人教版七年级第二学期期末试卷数学试题
- 格式:doc
- 大小:266.50 KB
- 文档页数:8
2024年人教版初一数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是2,则这个数是()A. 2B. 8C. 16D. 42. 在直角坐标系中,点(3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列哪个数是负数()A. 0B. 3/4C. 5/6D. 24. 若一个数的绝对值是3,则这个数是()A. 3B. 3C. 3或35. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 菱形二、判断题(每题1分,共5分)1. 两个互质的数的最小公倍数是它们的乘积。
()2. 一个数既是偶数又是奇数。
()3. 任何两个数的和都是正数。
()4. 任何两个数的差都是负数。
()5. 任何两个数的积都是正数。
()三、填空题(每题1分,共5分)1. 5的平方根是______。
2. 下列数中,最大的是______(2,3,0,5)。
3. 两个相邻的自然数之和是______。
4. 下列数中,最小的数是______(3,4,2,1)。
5. 下列数中,既是偶数又是合数的是______(4,5,6,7)。
四、简答题(每题2分,共10分)1. 请简述什么是勾股定理。
2. 请简述什么是绝对值。
3. 请简述什么是分数。
4. 请简述什么是比例。
5. 请简述什么是方程。
五、应用题(每题2分,共10分)1. 若一个数的平方是16,求这个数。
2. 若一个数的三分之一是4,求这个数。
3. 若一个数的二分之一是5,求这个数。
4. 若一个数的四分之一是3,求这个数。
5. 若一个数的五分之一是2,求这个数。
六、分析题(每题5分,共10分)1. 请分析什么是正比例函数,并举例说明。
2. 请分析什么是反比例函数,并举例说明。
七、实践操作题(每题5分,共10分)1. 请用尺规作一个边长为5cm的正方形。
2. 请用尺规作一个半径为3cm的圆。
八、专业设计题(每题2分,共10分)1. 设计一个包含两个变量的线性方程组,并给出一个解法。
人教版七年级下册数学期末试题一、单选题1.如图,数轴上点M表示的实数可能是()A B.C D2.如果21xy=-⎧⎨=⎩是方程2x y m-=的解,那么m的值是()A.1B.12C.32-D.-13.如图,AB∥CD,BF平分∠ABE,且BF∥DE,则∠ABE与∠D的关系是()A.∠ABE=3∠D B.∠ABE+∠D=90°C.∠ABE+3∠D=180°D.∠ABE=2∠D4.若关于x的方程2x+2=m﹣x的解为负数,则m的取值范围是()A.m>2B.m<2C.m>23D.m<235.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(﹣2,3)的对应点为C (2,﹣2),则点B(﹣4,1)的对应点D的坐标为()A.(﹣6,﹣4)B.(﹣4,0)C.(6,﹣4)D.(0,﹣4)6.某空气检测部门收集了某市2018年1月至6月的空气质量数据,并绘制成了如图所示的折线统计图,下列叙述正确的是()A .空气质量为“优”的天数最多的是5月B .空气质量为“良”的天数最少的是3月C .空气质量为“良”的天数1月至3月呈下降趋势,3月至4月呈上升趋势D .空气质量为“轻度污染”的天数呈下降趋势二、填空题7.若实数x y ,满足2(23)940x y -++=,则xy 的立方根为__________.8.若点(1,)A m 在x 轴上,则点(1,5)B m m --位于第_________象限.9.小明同学按照老师要求对本班40名学生的血型进行了统计,列出如下的统计表.则本班A 型血的人数是__________人.组别A 型B 型AB 型O 型占总人数的百分比35%10%15%10.如图,直线AB 、CD 相交于点D ,∠BOD 与∠BOE 互为余角,∠AOC=72°,则∠BOE=____°.11.若关于,x y 的二元一次方程组59x y kx y k +=⎧⎨-=⎩的解满足方程236x y +=,则k 的值为________.12.不等式组1023x x -≤⎧⎨-<⎩的负整数解是_________.13.某农户饲养了白鸡、黑鸡共200只,白鸡的只数是黑鸡的三倍,设白鸡有x 只,黑鸡有y 只,根据题意可列二元一次方程组:______.14.已知点A (3+2a ,3a ﹣5),点A 到两坐标轴的距离相等,点A 的坐标为_____.三、解答题1516.解方程组:52312x y x y +=⎧⎨+=⎩.17.解不等式组:3523212x x x -<-⎧⎪⎨+≥⎪⎩,并把解集在数轴上表示出来.18.如图,//AB CD ,12∠=∠,试判断E ∠与F ∠的大小关系,并说明你的理由.19.ABC ∆与'''A B C ∆在平面直角坐标系中的位置如图所示,'''A B C ∆是由ABC ∆经过平移得到的.(1)分别写出点',','A B C 的坐标;;(2)说明'''A B C ∆是由ABC ∆经过怎样的平移得到的?(3)若点(,)P a b 是ABC ∆内的一点,则平移后'''A B C ∆内的对应点为P',写出点P'的坐标.20.如图,已知//DC FP ,12∠=∠,30FED ∠=︒,80AGF ∠=︒,FH 平分EFGÐ(1)说明://DC AB ;(2)求PFH ∠的度数.21.若方程组24014320x y m x y --=⎧⎨-=⎩的解中y 值是x 值的3倍,求m 的值.22.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,已知该小区用水量不超过5t 的家庭占被调查家庭总数的百分比为12%,请根据以上信息解答下列问题:级别A BC D E F月均用水量()x t 05x <≤510x <≤1015x <≤1520x <≤2025x <≤2530x <≤频数(户)612m1042(1)本次调查采用的方式是(填“普查”或“抽样调查”),样本容量是;(2)补全频率分布直方图;(3)若将调查数据绘制成扇形统计图,则月均用水量“1520x <≤”的圆心角度数是.23.已知方程组137x y ax y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?24.已知点(24,1)P m m +-,试分别根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点P 的纵坐标比横坐标大3;(3)点P 到x 轴的距离为2,且在第四象限.25.已知关于x 的不等式组0521x a x -≥⎧⎨->⎩.(1)当5a =-时,求不等式组的解集;(2)若不等式组有且只有4个整数解,求a 的取值范围.26.某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.(1)1辆大货车和1辆小货车一次可以分别运货多少吨?(2)有46.4吨货物需要运输,货运公司拟安排大小货车共10辆(要求两种货车都要用),全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?参考答案1.A【解析】【分析】根数轴上点M的位置可得出点A表示的数比3大比4小,从而得出正确答案.【详解】<<,解:∵34∴数轴上点A,故选:A.【点睛】本题考查实数与数轴上的点的对应关系,应先看这个点在哪两个相邻的整数之间,进而得出答案.2.C 【解析】【分析】把x 、y 的值代入方程,得出关于m 的方程,求出即可.【详解】解:∵21x y =-⎧⎨=⎩是方程2x y m -=的解,∴代入得:-2-1=2m ,解得:m=32-.故选C .【点睛】本题考查二元一次方程的解的应用,关键是得出关于m 的方程.3.D 【解析】【分析】延长CD 和BF 交于点G ,由AB ∥CD 可得∠CGB=∠ABG ,再根据BF ∥DE 可得∠CGB=∠CDE ,则∠CDE=∠ABG ,再根据BF 平分ABE ∠,得ABE ∠=2∠ABG ,故可得到ABE ∠与∠CDE 的关系.【详解】延长CD 和BF 交于点G ,∵AB ∥CD ∴∠CGB=∠ABG ,∵BF ∥DE ∴∠CGB=∠CDE ,∴∠CDE=∠ABG ,又∵BF 平分ABE ∠,∴ABE ∠=2∠ABG ,∴ABE ∠=2∠CDE ,故选D.【点睛】此题主要考查平行线的性质,解题的关键是根据题意作出辅助线进行解答.4.B【解析】【分析】把m看作常数,根据一元一次方程的解法求出x的表达式,再根据方程的解是负数列不等式并求解即可.【详解】解:由2x+2=m﹣x得,x=2 3m-,∵方程有负数解,∴23m-<0,解得m<2.故选B.【点睛】考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.5.D【解析】【分析】根据点A到C确定出平移规律,再根据平移规律列式计算即可得到点D的坐标.【详解】点A(﹣2,3)的对应点为C(2,﹣2),可知横坐标由﹣2变为2,向右移动了4个单位,3变为﹣2,表示向下移动了5个单位,于是B(﹣4,1)的对应点D的横坐标为﹣4+4=0,点D的纵坐标为1﹣5=﹣4,故D(0,﹣4).【点睛】本题考查了坐标与图形变化一平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,先确定出平移规律是解题的关键6.C【解析】【分析】利用折线统计图进行分析,即可判断.【详解】解:空气质量为“优”的天数最多的是6月;空气质量为“良”的天数最少的是6月;空气质量为“良”的天数1月至3月呈下降趋势,3月至4月呈上升趋势,4月至6月呈下降趋势;空气质量为“轻度污染”的天数波动最小.故选:C.【点睛】本题主要考查折线统计图,解题的关键是从折线统计图找到解题所需数据和变化情况.7.3 2-【解析】【分析】根据非负数的性质可得:2x-3=0,9+4y=0,解方程求出x、y的值后代入xy进行计算后即可求得xy的立方根.【详解】由题意得:2x-3=0,9+4y=0,解得:x=32,y=94-,∴xy=27 8 -,∴xy的立方根是3 2-,故答案为:3 2-.【点睛】本题考查了非负数的性质、立方根等知识,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.【解析】【分析】直接利用x轴上点的坐标性质得出m的值,进而得出B点坐标,再判断所在象限.【详解】解:∵点A(1,m)在x轴上,∴m=0,∴m-1=-1,m-5=-5,故B(-1,-5),在第三象限.【点睛】此题主要考查了点的坐标,正确得出m的值是解题关键.9.16【解析】【分析】根据频数和频率的定义求解即可.【详解】解:本班A型血的人数为:40×(1-0.35-0.1-0.15)=40×0.4=16,故答案为:16.【点睛】本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键. 10.18°【解析】【分析】根据对顶角相等可得∠BOD=∠AOC,再根据互为余角的两个角的和等于90°列式计算即可得解.【详解】由对顶角相等得,∠BOD=∠AOC=72°,∵∠DOE与∠BOD互为余角,∴∠DOE=90°−∠BOD=90°−72°=18°.故答案为18°考查对顶角的性质以及互余的性质,掌握互余的概念是解题的关键.11.3 4【解析】【分析】先用含k的代数式表示x、y,即解关于x,y的方程组,再代入2x+3y=6中即可得.【详解】解:解方程组59x y kx y k+=⎧⎨-=⎩,得72x ky k=⎧⎨=-⎩,∵2x+3y=6,∴14k-6k=6,解得:34 k=,故答案为3 4.【点睛】此题考查的知识点是二元一次方程组的解,先用含k的代数式表示x,y,即解关于x,y的方程组,再代入2x+3y=6中可得.其实质是解三元一次方程组.12.-1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x-1≤0,得:x≤1,解不等式-2x<3,得:x>-1.5,则不等式组的解集为-1.5<x≤1,所以其负整数解为-1,故答案为:-1本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.2003x yx y+=⎧⎨=⎩【解析】【分析】设白鸡有x只,黑鸡有y只,根据“黑鸡+白鸡=200只、白鸡=3黑鸡”列出方程组.【详解】解:设白鸡有x只,黑鸡有y只,依题意得:2003x yx y+=⎧⎨=⎩.故答案是:2003x yx y+=⎧⎨=⎩.【点睛】考查了由实际问题抽象出二元一次方程组,解题的关键是读懂题意,找出等量关系,列出方程.14.(19,19)或(195,-195)【解析】【分析】根据点A到两坐标轴的距离相等,分两种情况讨论:3+2a与3a﹣5相等;3+2a与3a﹣5互为相反数.【详解】根据题意,分两种情况讨论:①3+2a=3a﹣5,解得:a=8,∴3+2a=3a﹣5=19,∴点A的坐标为(19,19);②3+2a+3a﹣5=0,解得:a=2 5,∴3+2a=195,3a﹣5=﹣195,∴点A的坐标为(195,﹣195).故点A的坐标为(19,19)或(195,-195),故答案为:(19,19)或(195,-195).【点睛】本题考查了点的坐标,解决本题的关键是根据点A到两坐标轴的距离相等,分两种情况讨论.15.3.【解析】【分析】=6,再进行加减即可.【详解】解:原式5643=-+=.【点睛】本题考查了实数的运算,属于基础题,关键掌握实数的运算法则.16.32xy=⎧⎨=⎩.【解析】【分析】方程组利用加减消元法求出解即可;【详解】52312x yx y+=⎧⎨+=⎩①②,②﹣①×2得y=2,把y=2代入①得x=3,则方程组的解为32xy=⎧⎨=⎩;【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.17.0≤x<1【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:352 3212x xx-<-⎧⎪⎨+⎪⎩①②,由①得,x<1;由②得,x≥0,不等式组的解集为0≤x<1,在数轴上表示如图所示:.【点睛】本题考查的是解一元一次不等式组,熟知解一元一次不等式的基本步骤是解答此题的关键.18.E F∠=∠,理由详见解析【解析】【分析】连接BC,依据AB∥CD,可得∠ABC=∠DCB,进而得出∠EBC=∠FCB,即可得到BE∥CF,进而得到∠E=∠F.【详解】解:∠E=∠F.理由:连接BC,∵AB∥CD,∴∠ABC=∠DCB ,又∵∠1=∠2,∴∠EBC=∠FCB ,∴BE ∥CF ,∴∠E=∠F ..【点睛】本题考查的是平行线的判定与性质,利用两直线平行,内错角相等是解答此题的关键.19.(1)'(3,1),'(2,2),'(1,1)A B C -----;(2)详见解析;(3)点P'的坐标为(4,2)a b --.【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A ′的变化写出平移方法即可;(3)根据平移规律逆向写出点P ′的坐标.【详解】解:(1)'(3,1),'(2,2),'(1,1)A B C -----(2)ABC ∆先向左平移4个单位长度,再向下平移2个单位长度得到'''A B C ∆或ABC ∆先向下平移2个单位长度,再向左平移4个单位长度得到'''A B C ∆(3)点P'的坐标为(4,2)a b --.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.20.(1)见解析;(2)25PFH ∠=︒.【解析】【分析】(1)由DC ∥FP 知∠3=∠2=∠1,可得DC ∥AB ;(2)由(1)利用平行线的判定得到AB ∥PF ∥CD ,根据平行线的性质得到∠AGF=∠GFP ,∠DEF=∠EFP ,然后利用已知条件即可求出∠PFH 的度数.【详解】解:(1)∵DC ∥FP ,∴∠3=∠2,又∵∠1=∠2,∴∠3=∠1,∴DC ∥AB ;(2)∵DC ∥FP ,DC ∥AB ,∠DEF=30°,∴∠DEF=∠EFP=30°,AB ∥FP ,又∵∠AGF=80°,∴∠AGF=∠GFP=80°,∴∠GFE=∠GFP+∠EFP=80°+30°=110°,又∵FH 平分∠EFG ,1GFH GFE 552︒∴∠=∠=,∴∠PFH=∠GFP-∠GFH=80°-55°=25°.【点睛】此题主要考查了平行线的性质与判定,首先利用同位角相等两直线平行证明直线平行,然后利用平行线的性质得到角的关系解决问题.21.1m =-【解析】【分析】首先x=a ,y=3a ,代入方程组可得234014920a a m a a --=⎧⎨-=⎩,进而求出即可.【详解】解:∵设x=a ,y=3a ,∴组成新的方程组为234014920a a m a a --=⎧⎨-=⎩,解得:41a m =⎧⎨=-⎩,∴1m =-.【点睛】此题主要考查了二元一次方程组的解,利用y 的值是x 值的3倍用一个未知数代入方程组求出是解题关键.22.(1)抽样,50;(2)详见解析;(3)72°【解析】【分析】(1)由抽样调查的定义及第1组的频数与频率可得答案;(2)根据频数=数据总数×频率可得m 的值,据此即可补全直方图;(3)先求得月均用水量“1520x <≤”的频率值,再用360°乘以可得答案;【详解】解:(1)本次调查采用的方式是抽样调查,样本容量为612%50÷=;故答案为:抽样调查,50;(2)50612104216m =-----=,补全频数分布直方图如图;(3)∵10500.2÷=,∴月均用水量“1520x <≤”的圆心角度数是3600.272⨯= .【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.23.(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.【解析】【分析】(1)先解方程组得342x a y a =-+⎧⎨=--⎩,再解不等式组30420a a -+≤⎧⎨--⎩;(2)由不等式的解推出210a + ,再从a 的范围中确定整数值.【详解】(1)由方程组:713x y a x y a +=--⎧⎨-=+⎩,得342x a y a =-+⎧⎨=--⎩,因为x 为非正数,y 为负数.所以30420a a -+≤⎧⎨--⎩,解得23a -≤ .(2)不等式221ax x a ++ 可化为()2121x a a ++ ,因为不等式的解为1x <,所以210a + ,所以在23a -≤ 中,a 的整数值是-1.故正确答案为(1)2a 3-<≤;(2)a=-1.【点睛】此题是方程组与不等式组的综合运用.解题的关键在于求出方程组的解,再解不等式组;难点在于从不等式的解推出未知数系数的正负.24.(1)点P 的坐标为(0,3)-;(2)点P 的坐标为(12,9)--;(3)点P 的坐标为(2,2)-【解析】【分析】(1)根据y 轴上点的横坐标为0列方程求出m 的值,再求解即可;(2)根据纵坐标比横坐标大3列方程求解m 的值,再求解即可;(3)根据点P 到x 轴的距离列出绝对值方程求解m 的值,再根据第四象限内点的横坐标是正数,纵坐标是负数求解.【详解】解:(1)∵点(24,1)P m m +-在y 轴上,∴240m +=,解得2m =-,∴1213m -=--=-,∴点P 的坐标为(0,3)-;(2)∵点P 的纵坐标比横坐标大3,∴(1)(24)3m m --+=,解得8m =-,1819m -=--=-,242(8)412m +=⨯-+=-,∴点P 的坐标为(12,9)--;(3)∵点P 到x 轴的距离为2,∴12m -=,解得1m =-或3m =,当1m =-时,242(1)42m +=⨯-+=,1112m -=--=-,此时,点(2,2)P -,当3m =时,2423410m +=⨯+=,1312m -=-=,此时,点(10,2)P ,∵点P 在第四象限,∴点P 的坐标为(2,2)-.【点评】本题考查了点的坐标,熟练掌握坐标轴上点的坐标特征是解题的关键,(3)要注意点在第四象限.25.(1)-5≤x <2;(2)32a -<≤-【解析】【分析】(1)把a=-5代入不等式组中,解不等式组即可;(2)根据题意得,不等式组有且只有4个整数解,所以确定出x 的值,只能取1,0,-1,-2,再写出实数a 的取值范围即可.【详解】解:(1)∵5a =-,∴不等式组变为50(1)521(2)x x +≥⎧⎨->⎩,由(1):得5x ≥-,由(2):得2x <,∴不等式组的解集为:-5≤x <2;(2)不等式组的解集为a ≤x <2,∵不等式组有且只有4个整数解,∴x 只能取1,0,-1,-2∴32a -<≤-.【点睛】此题主要考查了不等式组的解法与不等式的整数解,注意不等式解集的取法:①大大取大,②小小取小③大小小大取中④大大小小取不着.26.(1)1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)货运公司安排大货车8辆,小货车2辆,最节省费用.【解析】【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)设货运公司安排大货车m 辆,则安排小货车(10-m )辆.根据10辆货车需要运输46.4吨货物列出不等式.【详解】解:(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据题意,得34292631x y x y +=⎧⎨+=⎩,解得53.5x y =⎧⎨=⎩,所以大货车和1辆小货车一次可以分别运货5吨和3.5吨;(2)设货运公司安排大货车m 辆,则安排小货车(10-m )辆,根据题意可得:5m+3.5(10-m )≥46.4,解得:m ≥7.6,因为m 是正整数,且m ≤10,所以m=8或9或10,所以10-m=2或1或0,方案一:所需费用=500×8+300×2=4600(元),方案二:所需费用=500×9+300×1=4800(元),方案三:所需费用=500×10+300×0=5000(元),因为4600<4800<5000,所以货运公司安排大货车8辆,则安排小货车2辆,最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.第21页。
2024新人教版七年级数学下册期末试卷及答案一、选择题(每题4分,共40分)1. 下列数中是无理数的是:A. √2B. 3C. 0.5D. 22. 已知a=5,b=3,则a²+b²的值是:A. 34B. 32C. 29D. 263. 下列等式中正确的是:A. a² = 2abB. a³ = 3a²C. a² = a³D. a³ = 2a²4. 下列哪一个数是九的分之一:A. 1/9B. 9/1C. 9/2D. 2/95. 下列哪一个比例式是正确的:A. 3/4 = 12/18B. 5/7 = 15/21C. 4/9 = 12/24D. 6/8 = 18/246. 已知一个正方形的边长为4,则它的面积是:A. 16B. 8C. 4D. 27. 下列哪一个角的度数是90度:A. 直角B. 锐角C. 钝角D. 平角8. 下列哪一个数是负数:A. -3B. 3C. 0D. 29. 已知一个等边三角形的边长为6,则它的面积是:A. 9B. 6C. 3D. 110. 下列哪一个数是立方根:A. 27B. 3C. 3√27D. 3√3二、填空题(每题4分,共40分)1. 若两个数的和为8,它们的差为3,则这两个数分别是______和______。
2. 已知一个数的平方等于36,则这个数是______或______。
3. 下列各数中,是无理数的是______、______、______。
4. 一个等边三角形的周长为15,则它的边长是______,面积是______。
5. 若一个正方形的边长为a,则它的对角线长度为______,面积为______。
三、解答题(共20分)1. (10分)已知一个数的平方等于25,求这个数。
2. (10分)解方程:2x - 5 = 3x + 1。
3. (10分)已知一个长方形的长为8,宽为3,求它的面积和周长。
20232024学年全国初中七年级下数学人教版期末试卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()。
A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()。
A. 2B. 0.5C. √3D. 3/43. 下列等式中,正确的是()。
A. 2^3 = 8B. 3^2 = 9C. 4^0 = 1D. 5^(1) = 54. 若一个正方形的边长是a,则它的面积是()。
A. 2aB. 4aC. a^2D. a^35. 下列各数中,是正数的是()。
A. 3B. 0C. 1/2D. 5/46. 若一个数的平方是9,则这个数是()。
A. 3B. 3C. 3和3D. 07. 下列各数中,是分数的是()。
A. 2B. 3/4C. 5D. 68. 若一个数的绝对值是5,则这个数是()。
A. 5B. 5C. 5和5D. 09. 下列各数中,是整数的是()。
A. 1/2B. 3/4C. 5D. 610. 若一个数的立方是8,则这个数是()。
A. 2B. 2C. 2和2D. 0二、填空题(每题3分,共30分)11. 一个数的立方根是2,则这个数是__________。
12. 下列各数中,是无理数的是__________。
13. 下列等式中,正确的是__________。
14. 若一个正方形的边长是a,则它的面积是__________。
15. 下列各数中,是负数的是__________。
16. 若一个数的平方是16,则这个数是__________。
17. 下列各数中,是正整数的是__________。
18. 若一个数的绝对值是7,则这个数是__________。
19. 下列各数中,是偶数的是__________。
20. 若一个数的立方是27,则这个数是__________。
三、解答题(每题10分,共50分)21. 已知一个正方形的边长是a,求它的面积。
22. 已知一个数的平方是9,求这个数。
人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。
门票设个人票和团队票两大类。
个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。
1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。
3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。
人教版七年级下学期期末考试数学试卷(一)一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 49.如图,数轴上点P表示的数可能是()A. B. C. D.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=,∠3=,∠4=.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= .15.已知≈2.078,≈20.78,则y= .16.已知关于x的不等式组无解,则a的取值范围为.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,);(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= .20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= ,n= ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角可得答案.解答:解:∠1的同位角是∠5,故选:D.点评:此题主要考查了同位角的概念,关键是掌握同位角的边构成“F“形.2.下列实数中,无理数是()A.﹣ B. C. |﹣2| D.考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、是分数,是有理数,选项错误;B、是无理数,选项正确;C、|﹣2|=2是整数,是有理数,选项错误;D、=2是整数,是有理数,选项错误.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列语句中,假命题是()A.如果直线a,b,c满足a∥b,b∥c,那么a∥cB.三角形的内角和为180°C.内错角相等D.对顶角相等考点:命题与定理.分析:分别利用平行线的性质以及三角形内角和定理分析得出即可.解答:解:A、如果直线a,b,c满足a∥b,b∥c,那么a∥c,是真命题,不合题意;B、三角形的内角和为180°,是真命题,不合题意;C、两直线平行,内错角相等,故原命题是假命题,符合题意;D、对顶角相等,是真命题,不合题意;故选:C.点评:此题主要考查了命题与定理,正确把握平行线的性质是解题关键.4.若x>y,则下列式子中错误的是()A. x﹣2>y﹣2 B. x+2>y+2 C.﹣2x>﹣2y D.>考点:不等式的性质.分析: A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.解答:解:∵x>y,∴x﹣2>y﹣2,∴选项A正确;∵x>y,∴x+2>y+2,∴选项B正确;∵x>y,∴﹣2x<﹣2y,∴选项C不正确;∵x>y,∴,∴选项D正确.故选:C.点评:此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.5.下列调查中,调查方式选择正确的是()A.为了了解全班同学的视力情况,采用全面调查B.为调查乘坐飞机的旅客是否携带了违禁物品,采用抽样调查C.为了解某一种节能灯的使用寿命,采用全面调查D.为了解某鱼塘里鱼的生长情况,采用全面调查考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、为了了解全班同学的视力情况,采用全面调查,正确;B、为调查乘坐飞机的旅客是否携带了违禁物品,采用全面调查,故此选项错误;C、为了解某一种节能灯的使用寿命,采用抽样调查,故此选项错误;D、为了解某鱼塘里鱼的生长情况,采用抽样调查,故此选项错误;故选:A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.已知甲、乙、丙、丁共有30本,又知甲、乙、丙、丁的课外书制作的条形统计图的高度之比为2:3:4:1,则乙的课外书的本数为()A. 6本 B. 9本 C. 11本 D. 12本考点:条形统计图.分析:解决本题需要从统计图获取信息,关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.解答:解:∵甲、乙、丙、丁各自拥有的课外书情况制作的条形统计图的高度之比为2:3:4:1∴乙拥有的课外书占总数的30%∴乙的课外书的本数为30×30%=9,故选:B.点评:本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.7.线段EF是由线段PQ平移得到的,点P(﹣1,3)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标是()A.(﹣8,﹣3) B.(﹣2,﹣2)C.(2,5) D.(﹣6,﹣1)考点:坐标与图形变化-平移.分析:首先根据P点的对应点为E可得点的坐标的变化规律,则点Q的坐标的变化规律与P点的坐标的变化规律相同即可.解答:解:∵点P(﹣1,3)的对应点为E(4,7),∴E点是P点横坐标+5,纵坐标+4得到的,∴点Q(﹣3,1)的对应点F坐标为(﹣3+5,1+4),即(2,5).故选:C.点评:此题主要考查了坐标与图形变化﹣平移,关键是掌握把一个图形平移后,各点的变化规律都相同.8.已知是二元一次方程组的解,则m﹣n的值是()A. 1 B. 2 C. 3 D. 4考点:二元一次方程组的解.专题:计算题.分析:将x与y的值代入方程组求出m与n的值,即可确定出m﹣n的值.解答:解:将x=﹣1,y=2代入方程组得:,解得:m=1,n=﹣3,则m﹣n=1﹣(﹣3)=1+3=4.故选:D点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.9.如图,数轴上点P表示的数可能是()A. B. C. D.考点:估算无理数的大小;实数与数轴.分析:先根据数轴估算出P点所表示的数,再根据选项中的数值进行选择即可.解答:解:A、∵9<10<16,32<<4,故本选项错误;B、∵4<5<9,∴2<<3,故本选项正确;C、∵1<3<4,∴1<<2,故本选项错误;D、∵1<2<4,∴1<<2,故本选项错误.故选B.点评:本题考查的是估算无理数的大小,先根据题意得出各无理数的取值范围是解答此题的关键.10.探照灯、汽车灯等很多灯具都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是β﹣α.考点:平行线的性质.专题:应用题;跨学科.分析:过O作直线EF∥AB,则EF∥CD,再由平行线的性质即可得出结论.解答:解:过O作直线EF∥AB,则EF∥CD,∵AB∥EF,∴∠1=∠ABO=α.∵EF∥CD,∴∠2=∠DCO=β﹣α.故答案为:β﹣α.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.二、填空题(共6小题,每小题3分,满分18分)11.如图,直线a、b相交于点O,若∠1=50°,则∠2=130°,∠3=50°,∠4=130°.考点:对顶角、邻补角.分析:根据对顶角相等可得∠3=50°,根据邻补角互补可得∠2=130°,再根据对顶角相等可得∠4的度数.解答:解:∵∠1=50°,∴∠3=50°,∠2=180°﹣50°=130°,∴∠4=130°.故答案为:130°;50°;130°.点评:此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.12.如图,B、A、E三点在同一线上,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠EAC=60°.考点:平行线的性质.分析:先根据平行线的性质求出∠EAD的度数,再由角平分线的定义即可得出结论.解答:解:∵AD∥BC,∠B=30°,∴∠EAD=∠B=30°.∵AD是∠EAC的平分线,∴∠EAC=2∠EAD=60°.故答案为:60°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.13.在第三象限内的点P到x轴的距离是2,到y轴的距离是5,则点P的坐标是(﹣5,﹣2).考点:点的坐标.分析:根据点的坐标的几何意义及第三象限点的坐标特点解答即可.解答:解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第三象限内的点横坐标小于0,纵坐标小于0,∴点的横坐标是﹣5,纵坐标是﹣2.故此点的坐标为(﹣5,﹣2).故答案为:(﹣5,﹣2).点评:本题主要考查了点的坐标的几何意义:横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.14.如图所示,△ABC沿直线AB向下平移可以得到△DEF,如果AB=6,BD=4,那么BE= 2 .考点:平移的性质.专题:计算题.分析:先计算出AD=AB﹣BD=2,然后根据平移的性质求解.解答:解:∵△ABC沿直线AB向下平移得到△DEF,∴AD=BE,∵AB=6,BD=4,∴AD=AB﹣BD=2,∴BE=2.故答案为2.点评:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.已知≈2.078,≈20.78,则y= 8996 .考点:立方根.分析:根据被开方数的小数点每移动三位,其立方根的小数点就移动一位得出即可.解答:解:∵≈2.078,≈20.78,∴y=8996,故答案为:8996.点评:本题考查了立方根的应用,注意:被开方数的小数点每移动三位,其立方根的小数点就相应的移动一位.16.已知关于x的不等式组无解,则a的取值范围为a≥3.考点:解一元一次不等式组.分析:先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.解答:解:,由①得,x≤3,由②得,x>a,∵不等式组无解,∴a≥3.故答案为:a≥3.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.三、解答题(共9小题,满分102分)17.(10分)(1)计算:﹣﹣(2)计算:|﹣|+2.考点:实数的运算.专题:计算题.分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,合并即可得到结果.解答:解:(1)原式=10﹣﹣0.5=8;(2)原式=﹣+2=3﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(10分)(1)已知(x+2)3=﹣8,求x的值.(2)解不等式组:并把解集在数轴上表示出来.考点:解一元一次不等式组;立方根;在数轴上表示不等式的解集.专题:计算题.分析:(1)已知等式利用立方根定义开立方求出x的值即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,表示在数轴上即可.解答:解:(1)开立方得:x+2=﹣2,解得:x=﹣4;(2),由①得:x>2;由②得:x≤3;则不等式组的解集为2<x≤3,如图所示:点评:此题考查了解一元一次不等式组,立方根以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.19.如图,直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2).(1)写出点A、B的坐标:A( 3 ,﹣2 )、B( 4 , 3 );(2)将△ABC先向右平移3个单位长度,再向下平移2个单位长度,得到△A′B′C′,请在网格中画出△A′B′C′;(3)△ABC的面积= 7 .考点:作图-平移变换.分析:(1)根据平面坐标系直接得出A,B点坐标即可;(2)利用平移的性质得出对应点位置进而得出答案;(3)利用三角形所在矩形面积减去周围三角形面积进而得出答案.解答:解:(1)A(3,﹣2),B(4,3);故答案为:3,﹣2;4,3;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×5﹣×1×3﹣×2×4﹣×1×5=7.故答案为:7.点评:此题主要考查了平移变换以及三角形面积求法,得出平移后对应点位置是解题关键.20.(10分)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°.考点:平行线的判定与性质.专题:证明题.分析:欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.解答:证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.点评:此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用.21.(12分)李红在学校的研究性学习小组中负责了解七年级200名女生掷实心球的测试成绩.她从中随机调查了若干名女生的测试成绩(单位:米),并将统计结果绘制成了如下的统计图表(内容不完整).测试成绩3≤x<4 4≤x<5 5≤x<7 6≤x<7 7≤x<8 合计频数 3 27 9 m 1 n请你结合图表中所提供的信息,回答下列问题:(1)表中m= 10 ,n= 50 ;(2)请补全频数分布直方图;(3)在扇形统计图中,6≤x<7这一组所占圆心角的度数为72 度;(4)如果掷实心球的成绩达到6米或6米以上为优秀,请你估计该校七年级女生掷实心球的成绩达到优秀的总人数.考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.分析:(1)根据4≤x<5之间的频数和所占的百分比,求出总人数,再用总人数减去其它成绩段的人数,即可得出6≤x<7的频数;(2)根据(1)求出的m的值,从而把频数分布直方图补全;(3)用360度乘以6≤x<7所占的百分比,即可求出6≤x<7这一组所占圆心角的度数;(4)用总人数乘以成绩达到6米或6米以上所占的百分比,求出该校七年级女生掷实心球的成绩达到优秀的总人数.解答:解:(1)根据题意得:n==50;m=50﹣3﹣27﹣9﹣1=10;故答案为:10,50;(2)根据(1)得出的m=10,补图如下:(3)6≤x<7这一组所占圆心角的度数为:360°×=72°;故答案为:72;(4)根据题意得:200×=44(人),答:该校初一年级女生掷实心球的成绩达到优秀的总人数是44人.点评:此题考查了频数(率)分布直方图、扇形统计图以及频数(率)分布表,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(12分)若不等式x﹣<2x﹣+1的最小整数解是方程2x﹣ax=4的解,求a的值.考点:一元一次不等式的整数解;一元一次方程的解.分析:此题可先将不等式化简求出x的取值,然后取x的最小整数解代入方程2x﹣ax=4,化为关于a的一元一次方程,解方程即可得出a的值.解答:解:由不等式x﹣<2x﹣+1得x>0,所以最小整数解为x=1,将x=1代入2x﹣ax=4中,解得a=﹣2.点评:此题考查的是一元一次不等式的解,将x的值解出再代入方程即可得出a的值.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.23.(12分)某文具店销售每台进价分别为80元、68元的A,B两种型号的计算器,如表是近两周的销售情况:销售时段销售数量销售收入第一周 3台A种型号 5台B种型号 720元第二周 4台A种型号 10台B种型号 1240元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的计算器的销售单价;(2)若文具店准备用不多于2200元的金额再采购这两种型号的计算器共30台,求A种型号的计算器最多能采购多少台?(3)在(2)的条件下,文具店销售完这30台计算器能否实现利润为600元的目标?若能,请给出相应的采购方案;若不能,请说明理由.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,根据3台A型号5台B型号的计算器收入是720元,4台A型号10台B 型号的计算器收入1240元,列方程组求解;(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台,根据金额不多余2200元,列不等式求解;(3)设利润为600元,列方程求出a的值为30,不符合(2)的条件,可知不能实现目标.解答:解:(1)设A种型号计算器的销售单价为x元、B种型号计算器的销售单价为y元,依题意有,解得.答:A种型号计算器的销售单价为100元、B种型号计算器的销售单价为84元.(2)设采购A种型号计算器a台,则采购B种型号计算器(30﹣a)台.依题意得:68(30﹣a)+80a≤2200,解得:a≤13.答:A种型号的计算器最多能采购13台;(3)依题意有:(100﹣80)a+(84﹣68)(30﹣x)=600,解得:a=30,∵a≤13,∴在(2)的条件下文具店不能实现利润为600元的目标.点评:本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.24.(14分)如果点P(x,y)的坐标满足(1)求点P的坐标.(用含m,n的式子表示x,y)(2)如果点P在第二象限,且符合要求的整数只有两个,求n的范围.(3)如果点P在第二象限,且所有符合要求的整数m之和为9,求n的范围.考点:解一元一次不等式组;二元一次方程组的解;点的坐标.分析:(1)把m、n当作已知条件,求出xy的值即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.(3)先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于n的不等式组,求出即可.解答:解:(1)∵解方程组得,,∴(m﹣5,m﹣n);(2)∵点P在第二象限,且符合要求的整数只有两个,由,得n<m<5∴2≤n<3(3)∵点P在第二象限,且符合要求的整数之和为9,由,得n<m<5∴m的整数值为2,3,4,∴1≤n<2,点评:本题考查了解二元一次方程组,解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于n的不等式组.25.(14分)已知平面直角坐标系内点A(m,n),将点A向上平移4个单位,向左平移1个单位得到点B,再向下平移2个单位,向左平移3个单位得到点C,再将C向上平移3个单位,向右平移7个单位得到点D,且D(2n,2﹣4m),连接直线AC,DC,AB,BD,得到如图所示.(1)求n,m的值;(2)请运用平行线的性质说明:∠1+∠2+∠3+∠4=360°;(3)若有一动点E(a,b),其横、纵坐标a,b分别同时满足三个条件,请你在平面直角坐标系内画出点E(a,b)可能运动的范围,用阴影部分标注,并求出其阴影部分的面积.考点:坐标与图形性质;平行线的性质;三角形的面积;坐标与图形变化-平移.分析:(1)根据横坐标右移加,左移减;纵坐标上移加,下移减可得关于n,m的二元一次方程组,解方程组即可求解;(2)过C点作JF∥AB,交BD于E,过D点作GH∥AB,根据平行线的性质即可求得;(3)根据题意在坐标系中,画出点E可能运动的范围是RT△ABC,根据三角形面积公式即可求得.解答:解:(1)由题意得,解得.故n的值为1,m的值为﹣1;(2)如图1,过C点作JF∥AB,交BD于E,过D点作GH∥AB,∴∠3=∠BEJ,∠BDG=∠BEC,∠GDK=∠ECB,∠CAB=∠ACF,∠BEJ+∠BEC=180°,∠∠ECB+∠1+∠ACF=180°,∴∠3+∠BDG+∠GDK+∠1+∠CAB=360°,∵∠4=∠CAB,∠BDG+∠GDK=∠2,∴∠1+∠2+∠3+∠4=360°;(3)根据题意画出点E可能运动的范围是△ABC,如图2所示:=×2×2=2.S阴影点评:本题考查了坐标和图形的关系,平行线的性质,三角形的面积,根据题意作出图形是解题的关键.人教版七年级下学期期末考试数学试卷(二)一、选择题1、的平方根是()A、±9B、9C、3D、±32、下列实数3.1415,﹣23,,,,﹣,无理数的个数有()A、1个B、2个C、3个D、4个3、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A、 B、C、 D、4、若m>n>0,则下列不等式一定成立的是()A、>1B、m﹣n<0C、﹣m<﹣nD、m+n<05、(x﹣3)(2x+1)=2x2+mx+n,则m,n的值分别是()A、5,﹣3B、﹣5,3C、﹣5,﹣3D、5,36、如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于()A、30°B、45°C、60°D、75°7、如图,以下条件能判定GE∥CH的是()A、∠FEB=∠ECDB、∠AEG=∠DCHC、∠GEC=∠HCFD、∠HCE=∠AEG8、分式方程=2的解为()A、x=4B、x=3C、x=0D、无解9、将分式方程1﹣= 去分母,整理后得()A、8x+1=0B、8x﹣3=0C、x2﹣7x+2=0D、x2﹣7x﹣2=010、为改善生态环境,某村拟在荒土上种植960棵树,由于青年团的支持,每日比原计划多种20棵,结果提前4天完场任务,原计划每天种植多少棵?设原计划每天种植x棵,下面方程正确的是()A、﹣=4B、﹣=4C、﹣=4D、﹣=4二、填空题11、一个正方形的面积是20,通过估算,它的边长在整数________与________之间.12、不等式2﹣x<2x+5的解集是________.13、分解因式:9x2﹣4y2=________.14、当x________时,分式有意义.15、观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=________.三、解答题16、计算(1)|﹣1|﹣+(π﹣3)0+2﹣2(2)(a+2b)(a﹣2b)(a2+4b2)17、解方程(1)3(2x﹣1)2﹣27=0(2)﹣1= .18、解不等式组,并求出不等式组的非负整数解.19、先化简再求值÷(x+3)• ,其中x=3.20、如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD.21、李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距聚会还有42分钟,于是分立即步行(匀速)回家,在家拿道具用了1分钟,然后骑自行车(匀速)返回学校,已知李明骑自行车的速度是步行速度的3倍,李明骑自行车到学校比他从学校步行到家少用了20分钟.(1)李明步行的速度是多少米/分?(2)李明能否在联欢会开始前赶到学校?22、观察下列各式:= =1﹣,= = ﹣,= = ﹣,= = ﹣,…(1)由此可推导出=________;(2)猜想出能表示上述特点的一般规律,用含字母n的等式表示出来(n是正整数);(3)请用(2)中的规律计算+ +…+ 的结果.答案解析部分一、选择题1、【答案】D【考点】平方根,算术平方根【解析】【解答】解:∵ =9,∴ 的平方根是±3,故选D.【分析】求出=9,求出9的平方根即可.2、【答案】B【考点】无理数【解析】【解答】解:,是无理数,故选:B.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,。
七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
2024—2025学年最新人教新版七年级下学期数学期末考试试卷(问卷)考生注意:本试卷共三道大题,25道小题一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、在平面直角坐标系中,下列各点在第四象限的是()A.(﹣1,﹣2)B.(1,﹣2)C.(1,2)D.(﹣1,2)2、在同一平面内,将直尺、含30°角的三角尺和木工角尺(CD⊥DE)按如图方式摆放,若AB∥CD,则∠1的大小为()A.30°B.45°C.60°D.75°3、下列调查方式,你认为最合适全面调查的是()A.调查某地全年的游客流量B.乘坐地铁前的安检C.调查某种型号灯泡的使用寿命D.调查春节联欢晚会的收视率4、关于x,y的二元一次方程组的解满足x﹣y=4,则m的值为()A.0B.1C.2D.35、在平面直角坐标系中,点A(1,5),B(m﹣2,m+1),若直线AB与y轴垂直,则m的值为()A.0B.3C.4D.76、下列命题为假命题的是()A.垂线段最短B.同旁内角互补C.对顶角相等D.两直线平行,同位角相等7、打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元,比不打折少花()A.200元B.300元C.400元D.500元8、我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x间,房客y人,则列出关于x、y的二元一次方程组正确的是()A.B.C.D.9、的整数部分是a,的整数部分是b,则a、b的大小关系是()A.a>b B.a=b C.a<b D.无法确定10、在平面直角坐标系中,已知点A(m﹣4,m+2),B(m﹣4,m),C(m,0),D(2,0),三角形ABD的面积是三角形ABC面积的2倍,则m的值为()A.﹣14B.2C.﹣14或2D.14或﹣2二、填空题(每小题3分,满分18分)11、已知是方程kx+2y=﹣8的解,则k=.12、由方程组,可用含x的代数式来表示y为.13、如图,将长方形纸片ABCD沿对角线BD折叠,点C的对应点为E,若∠CBD=34°,则∠ADE的大小为度.14、如图,七个相同的小长方形组成一个大长方形ABCD,若CD=14,则长方形ABCD的面积为.15、如图,直径为1个单位长度的圆,从数轴上的A点处沿数轴向右滚动一周后到达B点,若点A表示的数为﹣1,则点B对应的数是.16、已知关于x,y的方程组的解为非负数,m﹣2n=3,z=2m+n,且n<0,则z的取值范围是.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(答题卡)考生注意:本试卷共三道大题,25道小题姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、已知正实数a的两个平方根分别是x和x+y.(1)若x=2,求y的值;(2)若x﹣y=3,求a的值.19、在平面直角坐标系中,已知点M(m﹣1,2m+3).(1)若AM∥x轴且A(0,1),求m的值.(2)若点M在第一、三象限的角平分线上,求m的值.20、端午节是我国的传统佳节,民间历来有吃“粽子”的习俗.某食品厂为了解市民对去年销量较好的肉(A)、豆沙馅(B)、花生馅(C)、蜜枣馅(D)四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民人数是人.(2)将图①②补充完整;(直接补填在图中)(3)求图②中表示“A”的圆心角的度数;(4)若居民区有100人,请估计爱吃蜜枣馅粽子的人数.21、如图,已知AC∥DE,∠D+∠BAC=180°.(1)求证:AB∥CD;(2)连接CE,恰好满足CE平分∠ACD.若AB⊥BC,∠CED=35°,求∠ACB的度数.22、已知关于x,y的方程组,满足x﹣2y为负数.(1)求出x,y的值(用含m的代数式表示);(2)求出m的取值范围;(3)当m为何正整数时,求s=2x﹣3y+m的最大值?23、一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这两种货车的情况如下表:第一次第二次25甲种货车的辆数36乙种货车的辆数3170累计运货的吨数(1)现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货物,如果按每吨付运费50元计算,货主应付运费多少元?(2)能否租用这两种货车一次恰好运走125吨货物(不超载也不少运)?若能,请说出有哪几种装运方案?若不能,请说明理由.24、在平面直角坐标系xOy中,点P坐标为(x,y),且x﹣2a=﹣1,,其中a,b为实数.(1)若a=3,则点P到y轴的距离为;(2)若实数a,b满足4a﹣b=4.①求证:点P(x,y)不可能在第三象限;②若点Q(﹣2,0),△OPQ的面积为5,求点P的坐标.25、如图1,在平面直角坐标系中,点A,B,C,D均在坐标轴上,其坐标分别是A(a,0),B(0,b),C(0,c),D(d,0),若,c<0,d>0,且∠ABO=∠DCO.(1)求三角形AOB的面积;(2)求证:3d=﹣4c;(3)如图2,若﹣3<c<0,延长CD到Q,使CQ=AB,线段AQ交y轴于点K,求的值.2024—2025学年最新人教新版七年级下学期数学期末考试试卷(参考答案)11、7 12、22 13、y=4﹣2x 14、280 15、π﹣1 16、1≤z<6三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、1<x≤4.18、(1)y=﹣4 (2)a=119、(1)﹣1(2)﹣420、(1)600;(2)略(3)108°(4)4000人21、(1)略(2)20°22、(1);(2)m<6;(3)m=5时,最大值为123、(1)略(2)略24、(1)5(2)①证明略②(﹣1,5)或(9,﹣5).25、(1)6(2)略(3)1.。
七年级(下)期末数学试卷(人教版)一、选择题(本大题共12小题,每小题2分,共24分)1.(2分)给出下列各数:,π,﹣,0,,0.3131131113…,,其中无理数有()A.2个B.3个C.4个D.5个2.(2分)下列五个命题:①相等的角是对顶角;②内错角相等;③邻补角一定互补;④有且只有一条直线与已知直线垂直;⑤如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是()A.0个B.1个C.2个D.3个3.(2分)将一块含30°的直角三角尺ABC按如图所示的方式放置,其中点A,C分别落在直线a,b上,若a∥b,∠1=40°,则∠2的度数为()A.40°B.30°C.20°D.10°4.(2分)a,b是两个连续整数,若,则a,b分别是()A.1,2B.2,3C.3,4D.4,55.(2分)要想了解九年级1500名学生的心理健康评估报告,从中抽取了300名学生的心理健康评估报告进行统计分析,下列说法正确的是()A.1500名学生是总体B.每名学生的心理健康评估报告是个体C.被抽取的300名学生是总体的一个样本D.300名是样本容量6.(2分)在平面直角坐标系中,将线段AB平移至A'B'.若点A(1,﹣2)的对应点A'的坐标为(﹣2,3),则线段AB平移的方式可以为()A.向左平移3个单位,向上平移5个单位B.向左平移5个单位,向上平移3个单位C.向右平移3个单位,向下平移5个单位D.向右平移5个单位,向下平移3个单位7.(2分)已知点P在第四象限,且P到x轴的距离为3,到y轴的距离为4,则P点的坐标为()A.(3,﹣4)B.(﹣3,4)C.(4,﹣3)D.(﹣4,3)8.(2分)如图,直线AB、CD相交于点O,EO⊥CD,若∠AOE=2∠AOC,则∠BOD的度数为()A.25°B.30°C.45°D.60°9.(2分)在大型爱国主义电影《长津湖》中,我军缴获了敌人防御工程的坐标地图碎片(如图),若一号暗堡坐标为(2,1),四号暗堡坐标为(﹣1,3),指挥部坐标为(0,0),则敌人指挥部可能在()A.A处B.B处C.C处D.D处10.(2分)新型冠状病毒传染性非常强,多是通过飞沫,接触,还有气溶胶传播.所以一定要做好个人防护,尽量少外出,更不要聚集,佩戴医用外科口罩是非常有效的个人防护.为了个人防护,小红用40元钱买了A,B两种型号的医用外科口罩(两种型号都买),A型每包6元,B型每包4元,在40元全部用尽的情况下,有几种购买方案()A.2种B.3种C.4种D.5种11.(2分)关于x,y的两个方程组和有相同的解,则的值是()A.B.C.D.12.(2分)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(1011π,0)B.(1011π,1)C.(2022,﹣1)D.(2022,0)二、填空题(本大题共6小题,每小题3分,共18分.把答案写在题中横线上)13.(3分)若是关于x、y的二元一次方程3x+ay=1的一个解,则a的值为.14.(3分)如图,将长方形纸片ABCD进行折叠,如果∠BHG=80°,那么∠BHE=度.15.(3分)已知某正数的两个不同平方根分别是m+4和2m﹣16,则m=.16.(3分)我国古代数学名著《九章算术》记载“米谷粒分”问题:粮仓开仓收粮,有人送来谷米512石,验得其中夹有谷粒.从中抽取谷米一把,共数得256粒,其中夹有谷粒16粒,估计这批谷米内夹有谷粒约是石.17.(3分)在平面直角坐标系中,点A,点B坐标分别是(﹣1,0),(3,4),在x轴上求一点P,使三角形P AB的面积是8,则P点坐标是.18.(3分)关于x的不等式组有且只有3个整数解,则常数k的取值范围是.三、解答题(本大题共7小题,共58分)19.(8分)计算:(1)﹣12022+﹣|1﹣|+;(2)2x2+7=15.20.(10分)解二元一次方程组:(1);(2).21.(8分)解下列不等式组,并在数轴上表示解集:.22.(8分)如图,在平面直角坐标系中,点A,B,C的坐标分别是A(﹣2,﹣2),B(3,1),C(0,2).(1)△ABC向上平移3个单位,再向右平移2个单位后得到△A1B1C1,写出点A1,B1,C1的坐标;(2)求△ABC的面积;(3)设点P在x轴上,且△APC与△ABC的面积相等,请直接写出点P的坐标.23.(8分)某研究性学习小组采用简单随机抽样的方法,对本校九年级学生一天中做家庭作业所用时间(单位:min)进行了抽样调查,并把所得数据整理后绘制了如下两幅不完整的统计图表.组别做作业时间x(min)人数A60<x≤803B80<x≤1006C100<x≤120mD120<x≤1408E120<x≤140n 解答下列问题:(1)求这次调查活动共抽取多少人?(2)m=,n=;(3)在扇形统计图中A组对应的扇形圆心角的度数为;(4)该校九年级共有学生410人,请你估计该校九年级学生中一天做家庭作业所用时间超过120min的学生人数.24.(8分)如图,已知∠AEH+∠CHE=180°,∠1=∠2,请说明∠F=∠G的理由.解:因为∠AEH+∠CHE=180°(已知),所以AB∥CD(),所以∠BEH=∠CHE().因为∠1=∠2(已知),所以∠BEH﹣∠1=﹣∠2(等式的性质),即∠=∠,所以EF∥GH(),所以∠F=∠G(两直线平行,内错角相等).25.(8分)绿水青山都是金山银山,3月12日,某校八年级一班全体学生在邓老师的带领下一起种许愿树和发财树,已知购买1棵许愿树和2棵发财树需要42元,购买2棵许愿树和1棵发财树需要48元.(1)你来算一算许愿树、发财树每棵各多少钱?(2)邓老师指示:全班种植许愿树和发财树共20棵,且许愿树的数量不少于发财树的数量,但由于班费资金紧张,还要求两种树的总成本不得高于312元,聪明的同学,你知道共有哪几种种植方案吗?。
人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。
人教版七年级第二学期期末试卷数学试题
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 计算结果正确的是()
A.B.C.D.
2 . 如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()
A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD
3 . PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A.0.25×10-5 B.2.5×10-5B.2.5×10-6C.2.5×10-7
4 . 甲种防腐药水含药30%,乙种防腐药水含药75%,现用这两种防腐药水配制含药50%的防腐药水18千克,两种药水各需要多少千克?设甲种药水需要x千克,乙种药水需要y千克,则所列方程组正确的是()
A.B.
C.D.
5 . 三角形一边上的中线把原三角形一定分成两个()
A.形状相同的三角形B.面积相等的三角形
C.周长相等的三角形D.直角三角形
6 . 如图,,,平分,则的度数是()
A.20°B.30°C.40°D.60°
7 . 下列命题:①两条直线被第三条直线所截,同位角的平分线互相平行;②直线外一点到这条直线的垂线段,就是这一点到这条直线的距离;③在平面内,过一点有且只有一条直线与已知直线垂直;④在平面内,过一点有且只有一条直线与已知直线平行.其中真命题的个数是()
A.1B.2C.3D.4
8 . 不等式组的解集是()
A.-1B.-1<<1C.>3D.<3
9 . 如图,把一个边长为7的正方形经过三次对折后沿图(4)中平行于MN的虚线剪下,得图(5),它展开后得到的图形的面积为45,则AN的长为()
A.1B.4C.2D.2.5
10 . 一个三角形的两边长分别为3cm和8cm,则此三角形第三边长可能是()
A.3cm B.5cm C.7cm D.11cm
二、填空题
11 . 如图,在长方形ABCD中,点E是AD的中点,连接CE,将△CDE沿着CE翻折得到△CFE,EF交BC于点G,
CF的延长线交AB的延长线于点H,若AH=25,BC=40,则FG=_____.
12 . 计算2-2+=____.
13 . 若,则______.
14 . 在北偏东方向(距)千米处,在的正东方向(距)千米处,则和之间的距离为________千米.
15 . 如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是
_____°.
16 . 如图,在中,=,=,是边上的高,是的平分线,则
的度数_____°.
17 . 在一次“学习强国”知识竞答活动中,共有道题,每一题答对得分,答错或不答都扣分,要使得分超过分,至少需要答对_______.道题.
18 . 若方程组,则3(3x-2y)-2(x+3y)的值是__________.
三、解答题
19 . 先化简,再求值:
其中a,b满足等式
20 . 已知有理数x,y满足,求的值.
21 . 如图,△ABC中,
(1)若∠B=70°,点P是△ABC的∠BAC和∠ACB的平分线的交点,求∠APC的度数.
(2)如果把(1)中∠B=70°这个条件去掉,试探索∠APC和∠B之间有怎样的数量关系.
22 . (1)化简(2x+y)2﹣4(x+y)(x﹣y);
(2)解方程:=0;
(3)分解因式:ax2﹣2a2x+a3.
23 . 生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的(阴影部分表示纸条的反面):如果由信纸折成的长方形纸条(图①)长为,宽为,分别回答下列问题:
(1)为了保证能折成图④的形状(即纸条两端均超出点),试求的取值范围.
(2)如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点的长度相等,即最终图形是轴对称
图形,试求在开始折叠时起点与点的距离(用表示)
24 . (1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE;
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC =∠BAC=a,其中a为任意锐角或钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由;
(3)如图3,在(2)的条件下,若a=120°,且△ACF为等边三角形,试判断△DEF的形状,并说明理由.
25 . 小明从家里到学校先是走一段平路然后走一段下坡路,假设他始终保持平路每分钟走,下坡路每分钟走,上坡路每分钟走,则他从家里到学校需,从学校到家里需.
问:从小明家到学校有多远?
26 . 解不等式:.
27 . 某校开展了“我最喜爱的老师”评选活动.确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).
学生投票结果统计表:
候选教师丁老师俞老师李老师陈老师
得票数200300
(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)
(2)丁老师与李老师得到的学生总票数是600,且丁老师得到的学生票数是李老师得到的学生票数的3倍多40票,求丁老师与李老师得到的学生票数分别是多少?
(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?
为什么?
28 . 已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.
(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为______________;
(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、
9、
10、。