晶振旁的电阻(并联与串联)
- 格式:doc
- 大小:133.50 KB
- 文档页数:4
晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
之马矢奏春创作时间:二O二一年七月二十九日晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振.由于晶体自身的特性导致这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路.这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变动很年夜,这个振荡器的频率也不会有很年夜的变动.晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以获得晶振标称的谐振频率.晶振的应用:普通的晶振振荡电路都是在一个反相放年夜器(注意是放年夜器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每一个电容的另一端再接到地,这两个电容串联的容量值就应该即是负载电容,请注意普通IC的引脚都有等效输入电容,这个不能忽略.普通的晶振的负载电容为15p或者12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比力好的选择. 晶体振荡器也分为无源晶振和有源晶振两种类型.无源晶振与有源晶振(谐振)的英文名称分歧,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器).无源晶振需要借助于时钟电路才华发生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法其实禁绝确;有源晶振是一个完整的谐振振荡器.晶振的种类:谐振振荡器包括石英(或者其晶体资料)晶体谐振器,陶瓷谐振器,LC谐振器等.晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器.石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体发生机械变形;反之,若在极板间施加机械力,又会在相应的方向上发生电场,这种现象称为压电效应.如在极板间所加的是交变电压,就会发生机械变形振动,同时机械变形振动又会发生交变电场.普通来说,这种机械振动的振幅是比力小的,其振动频率则是很稳定的.但当外加交变电压的频率与晶片的固有频率(决定于晶片的尺寸)相等时,机械振动的幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器. 其特点是频率稳定度很高.晶振的万用表测试方法:小技巧:没有示波器情况下如何丈量晶振是否起振?可以用万用表丈量晶振两个引脚电压是否是芯片工作电压的一半,比如工作电压是5V则测出的是否是2.5V摆布.此外如果用镊子碰晶体此外一个脚,这个电压有明显变动,证明是起振了的.小窍门:就是弄一节1.5V的电池接在晶振的两端把晶振放到耳边子细的听,当听到嗒嗒的声音那就说明它起振了,就是好的嘛!1.电阻法把万用表拨在R×10K挡,丈量石英晶体两引脚间的电阻值应为无穷年夜.如果丈量出的电阻值不是无穷年夜甚至接近于零,则说明被测晶体漏电或者击穿.这种法子只能测晶体是否漏电,如果晶体内部呈现断路,电阻法就无能为力了,此时必需采用下面介绍的方法2 .自制测试器按图所示电路,焊接一个简易石英晶体测试器,就可以准确地测试出晶体的好坏.图中XS1、XS2两个测试插口可用小七脚或者小九脚电子管管座中拆下来的插口.LED发光管选择高亮度的较好.检测石英晶体时,把石英晶体的两个管脚拔出到XS1和XS2两个插口中,按下开关SB,如果石英晶体是好的则由三极管VT1、C1、C2等元器件构成的震荡电路发生震荡,震荡信号经C3耦合至VD2检波,检波后的直流信号电压使VT2导通,于是接在VT2集电极回路中的LED发光,指示被测石英晶体是好的,如果LED不亮,则说明被测石英晶体是坏的.本测试器测试石英晶体的频率很宽,但最佳工作频率为几百千赫至几十兆赫.一个简易石英晶体测试器晶振的稳定性指标总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最年夜偏差.说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最年夜频差.普通只在对短时间频率稳定度关心,而对其他频率稳定度指标不严格要求的场所采用.例如:精密制导雷达.频率稳定度:任何晶振,频率不稳定是绝对的,水平分歧而已.一个晶振的输出频率随时间变动的曲线如图2.图中暗示出频率不稳定的三种因素:老化、飘移和短稳.图2 晶振输出频率随时间变动的示意图曲线1是用0.1秒丈量一次的情况,暗示了晶振的短稳;曲线3是用100秒丈量一次的情况,暗示了晶振的漂移;曲线4 是用1天一次丈量的情况.暗示了晶振的老化.频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或者带隐含基准温度的最年夜允许频偏.ft=±(fmax-fmin)/(fmax+fmin)ftref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] ft:频率温度稳定度(不带隐含基准温度)ftref:频率温度稳定度(带隐含基准温度)fmax :规定温度范围内测得的最高频率fmin:规定温度范围内测得的最低频率fref:规定基准温度测得的频率说明:采用ftref指标的晶体振荡器其生产难度要高于采用ft指标的晶体振荡器,故ftref指标的晶体振荡器售价较高.开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变动率.暗示了晶振到达稳定的速度.这指标对时常开关的仪器如频率计等很实用.说明:在大都应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(特别是对在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用MCXO只需要十几秒钟).频率老化率:在恒定的环境条件下丈量振荡器频率时,振荡器频率和时间之间的关系.这种长期频率漂移是由晶体元件和振荡器电路元件的缓慢变动造成的,因此,其频率偏移的速率叫老化率,可用规按时限后的最年夜变动率(如±10ppb/天,加电72小时后),或者规定的时限内最年夜的总频率变动(如:±1ppm/(第一年)和±5ppm/(十年))来暗示.晶体老化是因为在生产晶体的时候存在应力、污染物、残留气体、结构工艺缺陷等问题.应力要经过一段时间的变动才华稳定,一种叫“应力赔偿”的晶体切割方法(SC切割法)使晶体有较好的特性.污染物和残留气体的份子会堆积在晶体片上或者使晶体电极氧化,振荡频率越高,所用的晶体片就越薄,这种影响就越厉害.这种影响要经过一段较长的时间才华逐渐稳定,而且这种稳定随着温度或者工作状态的变动会有反复——使污染物在晶体概况再度集中或者分散.因此,频率低的晶振比频率高的晶振、工作时间长的晶振比工作时间短的晶振、连续工作的晶振比断续工作的晶振的老化率要好.说明:TCXO的频率老化率为:±0.2ppm~±2ppm(第一年)和±1ppm~±5ppm(十年)(除特殊情况,TCXO很少采用每天频率老化率的指标,因为即使在实验室的条件下,温度变动引起的频率变动也将年夜年夜超越温度赔偿晶体振荡器每天的频率老化,因此这个指标失去了实际的意义). OCXO的频率老化率为:±0.5ppb~±10ppb/天(加电72小时后),±30ppb~±2ppm(第一年),±0.3ppm~±3ppm(十年).短稳:短期稳定度,观察的时间为1毫秒、10毫秒、100毫秒、1秒、10秒.晶振的输出频率受到内部电路的影响(晶体的Q值、元器件的噪音、电路的稳定性、工作状态等)而发生频谱很宽的不稳定.丈量一连串的频率值后,用阿伦方程计算.相位噪音也同样可以反映短稳的情况(要有专用仪器丈量).重现性:界说:晶振经长期工作稳定后关机,停机一段时间t1(如24小时),开机一段时间t2(如4小时),测得频率f1,再停机同一段时间t1,再开机同一段时间t2,测得频率f2.重现性=(f2-f1)/f2.频率压控范围:将频率控制电压从基准电压调到规定的终点电压,晶体振荡器频率的最小峰值改变量.说明:基准电压为+2.5V,规定终点电压为+0.5V和+4.5V,压控晶体振荡器在+0.5V频率控制电压时频率改变量为-2ppm,在+4.5V频率控制电压时频率改变量为+2.1ppm,则VCXO电压控制频率压控范围暗示为:≥±2ppm(2.5V±2V),斜率为正,线性为+2.4%.压控频率响应范围:当调制频率变动时,峰值频偏与调制频率之间的关系.通时常使用规定的调制频率比规定的调制基准频率低若干dB暗示.说明:VCXO频率压控范围频率响应为0~10kHz.频率压控线性:与理想(直线)函数相比的输出频率-输入控制电压传输特性的一种量度,它以百分数暗示整个范围频偏的可容许非线性度.说明:典范的VCXO频率压控线性为:≤±10%,≤±20%.简单的VCXO 频率压控线性计算方法为(当频率压控极性为正极性时):频率压控线性=±((fmax-fmin)/ f0)×100%fmax:VCXO在最年夜压控电压时的输出频率fmin:VCXO在最小压控电压时的输出频率f0:压控中心电压频率单边带相位噪声£(f):偏离载波f处,一个相位调制边带的功率密度与载波功率之比.输出波形:从年夜类来说,输出波形可以分为方波和正弦波两类.方波主要用于数字通信系统时钟上,对方波主要有输出电平、占空比、上升/下降时间、驱动能力等几个指标要求.随着科学技术的迅猛发展,通信、雷达和高速数传等类似系统中,需要高质量的信号源作为日益复杂的基带信息的载波.因为一个带有寄生调幅及调相的载波信号(不干净的信号)被载有信息的基带信号调制后,这些理想状态下不应存在的频谱成份(载波中的寄生调制)会招致所传输的信号质量及数传误码率明显变坏.所以作为所传输信号的载体,载波信号的干净水平(频谱纯度)对通信质量有着直接的影响.对正弦波,通常需要提供例如谐波、噪声和输出功率等指标.晶振的应用:图3为红外线发射出电路.图4为晶振式发射机电路.电路中J、VD1、L1、C3~C5、V1组成晶体振荡电路.由于石英晶体J的频率稳定性好,受温度影响也较小,所以广泛用于无绳德律风及AV调制器中.V1是29~36MHz晶体振荡三极管,发射极输出含有丰富的谐波成份,经V2放年夜后,在集电极由C7、L2构成谐振于88~108MHz的网络选出3倍频信号(即87~108MHz的信号最强),再经V3放年夜,L3、C9选频后获得较理想的调频频段信号.频率调制的过程是这样的,音频电压的变动引起VD1极间电容的变动,由于VD1与晶体J时间:二O二一年七月二十九日串联,晶体的振荡频率也发生弱小的变动,经三倍频后,频偏是29~36MHz晶体频偏的3倍.实际应用时,为获得合适的调制度,可选择调制频偏较年夜的石英晶体或者陶瓷振子,也可以采用电路稍复杂的6~12倍频电路.若输入的音频信号较弱,可加之一级电压放年夜电路.图5是晶振在时基振荡电路555的应用.晶振在门电路中晶振两种时常使用的接法:1.这种接法的优点就是起振容易,适应频率范围比力宽.具体频率范围自己不记得了.2.这种接法的优点接法简单,缺点是不那末容易起振,C1,C2要合适.时间:二O二一年七月二十九日时间:二O二一年七月二十九日。
为何在晶振两端并上由两个小的电容串联的呢?而且在中间往往接地?这样设计对电路有什么作用呢?这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。
它会影响到晶振的谐振频率和输出幅度,也是使振荡频率更稳定。
实际上就是电容三点式电路的分压电容, 接地点就是分压点。
以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的。
当两个电容量相等时, 反馈系数是0.5, 一般是可以满足振荡条件的,但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量。
如下图的连接方式:外接时大约是数pf到数十pf,依频率和石英晶体的特性而定,需要注意的是这两个串联的值是并联在谐振回路上的,会影响振荡频率。
当两个电容量相等时,反馈系数时0.5,一般是可以满足谐振条件的,但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量。
设计考虑事项:1.使晶振,外部电容与IC之间的信号尽可能的保持最短。
当非常低的电流流过IC晶振振荡器时,如果线路太长,会使它对EMC.ESD与串扰产生非常敏感的影响,而且长线路还会给振荡器增加寄生电容。
2.尽可能将其他时钟线路与频繁切换的信号线路布置在远离晶振连接的位置。
3.当心晶振和地的走线4.将晶振外壳接地如果实际的负载电容配置不当,第一会引起线路参考频率的误差,另外如在发射接收电路上会使晶振的震荡幅度下降(不在峰点),影响混频信号的信号强度与信噪。
当波形出现削峰,畸变时,可增加负载电阻调整。
(几十K到几百K),要稳定波形是并联一个1M左右的反馈电阻。
晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
晶体振荡器,简称晶振.在电气上它可以等效成一个电容和一个电阻并联再串联一个电容(de)二端网络,电工学上这个网络有两个谐振点,以频率(de)高低分其中较低(de)频率是串联谐振,较高(de)频率是并联谐振.由于晶体自身(de)特性致使这两个频率(de)距离相当(de)接近,在这个极窄(de)频率范围内,晶振等效为一个电感,所以只要晶振(de)两端并联上合适(de)电容它就会组成并联谐振电路.这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感(de)频率范围很窄,所以即使其他元件(de)参数变化很大,这个振荡器(de)频率也不会有很大(de)变化.晶振有一个重要(de)参数,那就是负载电容值,选择与负载电容值相等(de)并联电容,就可以得到晶振标称(de)谐振频率.一般(de)晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)(de)两端接入晶振,再有两个电容分别接到晶振(de)两端,每个电容(de)另一端再接到地,这两个电容串联(de)容量值就应该等于负载电容,请注意一般IC(de)引脚都有等效输入电容,这个不能忽略.一般(de)晶振(de)负载电容为15p或 ,如果再考虑元件引脚(de)等效输入电容,则两个22p(de)电容构成晶振(de)振荡电路就是比较好(de)选择.晶体振荡器也分为无源晶振和有源晶振两种类型.无源晶振与有源晶振(谐振)(de)英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器).无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整(de)谐振振荡器.谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等.晶振与谐振振荡器有其共同(de)交集有源晶体谐振振荡器.石英晶片所以能做振荡电路(谐振)是基于它(de)压电效应,从物理学中知道,若在晶片(de)两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应(de)方向上产生电场,这种现象称为压电效应.如在极板间所加(de)是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场.一般来说,这种机械振动(de)振幅是比较小(de),其振动频率则是很稳定(de).但当外加交变电压(de)频率与晶片(de)固有频率(决定于晶片(de)尺寸)相等时,机械振动(de)幅度将急剧增加,这种现象称为压电谐振,因此石英晶体又称为石英晶体谐振器.其特点是频率稳定度很高.石英晶体振荡器与石英晶体谐振器都是提供稳定电路频率(de)一种电子器件.石英晶体振荡器是利用石英晶体(de)压电效应来起振,而石英晶体谐振器是利用石英晶体和内置IC来共同作用来工作(de).振荡器直接应用于电路中,谐振器工作时一般需要提供电压来维持工作.振荡器比谐振器多了一个重要技术参数为:谐振电阻(RR),谐振器没有电阻要求.RR(de)大小直接影响电路(de)性能,也是各商家竞争(de)一个重要参数.概述微控制器(de)时钟源可以分为两类:基于机械谐振器件(de)时钟源,如晶振、陶瓷谐振槽路;基于相移电路(de)时钟源,如:RC (电阻、电容)振荡器.硅振荡器通常是完全集成(de)RC振荡器,为了提高稳定性,包含有时钟源、匹配电阻和电容、温度补偿等.图1给出了两种时钟源.图1给出了两个分立(de)振荡器电路,其中图1a为皮尔斯振荡器配置,用于机械式谐振器件,如晶振和陶瓷谐振槽路.图1b为简单(de)RC反馈振荡器.机械式谐振器与RC振荡器(de)主要区别基于晶振与陶瓷谐振槽路(机械式)(de)振荡器通常能提供非常高(de)初始精度和较低(de)温度系数.相对而言,RC振荡器能够快速启动,成本也比较低,但通常在整个温度和工作电源电压范围内精度较差,会在标称输出频率(de)5%至50%范围内变化.图1所示(de)电路能产生可靠(de)时钟信号,但其性能受环境条件和电路元件选择以及振荡器电路布局(de)影响.需认真对待振荡器电路(de)元件选择和线路板布局.在使用时,陶瓷谐振槽路和相应(de)负载电容必须根据特定(de)逻辑系列进行优化.具有高Q值(de)晶振对放大器(de)选择并不敏感,但在过驱动时很容易产生频率漂移(甚至可能损坏).影响振荡器工作(de)环境因素有:电磁干扰(EM I)、机械震动与冲击、湿度和温度.这些因素会增大输出频率(de)变化,增加不稳定性,并且在有些情况下,还会造成振荡器停振.振荡器模块上述大部分问题都可以通过使用振荡器模块避免.这些模块自带振荡器、提供低阻方波输出,并且能够在一定条件下保证运行.最常用(de)两种类型是晶振模块和集成硅振荡器.晶振模块提供与分立晶振相同(de)精度.硅振荡器(de)精度要比分立RC振荡器高,多数情况下能够提供与陶瓷谐振槽路相当(de)精度.功耗选择振荡器时还需要考虑功耗.分立振荡器(de)功耗主要由反馈放大器(de)电源电流以及电路内部(de)电容值所决定.CMOS放大器功耗与工作频率成正比,可以表示为功率耗散电容值.比如,HC04反相器门电路(de)功率耗散电容值是90pF.在4MHz、5V电源下工作时,相当于(de)电源电流.再加上20pF(de)晶振负载电容,整个电源电流为.陶瓷谐振槽路一般具有较大(de)负载电容,相应地也需要更多(de)电流.相比之下,晶振模块一般需要电源电流为10mA至60mA.硅振荡器(de)电源电流取决于其类型与功能,范围可以从低频(固定)器件(de)几个微安到可编程器件(de)几个毫安.一种低功率(de)硅振荡器,如MAX7375,工作在4MHz时只需不到2mA(de)电流.结论在特定(de)微控制器应用中,选择最佳(de)时钟源需要综合考虑以下一些因素:精度、成本、功耗以及环境需求.下表给出了几种常用(de)振荡器类型,并分析了各自(de)优缺点.晶振电路(de)作用大小没有固定值.一般二三十p.是给单片机提供工作信号脉冲(de).这个脉冲就是单片机(de)工作速度.比如 M晶振.单片机工作速度就是每秒12M.和电脑(de) CPU概念一样.当然.单片机(de)工作频率是有范围(de).不能太大.一般 24M就不上去了.不然不稳定.接地(de)话数字电路弄(de)来乱一点也无所谓.看板子上有没有模拟电路.接地方式也是不固定(de).一般串联式接地.从小信号到大信号依次接.然后小信号连到接地来削减偕波对电路(de)稳定性(de)影响,所以晶振所配(de)电容在pf-50pf之间都可以(de),没有什么计算公式.但是主流是接入两个pf(de)瓷片电容,所以还是随主流.晶振电路(de)原理晶振是(de)简称,在电气上它可以等效成一个电容和一个并联再串联一个电容(de)二端网络,电工学上这个网络有两个谐振点,以频率(de)高低分其中较低(de)频率是串联谐振,较高(de)频率是并联谐振.由于晶体自身(de)特性致使这两个频率(de)距离相当(de)接近,在这个极窄(de)频率范围内,晶振等效为一个,所以只要晶振(de)两端并联上合适(de)电容它就会组成并联谐振电路.这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感(de)频率范围很窄,所以即使其他元件(de)参数变化很大,这个振荡器(de)频率也不会有很大(de)变化.晶振有一个重要(de)参数,那就是负载电容值,选择与负载电容值相等(de)并联电容,就可以得到晶振标称(de)谐振频率.一般(de)晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)(de)两端接入晶振,再有两个电容分别接到晶振(de)两端,每个电容(de)另一端再接到地,这两个电容串联(de)容量值就应该等于负载电容,请注意一般(de)引脚都有等效输入电容,这个不能忽略.一般(de)晶振(de)负载电容为p或 ,如果再考虑元件引脚(de)等效输入电容,则两个p(de)电容构成晶振(de)振荡电路就是比较好(de)选择.晶振电路中常见问题晶振电路中如何选择电容,C2(1):因为每一种晶振都有各自(de)特性,所以最好按制造厂商所提供(de)数值选择外部元器件.(2):在许可范围内,C1,C2值越低越好.C值偏大虽有利于振荡器(de)稳定,但将会增加起振时间.(3):应使C2值大于C1值,这样可使上电时,加快晶振起振.在石英晶体和谐振器(de)应用中,需要注意负载电容(de)选择.不同厂家生产(de)石英晶体谐振器和陶瓷谐振器(de)特性和品质都存在较大差异,在选用,要了解该型号振荡器(de)关键指标,如等效电阻,厂家建议负载电容,频率偏差等.在实际电路中,也可以通过观察振荡波形来判断振荡器是否工作在最佳状态.示波器在观察振荡波形时,观察O管脚(Oscillator output),应选择MHz带宽以上(de)示波器探头,这种探头(de)输入阻抗高,容抗小,对振荡波形相对影响小.(由于探头上一般存在10~20pF(de)电容,所以观测时,适当减小在OSCO管脚(de)电容可以获得更接近实际(de)振荡波形).工作良好(de)振荡波形应该是一个漂亮(de)正弦波,峰峰值应该大于电压(de)70%.若峰峰值小于70%,可适当减小OSCI 及OSCO管脚上(de)外接负载电容.反之,若峰峰值接近电源电压且振荡波形发生畸变,则可适当增加负载电容.用示波器检测OSCI(Oscillator input)管脚,容易导致振荡器停振,原因是:部分(de)探头阻抗小不可以直接测试,可以用串电容(de)方法来进行测试.如常用(de)4MHz石英晶体谐振器,通常厂家建议(de)外接负载电容为10~30pF左右.若取中心值15pF,则C1,C2各取30pF可得到其串联等效电容值15pF.同时考虑到还另外存在(de)电路板分布电容,芯片管脚电容,晶体自身寄生电容等都会影响总电容值,故实际配置C1,C2时,可各取20~15pF左右.并且C1,C2使用瓷片电容为佳.问:如何判断电路中晶振是否被过分驱动答:电阻RS常用来防止晶振被过分驱动.过分驱动晶振会渐渐损耗减少晶振(de)接触电镀,这将引起频率(de)上升.可用一台示波器检测OSC输出脚,如果检测一非常清晰(de)正弦波,且正弦波(de)上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形(de)波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动.这时就需要用电阻RS来防止晶振被过分驱动.判断电阻RS值大小(de)最简单(de)方法就是串联一个5k或10k(de)微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止.通过此办法就可以找到最接近(de)电阻RS值.。
晶振负载电容及电阻晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。
晶振是为电路提供频率基准的元器件,通常分成有源晶振和无源晶振两个大类,无源晶振需要芯片内部有振荡器,并且晶振的信号电压根据起振电路而定,允许不同的电压,但无源晶振通常信号质量和精度较差,需要精确匹配外围电路(电感、电容、电阻等),如需更换晶振时要同时更换外围的电路。
有源晶振不需要芯片的内部振荡器,可以提供高精度的频率基准,信号质量也较无源晶振要好。
每种芯片的手册上都会提供外部晶振输入的标准电路,会表明芯片的最高可使用频率等参数,在设计电路时要掌握。
与计算机用CPU 不同,单片机现在所能接收的晶振频率相对较低,但对于一般控制电路来说足够了。
另外说明一点,可能有些初学者会对晶振的频率感到奇怪,12M、24M之类的晶振较好理解,选用如11.0592MHZ的晶振给人一种奇怪的感觉,这个问题解释起来比较麻烦,如果初学者在练习串口编程的时候就会对此有所理解,这种晶振主要是可以方便和精确的设计串口或其它异步通讯时的波特率。
晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。
一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。
无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
有源晶振串联电阻有源晶振是一种电子元件,通常用于电子设备中产生稳定的时钟信号。
在实际应用中,有源晶振往往需要串联电阻来保证其正常工作。
为了理解有源晶振串联电阻的作用,首先需要了解有源晶振的工作原理。
有源晶振是由晶振谐振器和放大器组成的,晶振谐振器负责产生稳定的振荡信号,而放大器则用于放大振荡信号。
晶振谐振器中的晶体通常是石英晶体,其具有稳定的振荡频率。
然而,由于晶体的特性,晶振谐振器在工作时也会受到外部环境的影响,例如温度变化和电源波动等。
这些外部因素可能会导致晶振谐振器的频率发生变化,进而影响整个电子设备的性能。
为了解决这个问题,可以在有源晶振的输入端串联一个电阻。
这个电阻通常被称为“串联电阻”或“接触电阻”。
串联电阻的作用是限制电流的流动,从而影响晶振谐振器的振荡频率。
通过调整串联电阻的阻值,可以精确地调节晶振谐振器的频率,使其保持稳定。
串联电阻的阻值选择需要根据具体的晶振谐振器和电子设备的要求来确定。
一般来说,串联电阻的阻值越大,对晶振谐振器的频率影响越大。
因此,在设计电子设备时,需要根据晶振谐振器的特性和工作环境的要求来选择合适的串联电阻。
串联电阻还可以起到抑制电磁干扰的作用。
在电子设备中,由于各种元件之间的布线和接触等原因,往往会产生电磁辐射或接收到外部的电磁干扰。
这些电磁干扰可能会影响有源晶振的正常工作。
通过在有源晶振的输入端串联电阻,可以有效地抑制电磁干扰的传导和辐射,提高电子设备的抗干扰能力。
有源晶振串联电阻在电子设备中起着重要的作用。
它可以帮助稳定晶振谐振器的频率,保证电子设备的正常工作。
同时,它还能抑制电磁干扰,提高设备的抗干扰能力。
因此,在设计电子设备时,需要合理选择串联电阻的阻值,以满足设备的要求。
通过对有源晶振串联电阻的研究和应用,可以进一步提高电子设备的性能和可靠性。
有源晶振串联电阻有源晶振是一种集成电路中常见的元件,它可以产生稳定的时钟信号,用于同步电路的工作。
然而,在实际应用中,有源晶振的工作稳定性并非绝对,可能会受到一些外部因素的影响。
其中一个重要的外部因素就是串联电阻。
在集成电路设计中,有源晶振通常与串联电阻相连接,这是为了保证晶振的稳定工作。
串联电阻的作用是限制电流流过晶振,从而保证晶振的振荡频率不受外界电流的影响。
同时,串联电阻还能起到抑制电阻噪声的作用,提高晶振的信噪比。
串联电阻的阻值对有源晶振的工作稳定性有重要影响。
一般来说,串联电阻的阻值越大,晶振的振荡频率就越稳定。
这是因为较大的串联电阻能够限制电流流过晶振的电路,减少外界电流对晶振的干扰。
然而,如果串联电阻的阻值过大,会导致电压下降,影响晶振的工作效果。
在实际应用中,如何选择适合的串联电阻阻值是一个关键问题。
一般来说,串联电阻的阻值应根据晶振的工作要求和电路的特性来确定。
如果晶振的振荡频率要求较高,那么应选择较大的串联电阻阻值,以确保晶振的稳定性。
相反,如果晶振的振荡频率要求较低,那么可以选择较小的串联电阻阻值。
还需要考虑串联电阻的功耗和热耗散问题。
较大的串联电阻阻值会导致较大的功耗和热耗散,这可能会影响整个电路的性能和可靠性。
因此,在选择串联电阻时,需要权衡振荡频率要求、功耗和热耗散等因素,找到一个合适的平衡点。
除了串联电阻,还有其他因素可能会影响有源晶振的工作稳定性。
例如,温度的变化、电源电压的波动、电磁干扰等都可能会对晶振的振荡频率产生影响。
因此,在实际设计中,需要综合考虑这些因素,并采取相应的措施来保证晶振的工作稳定性。
有源晶振和串联电阻是集成电路中常见的元件,它们之间的关系对电路的工作稳定性有重要影响。
正确选择合适的串联电阻阻值,可以保证晶振的稳定工作。
同时,还需要考虑其他因素,综合设计,以提高整个电路的性能和可靠性。
晶振的工作原理:晶振是晶体振荡器的简称,在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。
由于晶体自身的特性导致这两个频率的距离相当的接近,在这个极窄的频率围,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。
这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。
晶振的参数:晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。
晶振的应用:普通的晶振振荡电路都是在一个反相放大器 (注意是放大器不是反相器) 的两端接入晶振,再有两个电容分别接到晶振的两端,每一个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意普通IC 的引脚都有等效输入电容,这个不能忽略。
普通的晶振的负载电容为15p 或者12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p 的电容构成晶振的振荡电路就是比较好的选择。
晶体振荡器也分为无源晶振和有源晶振两种类型。
无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal (晶体),而有源晶振则叫做oscillator (振荡器)。
无源晶振需要借助于时钟电路才干产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不许确;有源晶振是一个完整的谐振振荡器。
晶振的种类:谐振振荡器包括石英 (或者其晶体材料)晶体谐振器,瓷谐振器,LC 谐振器等。
晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。
石英晶片所以能做振荡电路(谐振) 是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。
一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。
晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M 欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。
和晶振串联的电阻常用来预防晶振被过分驱动。
晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。
用来调整drive level和发振余裕度。
Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。
过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。
晶体的Q值非常高, Q值是什么意思呢?晶体的串联等效阻抗是Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。
Q一般达到10^-4量级。
避免信号太强打坏晶体的。
电阻一般比较大,一般是几百K。
串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看IC spec了,有的是用来反馈的,有的是为过EMI的对策可是转化为并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。
晶振旁的电阻(并联与串联)
一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。
晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。
和晶振串联的电阻常用来预防晶振被过分驱动。
晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。
用来调整drive level和发振余裕度。
Xin和Xout的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向 180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?
电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q值非常高,因此电阻在很大的范围变化都不会影响输出频率。
过去,曾经试验此电路的稳定性时,试过从100K~20M都可以正常启振,但会影响脉宽比的。
晶体的Q值非常高, Q值是什么意思呢? 晶体的串联等效阻抗是Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。
Q一般达到104量级。
避免信号太强打坏晶体的。
电阻一般比较大,一般是几百K。
串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看 IC spec了,有的是用来反馈的,有的是为过EMI的对策
可是转化为并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。
晶体的等效Rp很大很大。
外面并的电阻是并到这个Rp上的,于是,降低了Rp值 -----> 增大了Re -----> 降低了Q 关于晶振
石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。
1.匹配电容-----负载电容是指晶振要正常震荡所需要的电容。
一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。
要求高的场合还要考虑ic输入端的对地电容。
一般晶振两端所接电容是所要求的负载电容的两倍。
这样并联起来就接近负载电容了。
2.负载电容是指在电路中跨接晶体两端的总的外界有效电容。
他是一个测试条件,也是一个使用条件。
应用时一般在给出负载电容值附近调整可以得到精确频率。
此电容的大小主要影响负载谐振频率和
等效负载谐振电阻。
3.一般情况下,增大负载电容会使振荡频率下降,而减小负载电容会使振荡频率升高。
4.负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。
负载频率不同决定振荡器的振荡频率不同。
标称频率相同的晶振,负载电容不一定相同。
因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。
所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。