2008年浙江高考理科数学卷参考答案
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的A .B .C .D .中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........ 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =,A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳DE AB性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()21212ln 1,1,y x xy x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数s in 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y ab+=与圆221x y +=221111ab+≤1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.C.由题意知三棱锥1A ABC-为正四面体,设棱长为a,则1AB=,棱柱的高13A O a===(即点1B到底面ABC的距离),故1A B与底面ABC所成角的正弦值为113A OA B=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133O A A A A B A C=--,11AB AB AA=+211112,33O A AB a O A AB⋅===则1A B与底面ABC所成角的正弦值为11113O A ABA O AB⋅=12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.答案:38.设1A B B C==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53A C=,582321,21,3328ca c ea=+====.16.答案:16.设2A B=,作CO ABDE⊥面,O H AB⊥,则C H A B⊥,C H O∠为二面角C A B D--cos1C H O H C H C H O==⋅∠=,结合等边三角形ABC与正方形A B D E可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-=12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,),,2222222AN EM AN EM ==-⋅= 故E M A N ,所成角的余弦值16A N E MA NE M ⋅= .17.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥, 则C G E ∠即为所求二面角的平面角.3AC C D C G AD==,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎝⎭,即二面角C A D E --的大小πarccos 10⎛- ⎝⎭. 19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x在3⎛-∞ ⎝⎭递增,33⎛⎝⎭递减,3⎛⎫+∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩≤,且23a >解得:74a ≥20.解:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设O A m d =-,AB m =,O B m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =⎛⎫- ⎪⎝⎭,解得12b a=,则离心率2e =(Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
2008年高考理科数学试题(浙江卷)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
满分150分,考试时间120分钟。
第Ⅰ卷(共50分)参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B ) 如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率:kn kkn n p p C k P --=)1()(球的表面积公式 S=42R π其中R 表示球的半径 求的体积公式V=334R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,ii a +-1是春虚数,则a =(A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u (A )∅ (B ){}0|≤χχ(C ){}1|->χχ (D ){}10|-≤>χχχ或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274(5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =(A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n --21)(7)若双曲线12222=-by ax 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan = (A )21 (B )2 (C )21-(D )2-(9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22(10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是(A )圆 (B )椭圆(C )一条直线 (D )两条平行直线第Ⅱ卷(共100分)二.填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
参考公式:如果事件A ,B 互斥,那么P (A +B )=P (A )+P (B )如果事件A ,B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k k n kn n P k C P p k n -=-= ,,,, 球的表面积公式 24πS R = 其中R 表示球的半径 球的体积公式 34π3V R =其中R 表示球的半径 第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知a 是实数,iia +-1是春虚数,则a =( )A .1B .-1C .2D .2.已知U =R ,A ={}0|>x x ,B ={}1|-≤x x ,则(A ()()=A C B B C A u u ( ) A .∅ B .{}|0x x ≤ C .{}|1x x >- D .{}|01x x x >≤-或3.已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(x ―1)(x ―2)(x ―3)(x ―4)(x ―5)的展开式中,含x 4的项的系数是( ) A .-15 B .85 C .-120 D .2745.在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( ) A .0 B .1 C .2 D .46.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( ) A .16(n --41) B .16(n --21) C .332(n --41) D .332(n--21)7.若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3∶2,则双曲线的离心率是( )A .3B .5C .3D .58.若cos 2sin a a +=a tan =( ) A .21 B .2 C .21- D .2-9.已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C .2 D .2210.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线第Ⅱ卷(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··············································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ················································································································ 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ····························································································· 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ··································································································································· 2分 ()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =. ························································································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ······················································ 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯.0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元.········································································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥.···························································································· 3分在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ······································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EFCE CF CG EF ⨯==EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB == ,,,,,,11(224)(204)AC DA =--=,,,,,. ······················································································· 3分AB CDEA 1B 1C 1D 1 FH G(Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥ n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分1AC ,n 等于二面角1A DE B --的平面角,111cos AC AC AC ==,n n n . 所以二面角1A DE B --的大小为arccos 42. ······························································ 12分 20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ·························································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ·············································································· 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ········································································· 12分 21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ··············································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==. ·····································································9分又AB==AEBF的面积为121()2S AB h h=+12===≤当21k=,即当12k=时,上式取等号.所以S的最大值为 ·······························12分解法二:由题设,1BO=,2AO=.设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ······························································································································9分===当222x y=时,上式取等号.所以S的最大值为··················································12分22.解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++.·····································2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···································· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>. 因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>⎪⎝⎭ ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ····················································································· 12分。
绝密★启用前 【考试时间:6月7日 15:00—17:00】2008年普通高等学校招生全国统一考试理科数学第Ⅰ卷(选择题,共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k本卷12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题(1)设集合}23{<<-∈=m Z m M ,}31{≤≤-∈=n Z n N ,则=⋂N MA .}1,0{ B. }1,0,1{- C. }2,1,0{ D }2,1,0,1{- (2)设a ,b ∈R 且b ≠0,若复数3bi)(a +是实数,则A . 223a b = B. 223b a = C. 229a b = D.229b a =(3)函数x xx f -=1)(的图像关于 A . y 轴对称 B.直线y=-x C.坐标原点对称 D.直线y=x(4)若)1,(1-∈e x ,x ln =a ,x ln 2=b ,x 3ln =c ,则A .c b a << B. b a c << C. c a b << D. a c b <<(5)设变量x,y 满足约束条件:2,22,-≥≤+≥x y x x y 则y x z 3-=的最小值为:A .-2 B.-4 C. -6 D.-8(6)从20名男同学,10名女同学中任选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的概率为球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .299 B. 2910 C. 2919 D. 2920 (7)()()4611x x +-的展开式中x 的系数是A .-4 B.-3 C.3 D.4(8)若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则MN 的最大值为 A .1 B. 2 C.3 D.2(9)设1>a ,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是 A .)2,2( B. )5,2( C. )5,2( D. )5,2((10)已知正四棱锥S-ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为 A .31 B. 32 C. 33 D. 32(11)等腰三角形两腰所在直线的方程分别为02=-+y x 和047=--y x ,原点在等腰三角形的底边上,则底边所在直线的斜率为 A .3 B. 2 C. 31-D. 21- (12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A .1 B. 2 C. 3 D. 2第Ⅱ卷(非选择题,共90分)二.填空题:(本大题共4个小题,每小题5分,共20分。
2008年浙江高考理科数学卷参考答案ADDAC CDBCB
简析
1:直接或者验证
2:直接法。
答案好像就是AUB
3:举反例或者利用y=x2图像
4:利用排列组合思想。
其实就是-(1+2+3+4+5)=-15 5:化简函数解析式,作图即可。
6:先求出通项公式,直接或者特殊法。
7:直接法
8:观察法,显然符合题意。
9:展开,取模。
利用。
或者利用坐标运算,转化为圆上的点到原点距离的最大值。
10:其实就是一个平面斜截一个圆柱表面的问题。
2008浙江高考理科卷若干填空题的解答思路
11:1+根号2
12:8
13:根号3/3
14:关键是找出球心,从而确定球的半径。
由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边。
所以DC边的中点就是球心(到D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半。
14另一个答案:9π/2
15:1
16:40
17:思路一:可考虑特殊情形,比如x=0,可得a=1;y=0可得b=1。
所以猜测a介于0和1之间,b介于0和1之间。
点P(a,b)确定的平面区域就是一个正方形,面积为1.
18 :(2)4.5
19:(1)5 (2)1.5。
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分) 1.(5分)函数的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )A .B .C .D .3.(5分)在△ABC 中,=,=.若点D 满足=2,则=( )A .B .C .D .4.(5分)设a ∈R ,且(a +i )2i 为正实数,则a=( )A .2B .1C .0D .﹣15.(5分)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=() A .138B .135C .95D .236.(5分)若函数y=f (x )的图象与函数y=ln 的图象关于直线y=x 对称,则f (x )=( )A .e 2x ﹣2B .e 2xC .e 2x +1D .e 2x +27.(5分)已知曲线y=在点(3,2)处的切线与直线ax +y +1=0垂直,则a的值为( )A .2B .C .﹣D .﹣28.(5分)为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。
高中数学2008年普通高等学校招生全国统一考试(浙江卷)(理科) 试题 2019.091,已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______________________.2,有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).3,已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.4,甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 5,如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.6,在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,na 是3n a +与6n a +的等差中项.7,已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围.8,已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x .(Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.9,已知a 是实数,1a ii -+是纯虚数,则a =( )(A )1 (B )-1 (C )2(D )-210,已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A = ( ) (A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或11,已知a ,b 都是实数,那么“22b a >”是“a >b ”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件12,在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( ) (A )-15 (B )85(C )-120 (D )27413,在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( )(A )0(B )1 (C )2 (D )4 14,已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( )(A )16(n --41) (B )16(n--21)(C )332(n --41)(D )332(n--21)15,若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3(B )5 (C )3 (D )516,若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21-(D )2-17,已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c的最大值是( )(A )1 (B )2 (C )2 (D )2218,如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线19,已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =______20,已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B两点若1222=+B F A F ,则AB =____________。
2008年普通高等学校招生全国统一考试浙江卷数学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分。
全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A 、B 互斥,那么 P (A+B )=P (A )+(B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·(B ) 如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生k 次的概率: k n k k n n p p C k P --=)1()(球的表面积公式 S=42R π其中R 表示球的半径求的体积公式V=334R π其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知a 是实数,iia +-1是春虚数,则a = (A )1 (B )-1 (C )2 (D )-2(2)已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则(A ()()=A C B B C A u u (A )∅ (B ){}0|≤χχ(C ){}1|->χχ (D ){}10|-≤>χχχ或 (3)已知a ,b 都是实数,那么“22b a >”是“a >b ”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(4)在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是 (A )-15 (B )85 (C )-120 (D )274(5)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是(A )0 (B )1 (C )2 (D )4(6)已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a = (A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21) (7)若双曲线12222=-by a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是(A )3 (B )5 (C )3 (D )5 (8)若,5sin 2cos -=+a a 则a tan = (A )21 (B )2 (C )21- (D )2- (9)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是(A )1 (B )2 (C )2 (D )22(10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线2008年普通高等学校招生全国统一考试浙江卷数学(理科)第Ⅱ卷(共100分)注意事项:1.黑色字迹的签字笔或钢笔填写在答题纸上,不能答在试题卷上。
08理综 参考答案第Ⅰ卷共21小题,每小题6分,共126分。
一、选择题:选对的给6分,选错或未选的给0分。
题号 1 2 3 4 5 6 7 8 9 10 11 12 13 答案ACDCDBADDBCAC二、选择题:全部选对的给6分,选对但不全的给3分,有选错的给0分。
题号 14 15 16 17 18 19 20 21 答案DADCBCDBDB第Ⅱ卷共10题,共174分。
22、(18分) Ⅰ、(6分)(1)①②或①③(2)①③(3)例如:“对同一高度进行多次测量取平均值”;“选取受力后相对伸长尽量小的绳”;等等。
Ⅱ、(12分)(1)连线如图 (2)7 6.3 23、(14分)设物体的加速度为a ,到达A 的速度为v 0,通过AB 段和BC 段所用的时间为t ,则有20121at t v l +=① 202122at t v l l +=+② 联立①②式得 212at l l =- ③ t v l l 02123=- ④设O 与A 的距离为l ,则有 a v l 220= ⑤ 联立③④⑤式得 )(8)3(12221l l l l l --= ⑥24、(18分)(1)设小球第一次到达最低点时,滑块和小球速度的大小分别为1v 、2v ,则机械能守恒定律得mgl mv mv =+22212121① 小球由最低点向左摆动到最高点时,则机械能守恒定律得)60cos 1(2122︒-=mgl mv ② 联立①②式得gl v v ==21③ 设所求的挡板阻力对滑块的冲量为I ,规定动量方向向右为正,有10mv I -= 解得 gl m I -= ④(2)小球从开始释放到第一次到达最低点的过程中,设绳的拉力对小球做功为W ,由动能定理得 2221mv W mgl =+ ⑤ 联立③⑤式 mgl 21W -= 小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小为mgl 21。
22—Ⅱ—(1)图08 25、(1)设磁场左边界与x 轴相交于D 点,与CO 相交于O ´点,则几何关系可知,直线OO ´与粒子过O 点的速度v 垂直。
2008年浙江高考理科数学卷参考答案ADDAC CDBCB
简析
1:直接或者验证
2:直接法。
答案好像就是AUB
3:举反例或者利用y=x2图像
4:利用排列组合思想。
其实就是-(1+2+3+4+5)=-15 5:化简函数解析式,作图即可。
6:先求出通项公式,直接或者特殊法。
7:直接法
8:观察法,显然符合题意。
9:展开,取模。
利用。
或者利用坐标运算,转化为圆上的点到原点距离的最大值。
10:其实就是一个平面斜截一个圆柱表面的问题。
2008浙江高考理科卷若干填空题的解答思路
11:1+根号2
12:8
13:根号3/3
14:关键是找出球心,从而确定球的半径。
由题意,三角形DAC,三角形DBC都是直角三角形,且有公共斜边。
所以DC边的中点就是球心(到D、A、C、B四点距离相等),所以球的半径就是线段DC长度的一半。
14另一个答案:9π/2
15:1
16:40
17:思路一:可考虑特殊情形,比如x=0,可得a=1;y=0可得b=1。
所以猜测a介于0和1之间,b介于0和1之间。
点P(a,b)确定的平面区域就是一个正方形,面积为1.
18 :(2)4.5
19:(1)5 (2)1.5。