的饱和蒸气压i p组分 饱和蒸气压/kpa塔顶 进料 塔底 水 44.2 86.1 101.33 乙醇101.3188.5220.0①求平均相对挥发度 塔顶 D α=A B P P =101.344.2=2.29 进料 F α=188.586.1=2.189 塔底 W α=220.0101.33=2.17全塔平均相对挥发度为m αW D αα2.17⨯2.29'm αF D αα 2.189 2.29⨯②理论板数T N 由芬斯克方程式可知N m in =1l X X 1X 1X l mg W W D D g -α⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=0.81810.00003910.8180.00003912.23⎡-⎤⎛⎫⎛⎫ ⎪⎪⎢⎥-⎝⎭⎝⎭⎣⎦-g g l l =13.5 且min 4.6 2.30.411 4.61--==++R R R 由吉利兰图查的min 0.322-=+T T N N N 即13.50.322-=+T T N N解得 T N =20.8 (不包括再沸器)③进料板min'10.81810.207lg lg 110.8180.20711 2.52lg lg 2.24α⎡⎤⎛⎫⎛⎫-⎡-⎤⎛⎫⎛⎫⎢⎥ ⎪⎪ ⎪⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦=-=-=D F D F m x x x x N 前已经查出min 0.322-=+T T N N N 即 2.520.322-=+T T N N解得 N=4.6故进料板为从塔顶往下的第5层理论板 即F N =5 总理论板层数 T N =21 (不包括再沸器) 进料板位置 F N =5 2、全塔效率TE因为T E =0.17-0.616lg m μ根据塔顶、塔釜液组成,求塔的平均温度为,在该温度下进料液相平均粘计划经济为m μ=0.207⨯0.32+(1-0.207)⨯0.3206=0.3204T E =0.17-0.616lg0.32=0.473、实际塔板数精馏段塔板数:613TN E ==精 提馏段塔板数: 9.220TN E ==提 四、塔的工艺条件及物性数据计算以精馏段为例:1、 操作压力为 Pm塔顶压力:D P =1.04+103.3=104.34若取每层塔板压强 P ∆=0.7则进料板压力: F P =104.34+13⨯0.7=113.4kpa 精馏段平均操作压力 Pm =113.44104.34108.892+=kpa2、温度m t根据操作压力,通过泡点方程及安托因方程可得 塔顶 D t =78.36C 进料板F t =95.5Cm t 精=78.3695.586.932+=C 3、平均摩尔质量M⑴ 塔顶D x =1y =0.838 D y =0.825VD M = 0.838⨯46.07+(1-0.838)⨯18.02=41.52 kg/kmolLD M =0.825⨯46.07+(1-0.825)⨯18.02=41.15 kg/kmol⑵ 进料板: F y = 0.445F x =0.102VF M = 0.445⨯46.07+(1-0.445)⨯18.02=30.50 kg/kmol LF M =0.102⨯46.07+(1-0.102)⨯18.02=20.88 kg/kmol 精馏段的平均摩尔质量,V M 精=41.530.536.012+= kg/kmol ,L M 精=41.1520.8831.002+= kg/kmol 4、平均密度 m ρ⑴液相密度 ,L m ρ,1L m ρ=,,ABL AL Bw w ρρ+塔顶:,1L mρ=0.930.075789972.5+,L m ρ=796.73/Kg m 进料板上 由进料板液相组成 A x =0.102A w =0.10246.070.2250.10246.07(10.102)18.02⨯=⨯+-⨯,1LF mρ=796.7924.2860.52+=,LF m ρ=924.23/Kg m故精馏段平均液相密度,L m ρ精=796.7924.2860.52+=3/Kg m⑵气相密度 ,V m ρ ,V m ρ精=PM RT 提108.8936.011.318.314(27386.93)⨯=⨯+3/Kg m5、液体表面力 m σ m σ=1ni i i x σ=∑.m D σ=0.838⨯17.8+(1-0.838)⨯0.63=15.0/mN m ,m F σ=0.102⨯16.0+(1-0.102)⨯0.62=2.20/mN m,m σ精=15.01 2.208.592+=/mN m 6、液体粘度 ,L m μ ,L m μ=1ni i x i μ=∑,L D μ=0.838⨯0.55+(1-0.838)⨯0.37=0.521.a mP s ,L F μ=0.102⨯0.34+(1-0.102)⨯0.29=0.295.a mP s,L M μ精=0.5210.2950.4082+=.a mP s以提馏段为例1、平均摩尔质量M塔釜 w y = 0.050 w x =0.0039Vw M =0.050⨯46.07+(1-0.050)⨯18.02=19.42 kg/kmol Lw M =0.0039⨯46.07+(1-0.0039)⨯18.02=18.12 kg/kmol 提馏段的平均摩尔质量,V M 提=30.5019.4224.962+= kg/kmol,L M 提=20.8818.1219.52+= kg/kmol2、平均密度,L m ρ,,,1ABL m L A L Bw w ρρρ=+塔釜,由塔釜液相组成 A x =0.0039A w =0.01,1Lw mρ=35.3831.010.000353600860.5⨯=⨯∴ ,Lw m ρ=961.53/Kg m故提馏段平均液相密度 ,L m ρ提=961.5924.2942.852+=3/Kg m⑵气相密度,V m ρ ,L m ρ提=PM RT 提=113.4424.960.928.314(27398.01)⨯=⨯+3/Kg m五 精馏段气液负荷计算V=(R+1)D=(2.32+1)⨯15.25=50.63/kmol hS V =,,3600V V m V M ρ精精=50.6336.010.3753600 1.31⨯=⨯ m s /3L=RD=2.32⨯15.25=35.38/kmol h,3600L s L m LM L ρ=精精=35.3831.010.000353600860.5⨯=⨯ m s /3六 提馏段气液负荷计算V ’=V=50.63/kmol h,''3600V s V m V M V ρ=提提=0.382 m s /3L ’=L+F=35.38+74.83=110.2/kmol h,''3600L s L m L M L ρ=提提=0.0006 m s /3七 塔和塔板主要工艺尺寸计算1塔径首先考虑精馏段:参考有关资料,初选板音距T H =0.45m 取板上液层高度L h =0.07m 故 T H -L h=0.45-0.07=0.38ms s L V ⎛ ⎝0.000350.375⎛ ⎝查图可得 20C =0.075校核至物系表面力为9.0mN/m 时的C ,即C=20C 0.220σ⎛⎫⎪⎝⎭=0.075⨯0.28.5920⎛⎫ ⎪⎝⎭=0.064max u=Cm/s可取安全系数0.70,则u=0.70max u =0.7⨯1.64=1.148 m/s故m 按标准,塔径圆整为0.7m ,则空塔气速为0.975 m/s2 精馏塔有效高度的计算精馏段有效高度为1Z N =-T 精精()H =(13-1)⨯0.45=5.4m 提馏段有效高度为1Z N =-T 提提()H =(20-1)⨯0.45=8.55m 在进料孔上方在设一人孔,高为0.6m 故精馏塔有效高度为:5.4+8.55+0.6=14.55m3 溢流装置采用单溢流、弓形降液管⑴ 堰长 w l取堰长 w l =0.75Dw l =0.75⨯0.7=0.525m ⑵ 出口堰高w h =L ow h h -选用平直堰,堰上液层高度ow h 由下式计算ow h =2/32.841000h w L E L ⎛⎫⎪⎝⎭近似取E=1.03,则 ow h =0.017故 w h =0.07-0.017=0.053m ⑶ 降液管的宽度d W 与降液管的面积f A 由0.750wl D=查《化工设计手册》得dW D =0.17,f TA A =0.08 故 d W =0.17D=0.12 f A =0.08()24D π=0.0312m停留时间 f T sA H L τ==39.9s (>5s 符合要求)⑷ 降液管底隙高度 h οh ο=w h -0.006=0.053-0.006=0.047m 3、塔板布置及浮阀数目击者及排列 取阀孔动能因子 F ο=9 孔速 u ο浮阀数 n=24s V d u οπ=20.3750.0398.074π⨯=39(个)取无效区宽度 c W =0.06m 安定区宽度 s W =0.07m开孔区面积212sin 180a x A R R π-⎡⎤=⎢⎥⎣⎦ R=2c DW -=0.29m x=()2d D W Ws -+=0.16m故 a A=210.1620.29sin 1800.29π-⎡⎤⎢⎥⎣⎦=0.175m 浮阀排列方式采用等腰三角形叉排取同一磺排的孔心距 a=75mm=0.075m 估算排间距hh=a A n a ⨯=0.175390.075⨯=0.06m八 塔板流体力学校核1、气相通过浮塔板的压力降,由下式p c f h h h h σ=++⑴ 干板阻力 25.342V c L u h gορρ==21.318.075.342860.59.81⨯⨯⨯=0.027m 液柱⑵ 液层阻力x ο 取充气系数数 οε=0.5,有 f h =οεL h =0.5⨯0.07=0.035m 液柱 ⑶ 液体表面力所造成阻力x ο此项可以忽略不计。