不等式与不等关系教案与作业
- 格式:doc
- 大小:516.00 KB
- 文档页数:7
《不等关系与不等式》教案【教学目标】1.掌握比较两个实数大小的方法——差值比较法,理解不等关系的传递性,能够运用比较实数大小的方法比较两实数的大小2.通过对具体问题的分析,培养学生的分析归纳能力,培养学生代数变形的能力,提高学生解决实际问题的能力3.通过问题情境,激发学生的学习动机和好奇心理,使其主动参与交流活动。
通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。
通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度【重点难点】重点:比较实数大小的方法.难点:1.比较实数大小方法中的代数变形;2.比较实数大小方法的实际应用【教学方法】体验法、合作讨论法【教学过程】(一)创设情境泰山旺季门票原价为180元,现推出两套优惠方案(两人以上集体购票时可选择以下任一种方案)优惠方案A:买全票一张,则其余票可享受八折优惠;优惠方案B:按团体购票,一概优惠30元.为了使门票花费最少,请各位同学发动你们的智慧想一想该选择哪种方案?教师:5-7人,由学生先对多种情况进行讨论。
合作交流:同桌讨论合作完成下列表格(作业纸)(学生思考演算并请学生回答结果)由此我们知道在实际的生活中经常会碰到比较大小的问题,这就是我们这节课所要学习的1.2节比较大小(板书课题同时幻灯片出示课题)继续就上述情境提问:对于人数确定的情况,两个具体的实数我们很容易比较大小,如果人数不确定呢,又该如何比较大小?若设人数为n ,记采用方案A 的费用为)(n f ,采用方案B 的费用为)(n g ,则36144)(+=n n f ,n n g 150)(=接着我们要比较就是这两个代数式子的大小,我们该怎么办呢?(学生思考)对于这两个式子来说,它们有以下的三种大小关系: 60)()()()(<⇒>-⇔>n n g n f n g n f 60)()()()(=⇒=-⇔=n n g n f n g n f 60)()()()(>⇒<-⇔<n n g n f n g n f 所以 当62<<n 时,选择方案B;当 6=n 时,选择两种方案都一样; 当 6>n 时,选择方案A. 这样我们的问题就解决了。
..教课方案课题不等关系与不等式教师:长沟中学柴生艳1.经过详尽情境,认识不等式(组)的实质背景,借助数轴,能从“数”和“形”双方面来认识不等式,掌握比较两个代数式(实数)的大小的基本方法-- 作差比较法;2.经过较典型的问题,教师指引,学生自主研究,学生与教师进行交流,分析,抽象出数学教课目标模型,激发学生学习兴趣和踊跃性;3.经过详尽情形,培育学生发现问题、分析问题和解决问题的能力,进一步领悟数形结合的重要方法,学生领悟到学好数学对平常生活的重要作用。
教课要点教课难点教课方法教课步骤新课引入小组合作研究比较实数(代数式)大小的基本方法:作差比较法判断差的符号启示指引式教课过程教师行为学生行为现实世界中存在着等量关系,也存在着大批的不等学生在纸上写出并回答:关系,( 1) 22℃≤ t ≤30℃( 2) q ≠ 0比方:( 1)天气预告说:今日最低温度为22℃,最高温(3)a ≥0度为 30℃,若用 t 表示今日气温,那么怎么用数学(4) 依据实质状况回答表达式表示t ?(2)上一章学习的等比数列中公比q 什么范围 ?(3)根号 a 中, a 的取值范围是什么?(4)发问两同学的身高问题,让全体同学比较其大小关系。
如 A> B又如:课本 P61 速度与手机话费问题,这些问题即是我们今日要研究的问题(板书课题)——不等关系与不等式。
请学生思虑并回答以下问题:学生思虑并回答:用问题一:不等式的定义不等号连接两个分析式(重申“≥、≤”的读法中的“或”引出问题二)(以表示它们之间的不等关系)所得的式子,叫做不等式.不等号的种类:>、<、≥、≤、≠.设计企图经过详尽情境,认识不等式的看法。
经过详尽情境,认识不等式(组)的实际背景,借助数轴,能从“数”和“形”问题二: 2≥ 2,这样写正确吗?(“≥“的含义是什么?)学生回答双方面来认识;....这样写是对的,因为“>”和“ =”只要一个满足就可以了,即 a≥b 表示 a> b 或 a=b ,相同 a≤ b 即为 a< b 或 a=b。
高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。
这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。
为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。
2.1第1课时不等关系与不等式1.不等关系不等关系常用不等式来表示.2.实数a,b的大小比较3.重要不等式一般地,∀a,b∈R,有(a-b)2≥0,当且仅当a=b时,等号成立.初试身手1.大桥桥头竖立的“限重40吨”的警示牌,是指示司机要安全通过该桥,应使车货总重量T 不超过40吨,用不等式表示为()A.T<40B.T>40C.T≤40 D.T≥40【答案】C【解析】限重就是不超过,可以直接建立不等式T≤40.2.某高速公路要求行驶的车辆的速度v的最大值为120 km/h,同一车道上的车间距d不得小于10 m,用不等式表示为()A.v≤120 km/h且d≥10 mB.v≤120 km/h或d≥10 mC.v≤120 km/hD.d≥10 m【答案】A【解析】v的最大值为120 km/h,即v≤120 km/h,车间距d不得小于10 m,即d≥10 m,故选A.3.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t℃,那么t应满足的关系式是________.【答案】4.5t <28 000【解析】由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000.4.设M =a 2,N =-a -1,则M ,N 的大小关系为________.【答案】M >N【解析】M -N =a 2+a +1=⎝⎛⎭⎫a +122+34>0,∴M >N .【例1】 ,不超过民航飞机的最低时速,可这个速度已经超过了普通客车的3倍,请你用不等式表示三种交通工具的速度关系.[解] 设复兴号列车速度为v 1,民航飞机速度为v 2,普通客车速度为v 3.v 1,v 2的关系:2v 1+100≤v 2,v 1,v 3的关系:v 1>3v 3.规律方法在用不等式(组)表示不等关系时,要进行比较的各量必须具有相同性质,没有可比性的两个(或几个)量之间不可用不等式(组)来表示.另外,在用不等式(组)表示实际问题时,一定要注意单位的统一.跟踪训练1.用一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,要求菜园的面积不小于216 m 2,靠墙的一边长为x m .试用不等式(组)表示其中的不等关系.[解] 由于矩形菜园靠墙的一边长为x m ,而墙长为18 m ,所以0<x ≤18,这时菜园的另一条边长为30-x 2=⎝⎛⎭⎫15-x 2(m). 因此菜园面积S =x ·⎝⎛⎭⎫15-x 2, 依题意有S ≥216,即x ⎝⎛⎭⎫15-x 2≥216, 故该题中的不等关系可用不等式组表示为⎩⎪⎨⎪⎧0<x ≤18,x ⎝⎛⎭⎫15-x 2≥216.【例2】 [解] 3x 3-(3x 2-x +1)=(3x 3-3x 2)+(x -1)=3x 2(x -1)+(x -1)=(3x 2+1)(x -1).∵x ≤1,∴x -1≤0,而3x 2+1>0,∴(3x 2+1)(x -1)≤0,∴3x 3≤3x 2-x +1.规律方法作差法比较两个实数大小的基本步骤跟踪训练2.比较2x 2+5x +3与x 2+4x +2的大小.[解] (2x 2+5x +3)-(x 2+4x +2)=x 2+x +1=⎝⎛⎭⎫x +122+34. ∵⎝⎛⎭⎫x +122≥0,∴⎝⎛⎭⎫x +122+34≥34>0. ∴(2x 2+5x +3)-(x 2+4x +2)>0,∴2x 2+5x +3>x 2+4x +2. 类型3 不等关系的实际应用【例3】 其余人可享受 7.5 折优惠”.乙车队说:“你们属团体票,按原价的8折优惠”.这两车队的原价、车型都是一样的,试根据单位去的人数,比较两车队的收费哪家更优惠.[解] 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx . 因为y 1-y 2=14x +34xn -45nx =14x -120nx =14x ⎝⎛⎭⎫1-n 5, 当n =5时,y 1=y 2;当n >5时,y 1<y 2;当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,选甲车队更优惠;少于5人时,选乙车队更优惠.规律方法解决决策优化型应用题,首先要确定制约着决策优化的关键量是哪一个,然后再用作差法比较它们的大小即可.跟踪训练3.甲、乙两家旅行社对家庭旅游提出优惠方案.甲旅行社提出:如果户主买全票一张,其余人可享受五五折优惠;乙旅行社提出:家庭旅游算集体票,按七五折优惠.如果这两家旅行社的原价相同,那么哪家旅行社价格更优惠?[解]设该家庭除户主外,还有x人参加旅游,甲、乙两旅行社收费总额分别为y甲、y乙,一张全票价为a元,则y甲=a+0.55ax,y乙=0.75(x+1)a.y甲-y乙=(a+0.55ax)-0.75(x+1)a=0.2a(1.25-x),当x>1.25(x∈N)时,y甲<y乙;当x<1.25,即x=1时,y甲>y乙.因此两口之家,乙旅行社较优惠,三口之家或多于三口的家庭,甲旅行社较优惠.课堂小结1.比较两个实数的大小,只要求出它们的差就可以了.a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”;第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论);最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.当堂检测1.思考辨析(1)不等式x≥2的含义是指x不小于2.()(2)若a<b或a=b之中有一个正确,则a≤b正确.()(3)若a>b,则ac>bc一定成立.()[提示](1)正确.不等式x≥2表示x>2或x=2,即x不小于2,故此说法是正确的.(2)正确.不等式a≤b表示a<b或a=b.故若a<b或a=b中有一个正确,则a≤b一定正确.(3)错误.ac-bc=(a-b)c,这与c的符号有关.【答案】(1)√(2)√(3)×2.下面表示“a与b的差是非负数”的不等关系的是()A.a-b>0B.a-b<0C.a-b≥0 D.a-b≤0【答案】C3.若实数a>b,则a2-ab________ba-b2.(填“>”或“<”).【答案】>【解析】因为(a2-ab)-(ba-b2)=(a-b)2,又a>b,所以(a-b)2>0.4.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x人,瓦工y人,试用不等式表示上述关系.[解]由题意知,500x+400y≤20 000,即5x+4y≤200.。
诸城市繁华初级中学数学教学案例课题:《6.1 不等关系和不等式》设计:潘岳亮一、学习目标:了解不等式的意义,使学生经历实际问题中数量关系的分析和抽象过程,感受不等式和等式都是刻画现实世界中数量关系的工具,发展学生的符号感。
二、尝试练习:1、不等式的概念:用连接的式子叫不等式(inequality)。
百度百科:/view/344.htm2、常见的不等式及其意义:“≠”读作“”,它表明两个量是不相等的,但不能明确哪个量大,哪个量小;“>”读作“”,它表明左边的量比右边的量大;“≥”读作“”,它表明左边的量不小于右边的量;“<”读作“”,它表明左边的量比右边的量小;“≤”读作“”,它表明左边的量不大于右边的量。
3、不等号“<”、“>”具有方向性:不等号“<”、“>”表示,它们具有方向性,因而不等号两侧。
练习:表示下列不等关系:三、课堂探究活动:例1、下列式子中,哪些是不等式?(1)x>4;(2)2x+8=1;(3)x≥a-3;(4)5a-3b+c;(5)a-2b≠8。
跟踪练习一:1、若a是有理数,下列式子:①|a|>0;②a2+10>0;③-a<0;④|a-5|≥0中,一定成立的有()A、1个B、2个C、3个D、4个例2、用不等式表示:(1)a的2倍与1的和大于3;(2)x的一半与1的差不大于2;(3)x与1的差的一半是正数;(4)m与2的和是非负数。
跟踪练习二:1、x与3的和的一半是负数,用不等式表示为()A、1302x+>B、1302x+<C、1(3)02x+>D、1(3)02x+<2、用不等式表示:(1)x是负数;(2)y的一半不大于y ;(3)x的5倍与2的差不小于0 ;(4)1与a的2倍的和小于-1 。
例3、有理数a≥b,则a ba b-+的值()A、>0B、<0C、=0D、≥0例4、在唐家山堰寒湖(百度百科/view/1608238.htm)清理的一次爆破中,用一条长1米的导火索来引爆炸药,导火索的燃烧速度为0.5厘米/秒,引爆员点着导火索后,至少以每秒多少米的速度才能跑到600米以外的安全区域、引爆员的速度x米/秒应满足什么样的关系式?课堂小结:本节课的收获(小组成员互相总结)当堂检测:1、用不等式表示:(1)a与2的和大于3 ;(2)x的绝对值是非负数;(3)x的2倍与3的差不大于1 ;(4)x的3倍小于0 。
人教版新课标普通高中◎数学⑤必修第三章不等式概述不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容.建立不等观念,处理不等关系与处理等量问题是同样重要的.根据课程标准,在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的内在联系.1.内容与课程学习目标本章主要学习描述不等关系的数学方法,一元二次不等式的解法及其应用,线性规划问题,基本不等式及其应用等,通过学习,要使学生达到以下目标:(1)通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景.(2)经历从实际情境中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.(3)从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)探索基本不等式的证明过程;会用基本不等式解决简单最大(小)值问题.2.教学要求(1)基本要求①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景;理解不等式(组)对于刻划不等关系的意义和价值;会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题.②理解并掌握不等式的基本性质;了解从实际情境中抽象出一元二次不等式模型的过程.③理解一元二次不等式的概念;通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系.④理解并掌握解一元二次不等式的过程;会求一元二次不等式解集;掌握求解一元二次不等式的程序框图及隐含的算法思想,会设计求解的过程.⑤了解从实际情境中抽象出二元一次不等式(组)模型的过程;理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域.1教师备课系统──多媒体教案2 ⑥了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;掌握简单的二元线性规划问题的解法.⑦了解基本不等式的代数背景、几何背景以及它的证明过程;理解算术平均数,几何平均数的概念;会用基本不等式解决简单的最大(小)值的问题;通过基本不等式的实际应用,感受数学的应用价值.(2)发展要求①体会不等式的基本性质在不等式证明中所起的作用.②会从实际情景中抽象出一些简单的二元线性规划问题并加以解决.(3)说明①不等式的有关内容将在选修4-5中作进一步讨论.②淡化解不等式的技巧性要求,突出不等式的实际背景及其应用.③突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形.3. 教学内容及课时安排建议3.1不等式与不等关系(约2课时)3.2一元二次不等式及其解法(约2课时)3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(约2课时)3.3.2简单的线性规划问题(约2课时)3.4基本不等式:2ba ab +≤(约2课时)人教版新课标普通高中◎数学⑤ 必修33.1 不等关系与不等式教案 A第1课时教学目标一、知识与技能通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 教学重点和难点教学重点:用不等式(组)表示实际问题的不等关系;并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式(组)正确表示出不等关系.教学关键:将实际问题的不等关系转化为数学中不等式问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法.教法与学法导航教学方法:观察法、探究法、尝试指导法、讨论法.学习方法:从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短、三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、主题探究,合作交流1. 用不等式表示不等关系引例1:限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是40v .教师备课系统──多媒体教案4引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示.3.2,5.20000≥≥p f问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤. 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥. 问题3:某钢铁厂要把长度为4 000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍. 怎样写出满足所有上述所有不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4 000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000300.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩,,, 三、拓展创新,应用提高1. 试举几个现实生活中与不等式有关的例子.2. 教材第74页的练习 第1、2题.四、小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.五、课堂作业教材第75页习题 3.1A 组 第4、5题.人教版新课标普通高中◎数学⑤ 必修5第2课时教学目标一、知识与技能掌握不等式的基本性质,会用不等式的性质证明简单的不等式.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点和难点教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式.教学难点:利用不等式的性质证明简单的不等式.教学关键:学生会用不等式的性质证明简单的不等式和比较两个数的大小.教学突破方法:通过问题解决情景的设置、投影错例展示的方式,解决学生对不等式的理解.教法与学法导航教学方法:采用探究法,遵循从具体到抽象的原则.学习方法:通过观察、分析、讨论,引导学生归纳小结出不等式的基本性质,设计较典型的问题,总结解题的规律.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课关于不等式的几个基本事实0;0;0.a b a b a b a b a b a b >⇔->⎧⎪=⇔-=⎨<⇔-<⎪⎩在初中,我们已经学习过不等式的一些基本性质,请同学们回忆初中不等式的的基本性质.1. 不等式的两边同时加上或减去同一个数,不等号的方向不改变,即若a b a c b c >⇒±>±;2. 不等式的两边同时乘以或除以同一个正数,不等号的方向不改变,即若,0a b c ac bc >>⇒>;3. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变,即若,0a b c ac bc ><⇒<.二、主题探究,合作交流1. 不等式的基本性质教师备课系统──多媒体教案6 师:同学们能证明以上不等式的基本性质吗?证明:(1)()()0a cbc a b+-+=->,∴a c b c+>+;(2)()()0>-=---bacbca,∴cbca->-.实际上,我们还有,a b b c a c>>⇒>.(证明:∵a>b,b>c,∴a-b>0,b-c>0.)根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我们就得到了不等式的基本性质:(1)abba<⇔>;(2),a b b c a c>>⇒>;(3)a b a c b c>⇒+>+;(4),0a b c ac bc>>⇒>;,0a b c ac bc><⇒<.例1已知0,0,a b c>><求证c ca b>.证明:因为0a b>>,所以ab>0,1ab>.于是11a bab ab⨯>⨯,即11b a>.由c<0 ,得c ca b>.例2比较(a+3)(a-5)与(a+2)(a-4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)2. 探索研究思考:利用上述不等式的性质,证明不等式的下列性质:(5)dbcadcba+>+⇒>>,;(6)bdacdcba>⇒>>>>0,0;人教版新课标普通高中◎数学⑤ 必修7(7))2,(0≥∈>⇒>>n N n b a b a n n ;(8))2,(0≥∈>⇒>>n N n b a b a n n .证明:(5)∵ a >b , ∴ a +c >b +c . ①∵ c >d , ∴ b +c >b +d . ②由①②得 a +c >b +d .(6)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.(7)同学们自己证明.(8)反证法)假设n n b a ≤,则:a b a b <⇒<=⇒=这都与b a >矛盾, ∴n n b a >.三、知识巩固,练习提高例3 已知x ≠0, 比较22)1(+x 与124++x x 的大小.解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=.∵0≠x , ∴02>x . 从而22)1(+x >124++x x .例4 已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.解析:b a -c -ab -d =b 2-bd -a 2+ac (a -c )(b -d )=(b +a )(b -a )-(bd -ac)(a -c )(b -d ).因为a >b >0,c <d <0,所以a -c >0,b -d >0,b -a <0,又-c >-d >0,则有-ac >-bd ,即ac <bd ,则bd -ac >0,所以(b +a )(b -a )-(bd -ac )<0,所以b a -c -a b -d =(b +a )(b -a )-(bd -ac )(a -c )(b -d )<0,即b a -c <ab -d ..教师备课系统──多媒体教案8 答案:ba-c<ab-d.课堂练习:教材第74页的练习第3题.四、小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论.五、课堂作业教材第75页习题3.1 A组第2、3题;B组第1题.教案 B第1课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质.教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小.教学过程一、导入新课章头图是一幅山峦重叠起伏的壮观画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.二、提出问题1.回忆初中学过的不等式,让学生说出“不等关系”与不等式的异同,怎样利用人教版新课标普通高中◎数学⑤ 必修 9不等式研究及表示不等关系?2. 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,你能举出一些实际例子吗?三、应用示例例1 某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车.根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则40901000,5,6,N ,x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩,,即. 49100,5,6,N .x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩, 例2.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.四、小结上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠、、、、)表示不等关系. 老师进一步画龙点睛,指出不等式是研究不等关系的重要数学工具.五、练习教材第74页 练习第 1、2题.六、提出新问题怎样比较两个实数的大小?七、作业教材第75页习题3.1 A 组第4、5题; B 组第1、2题.第2课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,教师备课系统──多媒体教案10及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣. 教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质. 教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小. 教学过程一、提出问题不等式是研究不等关系的重要数学工具,我们都了解哪些不等式的性质呢?1.请学生回答等式有哪些性质?2.不等式有哪些基本性质?这些性质都有何作用?二、探究不等式的性质性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性).证:∵b a >,∴0>-b a ,由正数的相反数是负数.0)(<--b a ,0<-a b ,a b <.性质2:如果b a >,c b >,那么c a >(传递性).证:∵b a >,c b >,∴0>-b a ,0>-c b .∵两个正数的和仍是正数,∴+-)(b a 0)(>-c b .∵0>-c a ,∴c a >.由对称性,性质2可以表示为如果b c <且a b <那么a c <.性质3:如果b a >,那么c b c a +>+(加法单调性)反之亦然.证:∵0)()(>-=+-+b a c b c a ,∴c b c a +>+.从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(.性质4:如果b a >且d c >,那么d b c a +>+(相加法则).证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>. 推论:如果b a >且d c <,那么d b c a ->-(相减法则).人教版新课标普通高中◎数学⑤ 必修 11证:∵d c < ∴d c ->-;d b c a d c ba ->-⇒⎩⎨⎧->->.或证:)()()()(d c b a d b c a ---=---.d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0.性质5:如果b a >且0>c ,那么bc ac >.如果b a >且0<c ,那么bc ac <(乘法单调性).证:c b a bc ac )(-=-.∵b a >,∴0>-b a .根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a ,即:bc ac >;0<c 时0)(<-c b a ,即:bc ac <.性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则).证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.推论:如果0>>b a 且d c <<0,那么d bc a>(相除法则).证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a dcd bc a >.性质7:如果0>>b a , 那么n n b a > (N 1)n n ∈>且.性质8:如果0>>b a ,那么n n b a > (N 1)n n ∈>且.证:(反证法)假设n n b a ≤,则:a b a b <=这都与b a >矛盾, ∴nn b a >.三、应用实例例1 比较大小教师备课系统──多媒体教案12 ①已知0>>ba,0<c求证:bcac>;解:∵0a b>>,∴ab>0,1ab>.∴11a bab ab⨯>⨯,即11b a>.∵c<0 ,∴c ca b>.②231-和10.解:∵23231+=-,∵02524562)10()23(22<-=-=-+.∴231-<10.例2 比较)5)(3(-+aa与)4)(2(-+aa的大小.解:(取差))5)(3(-+aa-)4)(2(-+aa7)82()152(22<-=-----=aaaa.∴)5)(3(-+aa<)4)(2(-+aa.例3 已知x≠0, 比较22)1(+x与124++xx的大小.解:(取差)22)1(+x-)1(24++xx22424112xxxxx=---++=.∵0≠x,∴02>x.从而22)1(+x>124++xx.小结:比较大小的步骤:“作差-变形-定号-结论”.例4 已知2,x>比较311x x+与266x+的大小.人教版新课标普通高中◎数学⑤ 必修 13解:3232211(66)33116x x x x x x x +-+=--+- 2(3)(32)(3)x x x x =-+-+-=(3)(2)(1)x x x --------------------(*)(1)当3x >时,(*)式0>,所以 311x x +>266x +;(2)当3x =时,(*)式0=,所以 311x x +=266x +;(3)当23x <<时,(*)式0<,所以 311x x +<266x +. 说明:实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.四、课堂练习1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-. 证明:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-. 2.||||,0b a ab >>, 比较a 1与b 1的大小. 解:a 1-b 1aba b -=, 当0,0>>b a 时,∵||||b a >即b a >,0<-a b ,0>ab , ∴0<-ab a b ,∴a 1<b1. 当0,0<<b a 时∵||||b a >即b a <,0>-a b ,0>ab , ∴0>-ab a b ,∴a 1>b1. 3.若0,>b a , 求证:a b ab >⇔>1. 解:01>-=-aa b a b . ∵0>a , ∴0>-a b ,∴b a <.0>-⇒>a b a b .∵0>a ,∴01>-=-a b a a b , ∴1>a b .教师备课系统──多媒体教案14 五、课堂小结1.不等式的性质,并用不等式的性质证明了一些简单的不等式;2.如何比较两个实数(代数式)的大小——作差法.六、布置作业教材第75页习题3.1 A组第2、3题;B组第2、3题.。
第三章不等式必修5 3.1 不等关系与不等式一、教学目标1.通过具体问题情境, 让学生感受到现实生活中存在着大量的不等关系;2.通过了解一些不等式(组)产生的实际背景的前提下, 学习不等式的相关内容;3.理解比较两个实数(代数式)大小的数学思维过程.二、教学重点:用不等式(组)表示实际问题中的不等关系, 并用不等式(组)研究含有不等关系的问题.理解不等式(组)对于刻画不等关系的意义和价值.三、教学难点:使用不等式(组)正确表示出不等关系.四、教学过程:(一)导入课题现实世界和生活中, 既有相等关系, 又存在着大量的不等关系我们知道, 两点之间线段最短, 三角形两边之和大于第三边, 两边之差小于第三边, 等等.人们还经常用长与短, 高与矮, 轻与重, 大与小, 不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中, 我们用不等式来表示这样的不等关系.提问:1.“数量”与“数量”之间存在哪几种关系? (大于、等于、小于)..2.现实生活中, 人们是如何描述“不等关系”的呢?(用不等式描述)引入知识点:1.不等式的定义: 用不等号<、>、≤、≥、≠表示不等关系的式子叫不等式.2.不等式a b的含义.不等式应读作“大于或者等于”, 其含义是指“或者> , 或者= ”, 等价于“不小于, 即若> 或= 之中有一个正确, 则正确.3.实数比较大小的依据与方法.(1)如果是正数, 则;如果等于零, 则;如果是负数, 则.反之也成立, 就是(>0 > ;=0 = ;<0 < ). (2)比较两个实数与的大小, 需归结为判断它们的差的符号, 至于差的值是什么, 无关紧要.(二)基础练习1.用不等式表示下面的不等关系:(1)a与b的和是非负数;(2)某公路立交桥对通过车辆的高度h“限高4m”;解: (1);(2).2.有一个两位数大于50而小于60, 其个位数字比十位数字大2.试用不等式表示上述关系(用和分别表示这个两位数的十位数字和个位数字).解: 由题意知43481158451111a a ⇒<<⇒<<. 3.比较(a +3)(a -5)与(a +2)(a -4)的大小.解: ( +3)( -5)-( +2)( -4)=( 7<0,∴(a +3)(a -5)<(a +2)(a -4).(三)提升训练1.比较 与 的大小, 其中 R.解:()2222223333333333322244x x x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫+-=-+=-+-+=-+≥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 0>,233x x ∴+>.方法总结: 两个实数比较大小, 通常用作差法来进行, 其一般步骤是:第一步: 作差;第二步: 变形,常采用配方、因式分解等恒等变形手段,将差化积;第三步: 定号.最后得出结论..2.小明带了20元钱去超市买笔记本和钢笔.已知笔记本每本2元, 钢笔每枝5元.设他所能买的笔记本和钢笔的数量分别为 , , 则 , 应满足关系式3.一个盒中红、白、黑三种球分别有 个、 个、 个, 黑球个数至少是白球个数的一半, 至多是红球的 , 白球与黑球的个数之和至少为55, 使用不等式将题中的不等关系表示出来( N*). 解:,3255.x y z y z ⎧≥≥⎪⎨⎪+≥⎩(四)课后巩固练习题:1,2.. 习题3..A 组:1,2.。
§3.1 不等式关系与不等式教学目的:1.在学生理解了一些不等式(组)生产的实际背景的前提下,学习不等式的相关内容;2.利用数轴回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小,以及用实数理论来证明不等式的一些性质;3.通过回忆和复习学生所熟悉的等式性质类比得到不等式的一些基本性质;4.在理解不等式的一些基本性质的基础上,利用它们来证明一些简单的不等式;5.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生学习的兴趣. 教学重点:1.用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;2.掌握不等式性质定理及推论,注意每个定理的条件;3.不等式的基本性质的应用.教学难点:1.用不等式(组)准确地表示出不等关系;2.差值比较法:作差→变形→判断差值的符号;3.不等式的基本性质的应用.教学过程:一、引入新课:在现实世界和日常生活中,既有相等关系,又存有着大量的不等关系.如两点之间线段最短,三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或很多于等来描绘某种客观事物在数量上存有的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、讲解新课:(一)用不等式表示不等关系引例1 限速40km/h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h,写成不等式就是:40v ≤引例2 某品牌酸奶的质量检查规定,酸奶中脂肪的含量应很多于%5.2,蛋白质的含量p 应很多于%3.2,写成不等式组就是——用不等式组来表示2.5%2.3%f p ≤⎧⎨≥⎩ 问题1: 设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤.问题2: 某种杂志原以每本5.2元的价格销售,能够售出8万本.据市场调查,若单价每提升1.0元,销售量就可能相对应减少2000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解: 设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯万元, 那么不等关系“销售的总收入仍不低于20万元”能够表示为不等式2.5(80.2)200.1x x --⨯≥ 问题3: 某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍.怎样写出满足所有上述不等关系的不等式呢? 解: 假设截得500mm 的钢管x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4000mm;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,能够用下面的不等式组来表示:5006004000;3;0;0.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩(二)不等式的基本性质1.判断两个实数大小的充要条件对于任意两个实数b a ,,在b a b a b a <=>,,三种关系中有且仅有一种成立.判断两个实数大小的充要条件是:0>-⇔>b a b a0=-⇔=b a b a0<-⇔<b a b a由此可见,要比较两个实数的大小,只要考察它们的差的符号就能够了.2.不等式的定义用不等号连接两个解析式所得的式子,叫做不等式.说明: (1)不等号的种类:≠≤≥<>,,,,.(2)解析式是指:代数式和超越式(包括指数式、对数式和三角式等).(3)不等式研究的范围是实数集R .3.同向不等式与异向不等式同向不等式:两个不等号方向相同的不等式;例如d c b a >>,,是同向不等式.异向不等式:两个不等号方向相反的不等式;例如d c b a <>,,是异向不等式.4.不等式的性质定理1:假设b a >,那么a b <,假设a b <,那么b a >.(对称性)即a b b a <⇔>证明: ∵b a >∴0>-b a由正数的相反数是负数,得0)(<--b a即0<-a b∴a b <(定理的后半部分略)点评:定理1即 a b b a <⇔>定理2:假设b a >且c b >,那么c a >.(传递性)即c a c b b a >⇒>>,证明:∵c b b a >>,∴0,0>->-c b b a根据两个正数的和仍是正数得0)()(>-+-c b b a 即0>-c a∴c a >点评:(1)根据定理l,定理2还能够表示为a c a b b c <⇒<<,;(2)不等式的传递性能够推广到n 个的情形.定理3:假设b a >,那么c b c a +>+.即c b c a b a +>+⇒>(加法性质)证明:∵b a >∴0>-b a∴0)()(>+-+c b c a 即c b c a +>+点评:(1)定理3的逆命题也成立;(2)利用定理3能够得出,假设c b a >+,那么b c a ->,也就是说,不等式中任何一项改变符号后,能够把它从—边移到另一边.推论:假设b a >且d c >,那么d b c a +>+(相加法则)即d b c a d c b a +>+⇒>>,证法一:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒> 证法二:⇒>-+-⇒⎭⎬⎫>-⇒>>-⇒>000d c b a d c d c b a b a d b c a +>+ 点评:这个推论能够推广到任意有限个同向不等式两边分别相加,即两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向.定理4:假设b a >且0>c ,那么bc ac >;假设b a >且0<c ,那么bc ac <.(乘法性质)证明:∵c b a bc ac )(-=-∵b a >∴0>-b a当0>c 时,0)(>-c b a 即bc ac >当0<c 时,0)(<-c b a 即bc ac <推论1: 假设0>>b a 且0>>d c ,那么bd ac >.(相乘法则)证明:,0a b c >> ac bc ∴> ①又,0,c d b >> ∴bc bd > ②由①、②可得ac bd >.说明: (1)所有的字母都表示正数,假设仅有,a b c d >>,就推不出ac bd > 的结论.(2)这个推论能够推广到任意有限个两边都是正数的同向不等式两边分别相乘.这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向.推论2: 若0,(1)n n a b a b n N n >>>∈>则且.说明:(1)推论2是推论1的特殊情形;(2)应强调学生注意N n ∈1n >且的条件,假设0>>b a ,那么n n b a >(N n ∈且1>n ).定理5: 若0>>b a ,则n n b a >(N n ∈且1>n ).(指数运算性质)点拨:遇到困难时,可从问题的反面入手,即所谓的“正难则反”.我们用反证法来证明定理5,因为反面有两种情形,=所以不能仅仅<就“归谬”了事,而必须实行“穷举”.证明:假定n a 不大于n b ,<或者n n b a =由推论2和定理1,<,有a b <; 当n n b a =时,显然有b a = 这些都同已知条件0a b >>矛盾>点评:反证法证题思路是:反设结论→找出矛盾→肯定结论. 定理6:若b a >且0>ab ,则11.a b <(倒数性质) 证明:aba b b a -=-11 0,>>ab b a 又 011,0<-=-<-∴ab a b b a a b ba 11<∴ 5.不等式的基本性质小结(1)a b b a <⇔>;a b b a <⇔>(定理1,对称性)(2)c a c b b a >⇒>>,(定理2,传递性)(3)c b c a b a +>+⇒>(定理3,加法单调性)(4)d b c a d c b a +>+⇒>>,(定理3推论,同向不等式相加)(5)d b c a d c b a ->-⇒<>,(异向不等式相减)(6)bc ac c b a >⇒>>0,.;bc ac c b a <⇒<>0,(定理4,乘法单调性)(7)bd ac d c b a >⇒>>>>0,0(定理4推论1,同向不等式相乘) (8)d b c a d c b a >⇒<<>>0,0(异向不等式相除) (9)0,>>ab b a ba 11<⇒(倒数关系) (10))1,(0>∈>⇒>>n Z nb a b a n n 且(定理4推论2,平方法则) (11))1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)(**)ααααααb a b a b a b a <⇒<>>>⇒>>>0,0;0,0(**)0,0>>b a ,则1 ;1 ;1<⇔<=⇔=>⇔>ba b a b a b a b a b a三、讲解范例:(一)用不等式表示不等关系例1 如图,函数)(x f y =反映了某公司产品的销售收入y 万元与销售量x 吨的函数关系,)(x g y =反映了该公司产品的销售成本与销售量的函数关系,试问:(1)当销售量为多少时,该公司赢利(收入大于成本);(2)当销售量为多少时,该公司亏损(收入小于成本).解: 略例2 某用户计划购买单价分别为60元,70元的单片软件和盒装磁盘,使用资金不超过500元,根据需要,软件至少买3片,磁盘至少买2盒.问:软件数与磁盘数应满足什么条件? 解: 略例3 某厂使用两种零件B A ,,装配两种产品甲,乙,该厂的生产水平是月产量甲最多2500件,月产量乙最多1200件,而组装一件产品,甲需要4个A ,2个B ;乙需要6个A ,8个B .某个月,该厂能用的A 最多有14000个,B 最多有12000个.用不等式将甲,乙两种产品产量之间的关系表示出来.解: 略例4 若需要在长为4000mm 的圆钢上,截出长为698mm 和518mm 两种毛坯,问怎样写出满足上述条件所有不等关系的不等式组?解: 略(二)不等式的基本性质例1 已知0≠x ,比较22)1(+x 与124++x x 的大小.引伸: 在例中,假设没有0≠x 这个条件,那么两式的大小关系如何?结论: 例1是用作差比较法来比较两个实数的大小,其一般步骤是:作差——变形——判断符号.这样把两个数的大小问题转化为判断它们差的符号问题,至于差本身是多少,在此无关紧要.例2 已知0,0>>>m b a ,试比较m a m b ++与a b 的大小. 解: 略例3 已知d c b a <<>>0,0,求证:d b c a > 证明: 略例4 已知y x >且0≠y ,比较y x 与1的大小. 解: 略思考题:1.设*,0,,a b n N >∈且b a ≠,比较()()n n a b a b ++与112()n n ab +++的大小.2.比较222c b a ++与ca bc ab ++的大小.3.已知y x ,均为正数,设yx N y x M +=+=4,11,试比较M 和N 的大小.例5 若31,51<-<-<+<b a b a ,求b a 23-的范围.解: 略类型题: 已知bx ax x f +=2)(,假设4)1(2,2)1(1≤≤≤-≤f f .求证:14)2(7≤≤f .分析: 利用(1)f -与(1)f 设法表示b a ,然后再代入(2)f 的表达式中,从而用(1)f - 与来表示(2)f , 最后使用已知条件确定(2)f 的取值范围.思考题:1.若R b a ∈,,求不等式b a b a 11,>>同时成立的条件.2.||||,0b a ab >>,比较a 1与b 1的大小.3.若0,0<<>>d c b a ,求证:db c a ->-ππααsin sin log log .4.设函数)(x f 的图象为一条开口向上的抛物线.已知y x ,均为不等正数, 0,0>>q p 且1=+q p ,求证:)()()(y qf x pf qy px f +<+四、课堂练习:1.在以下各题的横线处适当的不等号: (1)2)23(+ 626+; (2)2)23(- 2)16(-;; (4)当0.>>b a 时,a 21log b 21log . 2.选择题:(1)若01,0<<-<b a ,则有( )A. 2ab ab a >>B. a ab ab >>2C. 2ab a ab >>D. a ab ab >>2(2)2log 2log n m >成立当且仅当( )A .1>>m n 或01>>>n mB .01>>>n mC .1>>m n 或01>>>m n 或01>>>n mD .1>>n m3.比较大小:(1))7)(5(++x x 与2)6(+x (2)31log 21与21log 314.假设0>x ,比较2)1(-x 与2)1(+x 的大小.5.已知0≠a ,比较)12)(12(22+-++a a a a 与)1)(1(22+-++a a a a 的大小.6.已知142=+y x ,比较22y x +与201的大小.7.比较θsin 2与θ2sin 的大小(πθ20<<).8.设0>a 且1≠a ,0>t ,比较t a log 21与21log +t a 的大小.9.设0>a 且1≠a ,比较)1(log 3+a a 与)1(log 2+a a 的大小.10.假设0,>b a ,求证:a b a b >⇔>1。
不等式及不等式组教案5篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!不等式及不等式组教案5篇有了教案,教师能够及时调整教学策略和教学方法,优秀的教案能够根据学生的学习需求和兴趣进行教学内容的合理拓展和延伸,本店铺今天就为您带来了不等式及不等式组教案5篇,相信一定会对你有所帮助。
3.1 不等关系与不等式一、学习目标1. 如何利用不等式表示不等关系,利用不等式的有关基本性质研究不等关系;2.会比较两个实数或代数式的大小二、教学重、难点重点:用不等式(组)表示实际问题中的不等关系难点:正确理解现实生活中存在的不等关系. 用不等式(组)正确表示出不等关系。
三、教学过程问题1:某种杂志原以每本2.5元的价格销售,可以售出8万本。
根据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。
若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元?问题2:某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍。
怎样写出满足上述所有不等关系的不等式呢?归纳小结:(二)典例分析题型一:用不等式表示不等关系例1:某校学生以面粉和大米为主食.已知面食每100克含蛋白质6个单位,含淀粉4个单位;米饭每100克含蛋白质3个单位,含淀粉7个单位.某快餐公司给学生配餐,现要求每盒至少含8个单位的蛋白质和10个单位的淀粉.设每盒快餐需面食x百克、米饭y百克,试写出,x y满足的条件.变式训练:配制,A B两种药剂需要甲、乙两种原料,已知配一剂A种药需甲料3毫克,乙料5毫克,配一剂B药需甲料5毫克,乙料4毫克。
今有甲料20毫克,乙料25毫克,若,A B 两种药至少各配一剂,则,A B两种药在配制时应满足怎样的不等关系题型二:作差法比较大小(1)0;(2)0;(3)0a b a b a b a b a b a b >⇔->=⇔-=<⇔-<例2:比较22()31,()21f x x x g x x x =-+=+-与3x 的大小.变式1:已知x ≠0,比较(x 2+1)2与x 4+x 2+1的大小.变式2:已知1a >,设11A a=+,11B a=-试比较A ,B 的大小变式3:比较a m b m++与a b(其中0b a >>,0m >)的大小归纳作差比较法的步骤是:1、作差;2、变形:配方、因式分解、通分、分母(分子)有理化等;3、判断符号;4、作出结论. 例3 (作商法)已知0a >,0b >,且a b ≠,试比较aba b 与baa b 的大小关系总结步骤1、作商变形2、与1比较大小 3、得出结论 课堂小结1.通过具体情景,建立不等式模型;2.比较两实数大小的方法——求差比较法与作商法.不等式与不等关系作业1、某高校录取新生对语、数、英三科的高考分数的要求是:语文不低于70分;数学应高于80分;语、数、英三科的成绩之和不少于230分.若张三被录取到该校,设该生的语、数、英的成绩分别为x ,y ,z ,则x ,y ,z 应满足的条件是____________________________. 2、某品牌酸奶的质量规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是____________________.3、某中学对高一美术生划定录取控制分数线,专业成绩x 不低于95分,文化课总分y 不低于380分,体育成绩z 不低于45分,写成不等式组就是____________________.4、若2x ≠或1y ≠-,2242x y x y M =+-+,5N =-,则M 与N 的大小关系是________ 5、若22()31,()21f x x x g x x x =-+=+-,则()f x _____()g x6、a 克糖水中有b 克糖(0a b >>),若再添进m 克糖(0m >),则糖水就变甜了,试根据事实提炼一个不等式______________________.7、某一天24小时内两艘船均须在某一码头停靠一次,为了卸货的方便,两艘船到达该码头的时间至少要相差两小时,设甲、乙两船到达码头的时间分别x ,y 小时,且两船互不影响,则x ,y 应满足的关系是( )A .200y x x y -≥⎧⎪≥⎨⎪≥⎩B .200x y x y -≥⎧⎪≥⎨⎪≥⎩C .200y x x y ->⎧⎪≥⎨⎪≥⎩ D .2024024y x x y ⎧-≥⎪≤≤⎨⎪≤≤⎩8、某商场对顾客实行优惠活动,规定一次购物付款总额:①200元以内(包括200元)不予优惠;②超过200元不超过500元,按标价9折优惠;③超过500元其中500元按②优惠,超过部分按7折优惠,某人两次购物分别付款168元和423元,若他一次购物,应付款_______________元.9、已知a 、b R +∈,且a b ≠,比较55a b +与3223a b a b +的大小.10、已知x>y ,且y ≠0,比较yx 与1的大小11、设a=x2+1-2x,b=x2+16-8x,且3<x<4,比较a与b的大小§3.1不等式与不等关系【教学目标】掌握不等式的基本性质,会用不等式的性质证明简单的不等式;通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法;【教学重点】掌握不等式的性质和利用不等式的性质证明简单的不等式;【教学难点】利用不等式的性质证明简单的不等式。
【教学过程】1.课题导入请同学们回忆初中不等式的的基本性质。
(1)a b a c b c>⇒±>±(2),0a b c ac bc>>⇒>(3),0a b c ac bc><⇒<2.自学不等式的性质性质1 _____________________性质2 _____________________(传递性)性质3 _____________________性质4 ______________________性质5 _____________________(同向可加性)性质6 ______________________性质7 ______________________性质8 ______________________[范例讲解]:例1判断下列命题的真假(1)若0,a b<<则11a b<(2)若a b>则1122a b⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭(3)若a b c>>,则a c b c>例2已知0,0,a b c>><求证:c c a b >变式训练已知0,0,0a b c d e>><<<求证:e e a c b d>--例3已知68,23a b-<<<<分别求2,,aa b a bb+-的取值范围。
变式训练已知22ππαβ-≤<≤,求2αβ+与2αβ-的范围3.随堂练习11、课本P74的练习3不等式的性质作业1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )A .ad bc >B .a c b c >C .a c b d ->-D .a c b d +>+ 2、下列命题中正确的是( )A .若a b >,则22ac bc > B .若a b >,c d >,则a c b d ->- C .若0ab >,a b >,则11a b< D .若a b >,c d <,则a b cd>3、下列命题中正确命题的个数是( )①若x y z >>,则xy yz >;②a b >,c d >,0a b cd ≠,则a b cd>;③若110a b<<,则2ab b <;④若a b >,则11b b aa ->-.A .1B .2C .3D .44、如果0a <,0b >,则下列不等式中正确的是( )A .11ab<B <C .22a b < D .a b >5、下列各式中,对任何实数x 都成立的一个式子是( ) A .()2lg 1lg 2x x +≥ B .212x x +> C .2111x ≤+ D .12x x+≥6、若a 、b 是任意实数,且a b >,则( )A .22a b >B .1ba < C .()lg 0ab -> D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭7、如果a R ∈,且20a a +<,那么a ,2a ,a -,2a -的大小关系是( ) A .22a a a a >>->- B .22a a a a ->>-> C .22a a a a ->>>-D .22a a a a >->>-8、若231x x M =-+,22x x N =+,则( )A .M >N B .M <N C .M ≤N D .M ≥N 10、不等式①222a a +>,②()2221a b a b +≥--,③22a b a b +>恒成立的个数是( )A .0B .1C .2D .311、已知0a b +>,0b <,那么a ,b ,a -,b -的大小关系是( ) A .a b b a >>->- B .a b a b >->-> C .a b b a >->>-D .a b a b >>->-12、给出下列命题:①22a b ac bc >⇒>;②22a b a b >⇒>;③33a b a b >⇒>;④22a b a b >⇒>.其中正确的命题是( )A .①②B .②③C .③④D .①④13、已知实数a 和b 均为非负数,下面表达正确的是( ) A .0a >且0b > B .0a >或0b > C .0a ≥或0b ≥ D .0a ≥且0b ≥ 14、已知a ,b ,c ,d 均为实数,且0ab >,c d ab-<-,则下列不等式中成立的是( )A .bc ad <B .bc ad >C .a b c d> D .a b cd<15、若()2331f x x x =-+,()225g x x x =+-,则()f x ,()g x 的大小关系是( ) A .()()f x g x < B .()()f x g x = C .()()f x g x > D .随x 值的变化而变化。