北京市西城区2018届高三4月统一测试(一模)数学(理)试题答案
- 格式:pdf
- 大小:104.28 KB
- 文档页数:2
2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。
2018年高考数学一模试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种5.执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.77.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+128.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.99.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°10.函数y=的图象大致为()A.B.C.D.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .14.展开式中不含x4项的系数的和为.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= .16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2} B.{2} C.{﹣2,2} D.{﹣2,0,2}【考点】集合的包含关系判断及应用.【专题】计算题.【分析】根据B⊆A,利用分类讨论思想求解即可.【解答】解:当a=0时,B=∅,B⊆A;当a≠0时,B={}⊆A,=1或=﹣1⇒a=﹣2或2,综上实数a的所有可能取值的集合为{﹣2,0,2}.故选D.【点评】本题考查集合的包含关系及应用.注意空集的讨论,是易错点.2.已知z是纯虚数,是实数,那么z等于()A.2i B.i C.﹣i D.﹣2i【考点】复数的基本概念;复数代数形式的乘除运算.【专题】计算题.【分析】设出复数z,代入,它的分子、分母同乘分母的共轭复数,化简为a+bi(a,b∈R)的形式.【解答】解:由题意得z=ai.(a∈R且a≠0).∴==,则a+2=0,∴a=﹣2.有z=﹣2i,故选D【点评】本题考查复数的基本概念,复数代数形式的乘除运算,考查计算能力,是基础题.3.已知命题p:函数y=2﹣a x+1的图象恒过定点(1,2);命题q:若函数y=f(x﹣1)为偶函数,则函数y=f(x)的图象关于直线x=1对称,则下列命题为真命题的是()A.p∨q B.p∧q C.¬p∧q D.p∨¬q【考点】复合命题的真假.【专题】计算题;转化思想;综合法;简易逻辑.【分析】由函数的翻折和平移,得到命题p假,则¬p真;由函数的奇偶性,对轴称和平移得到命题q假,则命题¬q真,由此能求出结果.【解答】解:函数y=2﹣a x+1的图象可看作把y=a x的图象先沿轴反折,再左移1各单位,最后向上平移2各单位得到,而y=a x的图象恒过(0,1),所以函数y=2﹣a x+1恒过(﹣1,1)点,所以命题p假,则¬p真.函数f(x﹣1)为偶函数,则其对称轴为x=0,而函数f(x)的图象是把y=f(x﹣1)向左平移了1各单位,所以f(x)的图象关于直线x=﹣1对称,所以命题q假,则命题¬q真.综上可知,命题p∧¬q为真命题.故选:D.【点评】本题考查命题的真假判断,是中档题,解题时要认真审题,注意得复合命题的性质的合理运用.4.在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有()A.24种B.48种C.96种D.144种【考点】计数原理的应用.【专题】计算题.【分析】本题是一个分步计数问题,A只能出现在第一步或最后一步,从第一个位置和最后一个位置选一个位置把A排列,程序B和C实施时必须相邻,把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列.【解答】解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果根据分步计数原理知共有2×48=96种结果,故选C.【点评】本题考查分步计数原理,考查两个元素相邻的问题,是一个基础题,注意排列过程中的相邻问题,利用捆绑法来解,不要忽略被捆绑的元素之间还有一个排列.5.执行如图所示的程序框图,输出s 的值为( )A .﹣B .C .﹣D .【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的k 的值,当k=5时满足条件k >4,计算并输出S 的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k >4,k=3不满足条件k >4,k=4不满足条件k >4,k=5满足条件k >4,S=sin =,输出S 的值为.故选:D .【点评】本题主要考查了循环结构的程序框图,属于基础题.6.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2 B.5 C.6 D.7【考点】简单线性规划.【专题】不等式的解法及应用.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x ﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.【点评】本题主要考查线性规划的基本知识,用图解法解决线性规划问题时,利用线性规划求函数的最值时,关键是将目标函数赋予几何意义.7.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6C.56+12D.60+12【考点】由三视图求面积、体积.【专题】立体几何.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.【点评】本题考查三视图与几何体的关系,注意表面积的求法,考查空间想象能力计算能力.8.已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2 B. C.6 D.9【考点】基本不等式;数量积判断两个平面向量的垂直关系.【专题】平面向量及应用.【分析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.【解答】解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.【点评】本题考查了⊥⇔=0、基本不等式的性质,属于基础题.9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2,c=2,1+=.则∠C=()A.30°B.135° C.45°或135°D.45°【考点】正弦定理;余弦定理.【专题】解三角形.【分析】利用正弦定理以及两角和差的正弦公式进行化简即可.【解答】解:由1+=.得1+=.即cosAsinB+sinAcosB=2sinCcosA,即sin(A+B)=2sinCcosA,即sinC=2sinCcosA,∴cosA=,即A=,∵a=2,c=2,∴a>c,即A>C,由正弦定理得,即,∴sinC=,即C=45°,故选:D【点评】本题主要考查解三角形的应用,根据正弦定理以及两角和差的正弦公式进行化简是解决本题的关键.10.函数y=的图象大致为()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】根据函数的定义域,特殊点的函数值符号,以及函数的单调性和极值进行判断即可.【解答】解:由lnx≠0得,x>0且x≠1,当0<x<1时,lnx<0,此时y<0,排除B,C,函数的导数f′(x)=,由f′(x)>0得lnx>1,即x>e此时函数单调递增,由f′(x)<0得lnx<1且x≠1,即0<x<1或1<x<e,此时函数单调递减,故选:D.【点评】本题主要考查函数图象的识别和判断,根据函数的性质,利用定义域,单调性极值等函数特点是解决本题的关键.11.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于点C,|BF|=,则△BCF与△ACF的面积之比=()A.B.C.D.【考点】抛物线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用三角形面积公式,可把△BCF与△ACF的面积之比转化为BC长与AC长的比,再根据抛物线的焦半径公式转化为A,B到准线的距离之比,借助|BF|=求出B点坐标,得到AB方程,代入抛物线方程,解出A点坐标,就可求出BN与AE的长度之比,得到所需问题的解.【解答】解:∵抛物线方程为y2=2x,∴焦点F的坐标为(,0),准线方程为x=﹣,如图,设A(x1,y1),B(x2,y2),过A,B分别向抛物线的准线作垂线,垂足分别为E,N,则|BF|=x2+=2,∴x2=2,把x2=2代入抛物线y2=2x,得,y2=﹣2,∴直线AB过点M(3,0)与(2,﹣2)方程为2x﹣y﹣6=0,代入抛物线方程,解得,x1=,∴|AE|=+=5,∵在△AEC中,BN∥AE,∴===,故选:A【点评】本题主要考查了抛物线的焦半径公式,侧重了学生的转化能力,以及计算能力.12.对于任意实数a,b,定义min{a,b}=,定义在R上的偶函数f (x)满足f (x+4)=f(x),且当0≤x≤2时,f (x)=min{2x﹣1,2﹣x},若方程f (x)﹣mx=0恰有两个根,则m的取值范围是()A.{﹣1,1}∪(﹣ln2,)∪(,ln2)B.[﹣1,)∪C.{﹣1,1}∪(﹣ln2,)∪(,ln2)D.(,)∪(,)【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先由题意求出f(x),然后令g(x)=mx,转化为图象交点的问题解决.【解答】解:由题意得,又因为f(x)是偶函数且周期是4,可得整个函数的图象,令g(x)=mx,本题转化为两个交点的问题,由图象可知有三部分组成,排除B,D易得当过(3,1),(﹣3,1)点时恰有三个交点,此时m=±,故选A.【点评】本题考查的是函数的性质的综合应用,利用数形结合快速得解.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.若tan(π﹣α)=2,则sin2α= .【考点】二倍角的正弦;同角三角函数间的基本关系;诱导公式的作用.【专题】三角函数的求值.【分析】利用诱导公式化简已知等式的左边求出tanα的值,再利用同角三角函数间的基本关系得到sinα=2cosα,且sinα与cosα异号,两边平方并利用同角三角函数间的基本关系求出cos2α与sin2α的值,进而求出sinαcosα的值,最后利用二倍角的正弦函数公式即可求出sin2α的值.【解答】解:∵tan(π﹣α)=﹣tanα=﹣=2,即=﹣2<0,∴sinα=﹣2cosα,两边平方得:sin2α=4cos2α,∵sin2α+cos2α=1,∴cos2α=,sin2α=,∴sin2αcos2α=,即sinαcosα=﹣,则sin2α=2sinαcosα=﹣.故答案为:﹣【点评】此题考查了二倍角的正切函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.14.展开式中不含x4项的系数的和为0 .【考点】二项式系数的性质.【专题】计算题.【分析】给二项式中的x赋值1,得到展开式的所有项的系数和;利用二项展开式的通项公式求出通项,令x的指数为4求出展开式中x4的系数,利用系数和减去x4的系数求出展开式中不含x4项的系数的和.【解答】解:令x=1求出展开式的所有的项的系数和为1展开式的通项为令得r=8所以展开式中x4的系数为1故展开式中不含x4项的系数的和为1﹣1=0故答案为:0【点评】本题考查解决展开式的系数和问题常用的方法是赋值法、考查利用二项展开式的通项公式解决二项展开式的特定项问题.15.如图,矩形OABC内的阴影部分由曲线f(x)=sinx及直线x=a(a∈(0,2π)与x轴围成.向矩形OABC内随机掷一点,该点落在阴影部分的概率为,则a= π.【考点】几何概型.【专题】概率与统计.【分析】根据几何概型的概率公式,以及利用积分求出阴影部分的面积即可得到结论.【解答】解:根据题意,阴影部分的面积为==1﹣cosa,矩形的面积为,则由几何概型的概率公式可得,即cosa=﹣1,又a∈(0,2π),∴a=π,故答案为:π【点评】本题主要考查几何概型的概率的计算,根据积分的几何意义求出阴影部分的面积是解决本题的关键.16.以下四个命题:①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样.②两个随机变量相关性越强,则相关系数的绝对值越接近于1.③在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位.④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越小,“X与Y有关系”的把握程度越大.其中正确的命题是②③.【考点】命题的真假判断与应用.【专题】概率与统计;推理和证明.【分析】根据抽样方法的定义,可判断①;根据相关系数与相关性的关系,可判断②;根据相关系数的几何意义,可判断③;根据独立性检验的方法和步骤,可判断④.【解答】解:从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0,故②正确;在回归直线=0.2x+12中,当解释变量x每增加一个单位时,预报变量平均增加0.2单位,故③正确;对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④错误;故正确的命题是:②③,故答案为:②③【点评】本题以命题的真假判断为载体,考查了抽样方法,相关系数,回归分析,独立性检验等知识点,难度不大,属于基础题.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤.17.设数列{a n}的前n项积为T n,且T n=2﹣2a n(n∈N*).(Ⅰ)求证数列是等差数列;(Ⅱ)设b n=(1﹣a n)(1﹣a n+1),求数列{b n}的前n项和S n.【考点】数列的求和;等差关系的确定.【专题】综合题;等差数列与等比数列.【分析】(Ⅰ)由已知,令n=1可求T1,然后利用已知变形可得:T n•T n﹣1=2T n ﹣1﹣2T n(n≥2),变形即可证明(Ⅱ)由等差数列,可求,进而可求a n,代入即可求解b n,结合数列的特点考虑利用裂项求和【解答】解:(Ⅰ)∵T n=2﹣2a n∴T1=2﹣2T1∴∴由题意可得:T n•T n﹣1=2T n﹣1﹣2T n(n≥2),所以∴数列是以为公差,以为首项的等差数列(Ⅱ)∵数列为等差数列,∴,∴,∴,∴==【点评】本题主要考查了利用数列的递推公式构造等比数列求解数列的通项公式及数列的裂项求和方法的应用.18.“你低碳了吗?”这是某市为倡导建设资源节约型社会而发布的公益广告里的一句话.活动组织者为了解这则广告的宣传效果,随机抽取了100名年龄段在[10,20),[20,30),…,[50,60)的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,求[50,60)年龄段抽取的人数;(Ⅲ)从按(Ⅱ)中方式得到的8人中再抽取3人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.【考点】离散型随机变量的期望与方差;频率分布直方图.【专题】概率与统计.【分析】(Ⅰ)利用频率分布直方图能求出随机抽取的市民中年龄段在[30,40)的人数.(Ⅱ)由频率公布直方图知100×0.15=15,100×0.05=5,由此能求出抽取的8人中[50,60)年龄段抽取的人数.(Ⅲ)X的所有可能取值为0,1,2.分别求出相应的概率,由此能求出X的分布列和X的数学期望.【解答】解:(Ⅰ)1﹣10×(0.020+0.025+0.015+0.005)=0.35,100×0.35=35,即随机抽取的市民中年龄段在[30,40)的人数为35.…(Ⅱ)100×0.15=15,100×0.05=5,所以,即抽取的8人中[50,60)年龄段抽取的人数为2.…(Ⅲ)X的所有可能取值为0,1,2.;;.所以X的分布列为X 0 1 2PX的数学期望为.…【点评】本题考查离散型随机变量的分布列和数学期望的求法,解题时要认真审题,注意排列组合知识的合理运用.19.如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.(1)求证:DE∥平面PBC;(2)求证:AB⊥PE;(3)求二面角A﹣PB﹣E的大小.【考点】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面垂直的判定;二面角的平面角及求法.【专题】空间角;空间向量及应用.【分析】(Ⅰ)由三角形中位线定理可得DE∥BC,进而由线面平行的判定定理得到DE∥平面PBC (II)连接PD,由等腰三角形三线合一,可得PD⊥AB,由DE∥BC,BC⊥AB可得DE⊥AB,进而由线面垂直的判定定理得到AB⊥平面PDE,再由线面垂直的性质得到AB⊥PE;(Ⅲ)以D为原点建立空间直角坐标系,分别求出平面PBE的法向量和平面PAB的法向量,代入向量夹角公式,可得二面角A﹣PB﹣E的大小.【解答】解:(Ⅰ)∵D、E分别为AB、AC中点,∴DE∥BC.∵DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.…(Ⅱ)连接PD,∵PA=PB,D为AB中点,∴PD⊥AB.….∵DE∥BC,BC⊥AB,∴DE⊥AB…又∵PD∩DE=D,PD,DE⊂平面PDE∴AB⊥平面PDE…∵PE⊂平面PDE,∴AB⊥PE…(Ⅲ)∵AB⊥平面PDE,DE⊥AB…如图,以D为原点建立空间直角坐标系,由PA=PB=AB=2,BC=3,则B(1,0,0),P(0,0,),E(0,,0),∴=(1,0,),=(0,,).设平面PBE的法向量,∴令得…∵DE⊥平面PAB,∴平面PAB的法向量为.…设二面角的A﹣PB﹣E大小为θ,由图知,,所以θ=60°,即二面角的A﹣PB﹣E大小为60°…【点评】本题考查的知识点是二面角的平面角及求法,直线与平面平行的判定,直线与平面垂直的判定,熟练掌握空间直线与平面位置关系的判定,性质是解答(I)和(II)的关键,而(III)的关键是建立空间坐标系,将空间角问题转化为向量夹角问题.20.已知椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.A、B是椭圆C的右顶点与上顶点,直线y=kx(k>0)与椭圆相交于E、F两点.(1)求椭圆C的方程;(2)当四边形AEBF面积取最大值时,求k的值.【考点】直线与圆锥曲线的关系.【专题】圆锥曲线的定义、性质与方程.【分析】(1)通过椭圆的离心率,直线与圆相切,求出a,b即可求出椭圆的方程.(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程,利用韦达定理,结合点E,F到直线AB的距离分别,表示出四边形AEBF的面积,利用基本不等式求出四边形AEBF面积的最大值时的k值即可.【解答】解:(1)由题意知:=∴=,∴a2=4b2.…又∵圆x2+y2=b2与直线相切,∴b=1,∴a2=4,…故所求椭圆C的方程为…(2)设E(x1,kx1),F(x2,kx2),其中x1<x2,将y=kx代入椭圆的方程整理得:(k2+4)x2=4,故.①…又点E,F到直线AB的距离分别为,.…所以四边形AEBF的面积为==…===,…当k2=4(k>0),即当k=2时,上式取等号.所以当四边形AEBF面积的最大值时,k=2.…【点评】本题考查直线与椭圆的位置关系,圆锥曲线的综合应用,考查分析问题解决问题的能力,转化思想以及计算能力.21.已知函数,当时,函数f(x)有极大值.(Ⅰ)求实数b、c的值;(Ⅱ)若存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数在某点取得极值的条件.【专题】综合题;导数的综合应用.【分析】(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b,利用当时,函数f(x)有极大值,建立方程,即可求得实数b、c的值;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立,分类讨论,求出函数的最大值,即可求实数a的取值范围.【解答】解:(Ⅰ)x<1时,f′(x)=﹣3x2+2x+b∵当时,函数f(x)有极大值,∴f′()=﹣++b=0,f()=﹣++c=,∴b=0,c=0;(Ⅱ)存在x0∈[﹣1,2],使得f(x0)≥3a﹣7成立,等价于x∈[﹣1,2],使得f(x)max≥3a﹣7成立由(Ⅰ)知,①﹣1≤x<1时,f′(x)=﹣3x(x﹣),函数在(﹣1,0)上单调递减,在(0,)上单调递增,在(,1)上单调递减∵f(﹣1)=2,f()=,∴﹣1≤x<1时,f(x)max=2,;②2≥x≥1时,f′(x)=,1°、a>0,函数在[1,2]上单调递增,f(x)max=f(2)=aln2,∴或,∴<a≤或0<a≤;2°、a≤0,函数在[1,2]上单调递减,f(x)max=f(1)=aln1=0,∴2≥3a﹣7,∴a≤3,∴a≤0综上,实数a的取值范围是a≤.【点评】本题考查导数知识的运用,考查函数的绝对值,考查函数的最值,考查分类讨论的数学思想,属于中档题.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.[选修4-1:几何证明选讲]22.如图,⊙O是△ABC的外接圆,D是的中点,BD交AC于E.(Ⅰ)求证:DC2=DE•DB;(Ⅱ)若CD=2,O到AC的距离为1,求⊙O的半径r.【考点】与圆有关的比例线段;相似三角形的判定;相似三角形的性质.【专题】选作题.【分析】(I)先证明△BCD∽△CED,可得,从而问题得证;(II)OD⊥AC,设垂足为F,求出CF=,利用DC2=CF2+DF2,建立方程,即可求得⊙O 的半径.【解答】(I)证明:连接OD,OC,由已知D是弧AC的中点,可得∠ABD=∠CBD∵∠ABD=∠ECD∴∠CBD=∠ECD∵∠BDC=∠EDC∴△BCD∽△CED∴∴CD2=DE•DB.(II)解:设⊙O的半径为R∵D是弧AC的中点∴OD⊥AC,设垂足为F在直角△CFO中,OF=1,OC=R,CF=在直角△CFD中,DC2=CF2+DF2∴∴R2﹣R﹣6=0∴(R﹣3)(R+2)=0∴R=3【点评】本题是选考题,考查几何证明选讲,考查三角形的相似与圆的性质,属于基础题.[选修4-4:坐标系与参数方程]23.平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.(1)求直线l的极坐标方程;(2)若直线l与曲线C相交于A、B两点,求|AB|.【考点】点的极坐标和直角坐标的互化;两点间的距离公式.【专题】计算题.【分析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l 的极坐标方程;(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.【解答】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是,因此,直线l的极坐标方程是θ=,(ρ∈R);…(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2﹣ρ﹣3=0 ∴由一元二次方程根与系数的关系,得ρ1+ρ2=,ρ1ρ2=﹣3,∴|AB|=|ρ1﹣ρ2|==.…【点评】本题以参数方程和极坐标方程为例,考查了两种方程的互化和直线与圆锥曲线的位置关系等知识点,属于基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣2|﹣|x+1|.(1)求证:﹣3≤f(x)≤3;(2)解不等式f(x)≥x2﹣2x.【考点】绝对值不等式的解法.【专题】转化思想;综合法;不等式的解法及应用.【分析】(1)通过讨论x的范围得到相对应的f(x)的表达式,从而证明出结论;(2)利用分段函数解析式,分别解不等式,即可确定不等式的解集.【解答】解:(1)当x≤﹣1时,f(x)=3,成立;当﹣1<x<2时,f(x)=﹣2x+1,﹣4<﹣2x<2,∴﹣3<﹣2x+1<3,成立;当x≥2时,f(x)=﹣3,成立;故﹣3≤f(x)≤3;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当x≤﹣1时,x2﹣2x≤3,∴﹣1≤x≤2,∴x=1;当﹣1<x<2时,x2﹣2x≤﹣2x+1,∴﹣1≤x≤1,∴﹣1<x≤1;当x≥2时,x2﹣2x≤﹣3,无解;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综合上述,不等式的解集为:[﹣1,1].﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查绝对值函数,考查分类讨论的数学思想,确定函数的解析式是关键.。
西城区高三统一测试理科综合参考答案及评分标准6.D 7.A 8.C9.C 10.B 11.B 12.C 25.(12分,每空2分)(1)2CaCO 3+2SO 2+O 2=====2CaSO 4+2CO 2(2)4NH 3+6NO===== 5N 2+6H 2O(3)①②SO 2+ClO −+H 2O ==SO 42−+Cl −+2H +③SO 2在水中的溶解度大于NO ;SO 2在溶液中的还原性强于NO ;SO 2与NaClO 溶液的反应速率大于NO④2∶1326.(12分,每空2分)(1)①Al 2O 3(s) + 3C(s) + AlCl 3(g) == 3AlCl(g) + 3CO(g) ΔH =+1486 kJ ·mol −1 ②减小(2)第一步反应是气体分子数增加的反应,降低压强,利于生成AlCl(3)CO 与Al 或AlCl 反应生成Al 2O 3和C ;CO 在Al 或AlCl 作用下生成CO 2和C(4)T 3>T 2>T 1(5)AlCl 327.(17分,(3)①第二个离子方程式1分,其它每空2分)(1)①KSCN②两个实验过程均有O 2,但NaNO 3溶液中无明显变化③NO 2−+e −+H 2O== NO↑+2OH −证实Fe 2+被NO 2−氧化生成Fe 3+(2)①将NO 通入FeSO 4溶液中,溶液由浅绿色变黄色最后变棕色,将NO 通入Fe 2(SO 4)3溶液中,无明显变化②棕色溶液中的[Fe(NO)]2+受热生成Fe 2+,加热有利于Fe 2+被氧化为Fe 3+,促进Fe 3+水解,产生Fe(OH)3沉淀(3)①Fe 2++NO 2−+2CH 3COOH== Fe 3++NO↑+H 2O+2CH 3COO −Fe 2++NO== [Fe(NO)]2+②两层液体界面上H +、NO 3−与Fe 2+反应,生成棕色的[Fe(NO)]2+高温 催化剂28.(17分,(1)第二空1分,其它每空2分)(1)碳碳双键、氯原子取代反应(2)NaOH/H2O,△(3(4(5)a(6(7(8)29.(16分)(1)能量(1分)信号(1分)(2)砧木上摘除(或保留)不同数目的叶片;(1分)将不同品种(早花、晚花)接穗嫁接到不同品种(早花、晚花)砧木上(1分)促进(2分)“开花素”含量(保留叶片数量)(2分)(3)促进(2分)不是(2分)(4)FT基因在叶片中转录出mRNA,运输到茎顶端,促进开花(2分)(5)将野生拟南芥和CO突变体给予适宜光照处理,检测叶片(茎顶端)中FT-mRNA的含量(1分)预期结果:CO突变体的FT-mRNA含量低于野生型拟南芥,延迟开花或不开花。
西城区高三统一测试理科综合2018.4本试卷共17页,共300分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共120分)本部分共20小题,每小题6分,共120分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
1.下列关于高中生物实验的表述,正确的是A.鉴定还原糖与蛋白质所用试剂及操作相同B.可以用平板划线法测定土壤中微生物数量C.光合色素分离和花生子叶中脂肪鉴定均需显微观察D.测定亚硝酸盐含量需配制标准溶液显色后进行比色2.叶绿体内绝大多数蛋白质由核基因编码,少数由叶绿体基因编码,其合成、加工与转运过程如右图所示。
下列说法错误..的是A.甲、乙蛋白通过类似胞吞过程从细胞质进入叶绿体B.甲蛋白可能和碳(暗)反应有关,乙蛋白可能和光反应有关C.类囊体蛋白质由细胞质和叶绿体中的核糖体合成D.运至叶绿体不同部位的甲、乙蛋白都需经过加工3.某研究小组观察运动对糖尿病大鼠部分生理指标的影响。
糖尿病大鼠经过6~7周运动训练后,测得数据如下。
下列分析错误..的是A.患糖尿病可导致大鼠生长缓慢,运动训练能促进糖尿病大鼠生长B.与正常组相比,糖尿病非运动组大鼠吸收利用转化葡萄糖效率高C.糖尿病非运动组大鼠胰岛素受体数量增加与胰岛素含量降低有关D.运动训练能促进糖尿病大鼠胰岛素的分泌,并显著降低血糖浓度4.被捕食者在开始逃逸之前,容许捕食者靠近到一定距离,称为“逃逸开始距离”(简称FID)。
无铠甲及背刺的米诺鱼和长有铠甲及背刺的粘背鱼生活在同一区域。
利用这两种小型鱼与其共同天敌黑鲈鱼在水族箱中进行实验,结果如下图,据此实验结果推测合理的是A.群体活动的米诺鱼比单独活动时推迟了对捕食者的反应B.粘背鱼体长以及是否进行群体活动与F I D无明显的关系C.粘背鱼体长与F I D有关,说明其体长越大运动能力越差D.粘背鱼的F I D相对较小,与其有铠甲和背刺有一定关系5.为研究与植物生长相关的基因及其作用,科学家获得了基因A、B、C失活的多种突变体,电泳分析各植株中蛋白m和蛋白n的表达情况,结果如下图。
2018年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=+2i,则|z|=()A.0B.C.1D.2.(5分)已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2}3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A.﹣12B.﹣10C.10D.125.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=()A.﹣B.﹣C.+D.+7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3D.28.(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5B.6C.7D.89.(5分)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)10.(5分)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3 11.(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3C.2D.412.(5分)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。
2018届高三数学(理)4月一模试题(北京市东城区附答案)
5 c 北京市东城区2018学年度第二学期高三综合练习(一)
数学(理科)
本试卷共页,共分考试时长分钟考生务必将答案答在答题卡上,在试卷上作答无效考试结束后,将试卷和答题卡一并交回第一部分(选择题共40分)
一、选择题本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,选出符合题目要求的一项
1【答案】
【解析】由题易知,故选
2【答案】
【解析】 ,所以在复平面上对应的点为,在第二象限,故选
3【答案】
【解析】由在上单调递增可知,
故选
4【答案】
【解析】由正切函数定义可知,,
故选
5【答案】
【解析】在抛物线中, 焦点准线点到轴的距离为即故选
6【答案】c
【解析】法一种
法二种故选c
7【答案】D
【解析】充分条的反例,当,时,,,充分不成立。
北京市西城区高三统一测试数学(理科) 2019.4第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合{|02}A x x =<<,{3,1,1,3}B =--,则集合()U A B =ð(A ){3,1}-- (B ){3,1,3}-- (C ){1,3} (D ){1,1}-2.若复数1i2iz -=-,则在复平面内z 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3. 执行如图所示的程序框图,则输出的k 值为 (A )4 (B )5(C )7 (D )94.下列直线中,与曲线C :12,()24x t t y t =+⎧⎨=-+⎩为参数没有公共点的是 (A )20x y += (B )240x y +-= (C )20x y -=(D )240x y --=5. 设 ,,a b m 均为正数,则“b a >”是“a m ab m b+>+”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件6.如图,阴影表示的平面区域W 是由曲线0x y -=,222x y +=所围成的. 若点(,)P x y 在W 内(含边界),则43z x y =+的最大值和最小值分别为(A)7-(B)-(C )7,-(D )7,7-7. 团体购买公园门票,票价如下表:现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为(A )20 (B )30 (C )35 (D )408. 如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为 (A(B )3(C )(D )4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在等比数列{}n a 中,21a =,58a =,则数列{}n a 的前n 项和n S =____.10.设1F ,2F 为双曲线2222 1(0,0)x y C a b a b-=>>:的两个焦点,若双曲线C 的两个顶点恰好将线段12F F 三等分,则双曲线C 的离心率为____.11.函数()sin 2cos2f x x x =+的最小正周期T =____;如果对于任意的x ∈R 都有()f x a ≤,那么实数a 的取值范围是____.12.某四棱锥的三视图如图所示,那么此四棱锥的体积为____.13. 能说明“若sin cos αβ=,则36090k αβ+=⋅+,其中k ∈Z ”为假命题的一组α,β的值是___.14.如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a ,b ,c . 例如,图中上档的数字和9a =. 若a ,b ,c 成等差数列,则不同的分珠计数法有____种.侧(左)视图 正(主)视图俯视图2三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,已知222a c b mac +-=,其中m ∈R . (Ⅰ)判断m 能否等于3,并说明理由; (Ⅱ)若1m =-,b =4c =,求sin A .16.(本小题满分14分)如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直, //AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,AB(Ⅰ)求证://BF 平面CDE ;(Ⅱ)求二面角B EF D --的余弦值; (Ⅲ)判断线段BE 上是否存在点Q ,使得 平面CDQ ⊥平面BEF ?若存在,求 出BQBE的值,若不存在,说明理由.17.(本小题满分13分)为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a 表示.(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a 的所有可能取值;(Ⅱ)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”. 设3a =,现从所有“阅读达人”里任取3人,求其中乙组的人数X 的分布列和数学期望.(Ⅲ)记甲组阅读量的方差为20s . 在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)DABCE F18.(本小题满分13分)设函数2()e 3x f x m x =-+,其中∈m R .(Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅱ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.19.(本小题满分14分)已知椭圆W : 2214x y m m+=的长轴长为4,左、右顶点分别为,A B ,经过点(,0)P n 的直线与椭圆W 相交于不同的两点,C D (不与点,A B 重合).(Ⅰ)当0n =,且直线CD ⊥x 轴时, 求四边形ACBD 的面积;(Ⅱ)设1n =,直线CB 与直线4x =相交于点M ,求证:,,A D M 三点共线.20.(本小题满分13分)如图,设A 是由n n ⨯(2)n ≥个实数组成的n 行n 列的数表,其中ij a (,1,2,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.定义1122st s t s t sn tn p a a =s 行与第t 行的积. 若对于任意,s t(s t ¹),都有0st p =,则称数表A 为完美数表.(Ⅰ)当2n =时,试写出一个符合条件的完美数表; (Ⅱ)证明:不存在10行10列的完美数表;(Ⅲ)设A 为n 行n 列的完美数表,且对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =,证明:kl n ≤.北京市西城区高三统一测试数学(理科)参考答案及评分标准 2019.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.D 4.C 5.C 6.A 7.B 8.B 二、填空题:本大题共6小题,每小题5分,共30分.9.1122n --10.311. π;a 12.4313.答案不唯一,如110α=,20β= 14.32注:第11题第一问3分,第二问2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)当3m =时,由题可知 2223a c b ac +-=,由余弦定理2222cos b a c ac B =+-, (3)分得2223cos 22a cb B ac +-==. ……………… 4分这与cos [1,1]B ∈-矛盾,所以m 不可能等于 3 . ……………… 6分(Ⅱ)由(Ⅰ),得 1cos 22m B ==-,所以2π3B =. ……………… 7分因为b =4c =,222a c b ac +-=-, 所以216284a a +-=-,解得6a =-(舍)或2a =. ……………… 9分在△ABC中,由正弦定理sin sina bA B=, (11)分得sinsin14a BAb===. (13)分16.(本小题满分14分)解:(Ⅰ)由底面ABCD为平行四边形,知//AB CD,又因为AB⊄平面CDE,CD⊂平面CDE,所以//AB平面CDE. ………………2分同理//AF平面CDE,又因为AB AF A=,所以平面//ABF平面CDE. ………………3分又因为BF⊂平面ABF,所以//BF平面CDE. ………………4分(Ⅱ)连接BD,因为平面ADEF⊥平面ABCD,平面ADEF平面ABCD AD=,D E AD⊥,所以DE⊥平面ABCD. 则D E D B⊥.又因为D E AD⊥,AD BE⊥,DE BE E=,所以AD⊥平面BDE,则AD BD⊥.故,,DA DB DE两两垂直,所以以,,DA DB DE所在的直线分别为x轴、y轴和z轴,如图建立空间直角坐标系,………………6分则(0,0,0)D,(1,0,0)A,(0,1,0)B,(1,1,0)C-,(0,0,2)E,(1,0,1)F,所以(0,1,2)BE=-,(1,0,1)EF=-,(0,1,0)=n为平面DEF的一个法向量.设平面BEF的一个法向量为(,,)x y z=m,由0BE⋅=m,0EF⋅=m,得20,0,y zx z-+=⎧⎨-=⎩令1z=,得(1,2,1)=m. ………………8分所以cos ,||||⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,所以二面角B EF D --………………10分 (Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩ (12)分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, (13)分解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分17.(本小题满分13分)解:(Ⅰ)甲组10名学生阅读量的平均值为12681011121217211010+++++++++=,乙组10名学生阅读量的平均值为124412131616(10)20981010a a+++++++++++=. (2)分由题意,得981010a+>,即2a <. ……………… 3分 故图中a 的取值为0或1. ……………… 4分(Ⅱ)由图可知,甲组“阅读达人”有2人,乙组“阅读达人”有3人.由题意,随机变量X 的所有可能取值为:1,2,3. (5)分且212335C C 3(1)C 10P X ⋅===,122335C C 3(2)C 5P X ⋅===, 3335C 1(3)C 10P X ===. …… 8分所以随机变量的分布列为:……………… 9分所以3319()123105105E X =⨯+⨯+⨯=. ………………10分 (Ⅲ)222102s s s <<. ……………… 13分18.(本小题满分13分)解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e ()3e 3x x m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 2分 此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 3分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增. …………… 5分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……………… 6分(Ⅱ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……………… 8分X对函数()g x 求导,得223()e xx x g x -++'=. ……………… 9分由()0g x '=,解得11x =-,23x =. ……………… 10分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以()g x 在(2,1)--,(3,4)上单调递减,在(1,3)-上单调递增. …………… 11分 又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)e g g =>-, 所以当4132e em -<<或36e m =时,直线y m =与曲线23()e x x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点. ……… 13分19.(本小题满分14分)解:(Ⅰ)由题意,得244a m ==, 解得1m =. ……………… 2分所以椭圆W 方程为2214x y +=. ……………… 3分 当0n =,及直线CD ⊥x 轴时,易得(0,1)C ,(0,1)D -. 且(2,0)A -,(2,0)B . 所以||4AB =,||2CD =,显然此时四边形ACBD 为菱形,所以四边形ACBD 的面积为14242⨯⨯=. …… 5分(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =,代入椭圆W 的方程,得C ,(1,D ,易得CB 的方程为2)y x =-.则(4,M ,(6,AM =,(3,AD =, 所以2AM AD =,即,,A D M 三点共线. ……………… 7分当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y , 联立方程22(1),1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. ……… 9分由题意,得0∆>恒成立,故2122841k x x k +=+,21224441k x x k -=+. …………… 10分 直线CB 的方程为11(2)2y y x x =--. 令4x =,得112(4,)2y M x -. ……………… 11分又因为(2,0)A -,22(,)D x y , 则直线AD ,AM 的斜率分别为222AD y k x =+,113(2)AM y k x =-, …………… 12分 所以21211221123(2)(2)23(2)3(2)(2)AD AM y y y x y x k k x x x x --+-=-=+--+. 上式中的分子 211221123(2)(2)3(1)(2)(1)(2)y x y x k x x k x x --+=----+ 121225()8kx x k x x k =-++22224482584141k k k k k k k -=⨯-⨯+++ 0=, 所以0AD AM k k -=.所以,,A D M 三点共线. ……………… 14分20.(本小题满分13分) 解:(Ⅰ)答案不唯一. 如:……………… 3分(Ⅱ)假设存在10行10列的完美数表A .根据完美数表的定义,可以得到以下两个结论:(1)把完美数表的任何一列的数变为其相反数(即1+均变为1-,而1-均变为1+),得到的新数表是完美数表;(2)交换完美数表的任意两列,得到的新数表也是完美数表. ……………… 5分 完美数表A 反复经过上述两个结论的变换,前三行可以为如下形式:x 共列y 共列z 共列w 共列在这个新数表中,设前三行中的数均为1的有x 列,前三行中“第1, 2行中的数为1,且第3行中的数为-1”的有y 列,前三行中“第1, 3行中的数为1,且第2行中的数为-1”的有z 列,前三行中“第1行中的数为1,且第2, 3行中的数为-1”的有w 列(如上表所示),则10x y z w +++= ○1由120p =,得x y z w +=+; ○2 由130p =,得x z y w +=+; ○3 由230p =,得x w y z +=+. ○4 解方程组○1,○2,○3,○4,得52x y z w ====. 这与,,,x y z w ∈N 矛盾,所以不存在10行10列的完美数表. ……………… 8分 (Ⅲ)记第1列前l 行中的数的和112111l a a a X +++=,第2列前l 行中的数的和12222la a a X +++= ,……,第n 列前l 行中的数的和12n n ln n a a a X +++=,因为对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =, 所以12k X X X l ====. (9)分又因为对于任意,s t (s t ¹),都有0st p =,所以22212n X X X ln +++=. (11)分又因为22222221212n k X X X X X X l k ++++++=≥,所以2ln l k ≥,即kl n ≤. ……………… 13分。
2018届北京市西城区高三第一次模拟考试卷数学(理)附答案第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合,,则()A.B.C.D.2.执行如图所示的程序框图,输出的值为()A.2 B.3 C.4 D.53.已知圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系,该圆的极坐标方程为()A.B.C.D.4.正三棱柱的三视图如图所示,该正三棱柱的表面积是( )A .B .C .D .5.已知是正方形的中心.若,其中,,则( )A .B .C .D .6.设函数.则“有两个不同的零点”是“,使”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.函数,则的图象上关于原点对称的点共有( )A .0对B .1对C .2对D .3对8.某计算机系统在同一时间只能执行一项任务,且该任务完成后才能执行下一项任务.现有三项任务,,,计算机系统执行这三项任务的时间(单位:)依次为,,,其中.一项任务的“相对等待时间”定义为从开始执行第一项任务到完成该任务的时间与计算机系统执行该任务的时间之比.下列四种执行顺序中,使三项任务“相对等待时间”之和最小的是( ) A .B .C .D .U V W s U V W →→V W U →→W U V →→U W V→→第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.若复数的实部与虚部相等,则实数____.10.设等差数列的前项和为,若,,则____;____.11.已知抛物线的焦点与双曲线的一个焦点重合,则____;双曲线的渐近线方程是____________.12.设,若函数的最小正周期为,则____.13.安排甲、乙、丙、丁4人参加3个运动项目,每人只参加一个项目,每个项目都有人参加.若甲、乙2人不能参加同一个项目,则不同的安排方案的种数为____.(用数字作答)14.如图,在长方体中,,,点在侧面上.若点到直线和的距离相等,则的最小值是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△中,已知.(1)求的大小;(2)若,,求△的面积.16.(13分)某企业2017年招聘员工,其中、、、、五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:(1 (2)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;(3)表中、、、、各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)A B C D E E A B C D E17.(14分)如图1,在△中,,分别为,的中点,为的中点,,.将△沿折起到△的位置,使得平面平面,如图2.(1)求证:;(2)求直线和平面所成角的正弦值;(3)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.图1 图218.(13分)已知函数,其中.(1)若曲线在处的切线与直线垂直,求的值;(2)当时,证明:存在极小值.19.(14分)已知圆和椭圆,是椭圆的左焦点.(1)求椭圆的离心率和点的坐标;(2)点在椭圆上,过作轴的垂线,交圆于点(不重合),是过点的圆的切线.圆的圆心为点,半径长为.试判断直线与圆的位置关系,并证明你的结论.20.(13分)数列:满足:.记的前项和为,并规定.定义集合.(1)对数列:,,,,,求集合;(2)若集合,证明:;(3)给定正整数.对所有满足的数列,求集合的元素个数的最小值.2018届北京市西城区高三第一次模拟考试卷数学(理)答案一、选择题:本大题共8小题,每小题5分,共40分.1-5.DCBDB 6-8.CCA二、填空题:本大题共6小题,每小题5分,共30分.9.10.6,11.,12.213.30 14.注:第10,11题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分.其他正确解答过程,请参照评分标准给分.15.【答案】(1);(2)见解析.【解析】(1)因为,所以.在△中,由正弦定理得,所以.因为,所以.(2)在△中,由余弦定理得,所以,整理得,解得,或,均适合题意.当时,△的面积为.当时,△的面积为.16.【答案】(1);(2)分布列见解析,;(3)、、、. 【解析】(1)因为表中所有应聘人员总数为,被该企业录用的人数为,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(2)X 可能的取值为0,1,2.因为应聘E 岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:.(3)这四种岗位是:、、、.17.【答案】(1)见解析;(2);(3)存在,.【解析】(1)因为在△中,,分别为,的中点,()43E X =B C DE B C D E所以,.所以,又为的中点,所以.因为平面平面,且平面,所以平面,所以.(2)取的中点,连接,所以.由(1)得,.如图建立空间直角坐标系.由题意得,,,,.所以,,.设平面的法向量为,则,即,令,则,,所以.设直线和平面所成的角为,则.所以直线和平面所成角的正弦值为.(3)线段上存在点适合题意.设,其中.设,则有,所以,从而,所以,又,所以.令,整理得.解得,舍去.所以线段上存在点适合题意,且.18.【答案】(1);(2)见解析.【解析】(1)的导函数为.依题意,有,解得.(2)由及知,与同号.令,则.所以对任意,有,故在单调递增.因为,所以,,故存在,使得.与在区间上的情况如下:↘极小值↗所以在区间上单调递减,在区间上单调递增.所以存在极小值.19.【答案】(1),;(2)相切,证明见解析. 【解析】(1)由题意,椭圆的标准方程为.所以,,从而.因此,.故椭圆的离心率,椭圆的左焦点的坐标为.(2)直线与圆相切.证明如下:设,其中,则,依题意可设,则.直线的方程为,整理为.所以圆的圆心到直线的距离.因为.所以,e =()F即,所以直线与圆相切.20.【答案】(1);(2)见解析;(3).【解析】(1)因为,,,,,,所以.(2)由集合的定义知,且是使得成立的最小的k,所以.又因为,所以,所以.(3)因为,所以非空.设集合,不妨设,则由(2)可知,同理,且.所以.因为,所以的元素个数.取常数数列:,并令,则,适合题意,且,其元素个数恰为.综上,的元素个数的最小值为.。
北京市西城区2018年高三一模试卷 数 学(文科)2018. 4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{1,2,3,4,5}U =,集合{2,5}A =,{4,5}B =,则()U A B ð等于 (A ){1,2,3,4}(B ){1,3}(C ){2,4,5}(D ){5}2. 函数2lg y x x =-+的定义域是 (A )(]0,2(B )(0,2)(C )[]0,2(D )[]1,23.为了得到函数x x y cos sin +=的图像,只需把x x y cos sin -=的图象上所有的点(A )向左平移4π个单位长度 (B )向右平移4π个单位长度 (C )向左平移2π个单位长度(D )向右平移2π个单位长度4. 设2log 3a =,4log 3b =,12c =,则 (A )a c b <<(B )c a b <<(C )b c a <<(D )c b a <<5.一个棱锥的三视图如图所示,则这个棱锥的体积是 (A )6(B )12(C )24(D )366.对于平面α和异面直线,m n ,下列命题中真命题是 (A )存在平面α,使m α⊥,α⊥n (B )存在平面α,使α⊂m ,α⊂n (C )存在平面α,满足m α⊥,//n α (D )存在平面α,满足//m α,//n α7. 右面茎叶图表示的是甲、乙两人在5次综合测评中的 成绩,其中一个数字被污损.则甲的平均成绩超过 乙的平均成绩的概率为 (A )52 (B )107 (C )54 (D )109 正(主)视图俯视图侧(左)视图344333甲 8 9 9 8 01 2 3 3 79乙8.某次测试成绩满分为180分,设n 名学生的得分分别为12,,,n a a a (i a ∈N ,1i n ≤≤),k b (1150k ≤≤)为n 名学生中得分至少为k 分的人数.记M 为n 名学生的平均成绩.则(A )12150b b b M n +++= (B )12150150b b b M +++=(C )12150b b b M n +++> (D )12150150b b b M +++>二、填空题:本大题共6小题,每小题5分,共30分. 9. 若复数(1i)(1i)a ++是纯虚数,则实数a 等于______. 18.设向量(1,sin )θ=a ,b (1,cos )θ=,若35⋅=a b ,则θ2sin =______. 18.双曲线22:12x C y -=的离心率为______;若椭圆2221(0)x y a a+=>与双曲线C 有相同的焦点,则a =______. 18. 设不等式组22,22x y -≤≤⎧⎨-≤≤⎩表示的区域为W ,圆:C 22(2)4x y -+=及其内部区域记为D .若向区域W 内投入一点,则该点落在区域D 内的概率为_____.18. 阅读右侧程序框图,则输出的数据S 为_____.18. 已知数列{}n a 的各项均为正整数,n S 为其前n 项和,对于1,2,3,n = ,有1135,2n n n nn n kk a a a a a a +++⎧⎪=⎨⎪⎩为奇数为偶数.其中为使为奇数的正整数,,, 当53=a 时,1a 的最小值为______;当11=a 时,1220S S S +++= ______. 三、解答题:本大题共6小题,共80分。
北京市西城区 2018年高三一模试卷数 学(理科)2018.4一、选择题:本大题共 8小题,每题5分,共 40分.在每题列出的四个选项中,选出切合题目要求的一项.1.已知会合A{x Zx5},B{xx2 0},则AB 等于(A )(2,5)(B )[2,5)(C ){2,3,4}(D ){3,4,5}2.以下给出的函数中,既不是奇函数也不是偶函数的是(A ) y 2 x 23Byx x Cy2xDyx() () ()3.设alog 23,b log 43 ,c 0.5,则(A )cba(B )bca(C )ba c(D )cab4.设向量a(1,sin ),b (3sin,1),且a//b ,则cos2等于(A )3(B )3(C )(D )331,35.阅读右边程序框图,为使输出的数据为开始则①处应填的数字为(A )4 S 1,i1(B )5否i①( C )6是(D )7S S i 输出S2ii1结束6.已知函数①ysinxcosx ,②y22sinxcosx ,则以下结论正确的选项是(A )两个函数的图象均对于点 ( ,0)成中心对称4(B )两个函数的图象均对于直线x 成中心对称( 4 ( (C )两个函数在区间(,)上都是单一递加函数( 4( D )两个函数的最小正周期同样7 .已知曲线C:y1(x0)及两点A 1(x 1,0)和A 2(x 2 ,0),此中x 2x 10.过A 1,A 2分x别作x 轴的垂线,交曲线C 于B 1,B 2两点,直线B 1B 2与x 轴交于点A 3(x 3,0),那么(A )x 1,x3,x 2成等差数列 (B )x 1 ,x3,x 2成等比数列22(C )x 1,x 3,x 2成等差数列 (D )x 1,x 3,x 2成等比数列8.如图,四周体OABC的三条棱OA,OB,OC两两垂直,OAOB2,OC3,D为四周体OABC外一点.给出以下命题.①不存在点D,使四周体ABCD有三个面是直角三角形②不存在点D,使四周体ABCD是正三棱锥C③存在点D,使CD与AB垂直而且相等D④存在无数个点D,使点O在四周体ABCD的外接球面上OB 此中真命题的序号是A(A)①②(B)②③(C)③(D)③④二、填空题:本大题共6小题,每题5分,共30分.9.在复平面内,复数2i对应的点到原点的距离为_____.1i C B P10.如图,从圆O外一点P引圆O的切线PA和割线PBC,已知PA22,O?PC4,圆心O到BC的距离为3,则圆O的半径为_____.Ax cos,1),则m______,离心11.已知椭圆C:(R)经过点(m,率y2sin2e______.12.一个棱锥的三视图如下图,则这个棱锥的体积为_____.13.某展室有9个展台,现有3件展品需要展出,要求每件展品单独占用1个且3件展品所采用的展台既不在两头又不相邻,则不一样的展出方法有3343展台,并正(主)视图侧(左)视图______3种;假如进一步要求3件展品所采用的展台之间间隔不超出两个展位,则展出方法有____种.不一样的4俯视图已知数列{a n}的各项均为正整数,对于n1,2,3,,有3a n5,a n 为奇数,an1a n,当a111时,a100______;a n为偶数.此中k为使a n1为奇数的正整数2k若存在m N*,当nm且a n为奇数时,a n恒为常数p,则p的值为______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(本小题满分13分)设ABC中的内角A,B,C所对的边长分别为a,b,c,且cosB4,b2.55(Ⅰ)当a ABC面积的最大值.时,求角A的度数;(Ⅱ)求316.(本小题满分13分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1,1,p.且他们能否破译出231密码互不影响.若三人中只有甲破译出密码的概率为.4(Ⅰ)求甲乙二人中起码有一人破译出密码的概率;(Ⅱ)求p的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的散布列和数学希望EX.(本小题满分13分)如图,ABCD是边长为3的正方形,DE平面ABCD,AF//DE,DE3AF,BE与平面ABCD所成角为600.E(Ⅰ)求证:AC平面BDE;(Ⅱ)求二面角F BE D的余弦值;(Ⅲ)设点M是线段BD上一个动点,试确立点M的地点,使得AM//平面BEF,并证明你的结论.FD CA B(本小题满分14分)已知函数f(x)a(x1)0.x2,此中a(Ⅰ)求函数f(x)的单一区间;(Ⅱ)若直线x y10是曲线y f(x)的切线,务实数a的值;(Ⅲ)设g(x)xlnx x2f(x),求g(x)在区间[1,e]上的最大值.(此中e为自然对数的底数)(本小题满分14分)已知抛物线y22px(p 0)的焦点为F,过F的直线交y轴正半轴于点P,交抛物线于A,B 两点,此中点A在第一象限.(Ⅰ)求证:以线段FA为直径的圆与y轴相切;(Ⅱ)若FA1AP,BF2FA,12[1,1],求2的取值范围. 42(本小题满分13分)定义(a1,a2,,a n)|a1a2||a2a3||a n1a n|为有限项数列{a n}的颠簸强度.(Ⅰ)当a n(1)n时,求(a1,a2,,a100);(Ⅱ)若数列a,b,c,d知足(ab)(b c)0,求证:(a,b,c,d)(a,c,b,d);(Ⅲ)设{a n}各项均不相等,且互换数列{a n}中任何相邻两项的地点,都会使数列的颠簸强度增添,求证:数列{a n}必定是递加数列或递减数列.北京市西城区2018年高三一模卷参照答案及分准数学(理科)2018.4一、:本大共8小,每小5分,共 40分.号 1 23 4 56 7 8答案CB ADBCAD二、填空:本大共6小,每小5分,共 30分.9.210.211.15, 34212.1213.60,4814.62;1或 5注:11,13,14第一2分,第二3分.三、解答:本大共 6小,共80分.若考生的解法与本解答不一样,正确者可参照分准分.15.(本小分13分)解:(Ⅰ)因cosB43 .⋯⋯⋯⋯⋯⋯⋯⋯2分,因此sinB55因a5ab可得sinA1 .⋯⋯⋯⋯⋯⋯⋯4分,b2,由正弦定理sinA23sinB因a b ,因此A 是角,因此A 30o .⋯⋯⋯⋯⋯⋯⋯⋯6分(Ⅱ)因ABC 的面S1acsinB3ac , ⋯⋯⋯⋯⋯⋯⋯⋯7分210因此当ac 最大, ABC 的面最大.8因b 2a 2 c 22accosB ,因此4a 2c 2 ac .⋯⋯⋯⋯⋯⋯⋯⋯9分85因a 2c 2 2ac ,因此2acac4,⋯⋯⋯⋯⋯⋯⋯⋯11分5因此ac 10 ,(当ac 10等号成立)⋯⋯⋯⋯⋯⋯⋯⋯12分因此ABC 面的最大3.⋯⋯⋯⋯⋯⋯⋯⋯13分(本小分13分)解:“甲、乙、丙三人各自破出密”分事件A 1,A 2,A 3,依意有P(A 1)1,P(A 2)1,P(A 3) p,且A 1,A 2,A 3互相独立.23(Ⅰ)甲、乙二人中起码有一人破出密的概率1P(A 1A 2)11 2 2 .⋯⋯⋯⋯⋯⋯⋯3分23 3B ,有(Ⅱ)“三人中只有甲破出密”事件P(B) P(A 1A 2A 3)= 1 2 (1p)1p , ⋯⋯⋯⋯⋯⋯⋯5分2 33yA Bx因此1p 1 ,p 1 . ⋯⋯⋯⋯⋯⋯⋯⋯7分3 4 4(Ⅲ)X 的全部可能取0,1,2,3.⋯⋯⋯⋯⋯⋯⋯⋯8分因此P(X0)1,4P(X1)P (A 1A 2A 3)P (A 1A 2A 3)P (A 1A 2A 3)1 1 1 3 12 1114 234 23 4,24P(X2)P (A 1A 2A 3)P (A 1A 2A 3)P (A 1A 2A 3)1 1 3 1 21 1 11 12 3 42 34 2 3 4 ,4P(X3) =P (A 1 A 2 A 3)= 1 1 1 1⋯⋯⋯⋯⋯⋯⋯⋯11分2 3 4 .X 散布列:24X123P111 1 1424424⋯⋯⋯⋯⋯⋯⋯⋯12分 因此,E(X)0 11 112 13 1 13 .⋯⋯⋯⋯⋯⋯⋯⋯13分424 4 24 1217.(本小分13分)z (Ⅰ)明:因DE 平面ABCD ,E因此DEAC .⋯⋯⋯⋯⋯⋯⋯⋯2分因ABCD 是正方形,因此AC BD ,进而AC平面BDE .⋯⋯⋯⋯⋯⋯⋯⋯4分D(Ⅱ)解:因DA,DC,DE 两两垂直,FCy因此成立空直角坐系D xyz 如所示.AMBx因BE 与平面ABCD 所成角600,即DBE 60⋯⋯⋯⋯⋯⋯5分,因此ED3.DB由AD3可知DE 36,AF 6.⋯⋯⋯⋯⋯⋯6分A(3,0,0),F(3,0,6),E(0,0,3 6),B(3,3,0) ,C(0,3,0) ,因此BF(0,3,6) ,EF(3,0, 26),⋯⋯⋯⋯⋯⋯7分平面BEF 的法向量n(x,y,z) nBF0 3y 6z 0,,即,nEF 03x26z 0令z6,n (4,2, 6).⋯⋯⋯⋯⋯⋯⋯8分因AC平面BDE ,因此CA 平面BDE 的法向量,CA(3,3,0),因此cosn,CAnCA 3 62613. ⋯⋯⋯⋯⋯⋯⋯9分nCA213因二面角角,因此二面角F BED 的余弦13. ⋯⋯⋯⋯⋯⋯10分13(Ⅲ)解:点M 是段BD 上一个点,M(t,t,0).AM (t3,t,0),因AM//平面BEF ,因此AM n 0,⋯⋯⋯⋯⋯⋯⋯11分即4(t3)2t0,解得t2.⋯⋯⋯⋯⋯⋯⋯12分此,点M 坐(2,2,0),BM1 ⋯⋯⋯⋯⋯⋯⋯13分BD ,切合意.3(本小分14分)解:(Ⅰ)f(x)a(2 x)x 0),⋯⋯⋯⋯⋯3分x 3 ,(在区( ,0)和(2, )上,f (x)0;在区(0,2)上,f(x)0.因此,f(x)的减区是( ,0)和(2,),增区是(0,2).⋯⋯⋯4分y 0a(x 0 1)x 0 2(Ⅱ)切点坐(x 0,y 0),x 0 y 01 0⋯⋯⋯⋯⋯7分(1个方程1分)a(2 x 0)1x 0 3解得x 0 1,a1.⋯⋯⋯⋯⋯8分(Ⅲ)g(x)xlnx a(x 1),g(x)lnx1 a ,⋯⋯⋯⋯⋯⋯⋯9分解g(x)0,得xe a1,因此,在区(0,e a1)上,g(x)减函数,在区(e a1,)上,g(x)增函数.⋯⋯⋯⋯⋯10分当e a11,即0a 1,在区 [1,e]上,g(x)增函数,因此g(x)最大g(e)e aae .⋯⋯⋯⋯⋯⋯11分当e a1e ,即a2,在区[1,e]上,g(x)减函数,因此g(x)最大g(1)0.⋯⋯⋯⋯⋯⋯12分当1<e a1<e ,即1a2,g(x)的最大g(e)和g(1)中大者;g(e)g(1)a eae0,解得ae ,e 1因此,1a e,g(x)最大e 1e2,g(x)最大e a1g(e) eaae , ⋯⋯⋯⋯⋯⋯⋯ 13分g(1) 0.⋯⋯⋯⋯⋯⋯⋯ 14分上所述,当0ae,g(x)最大g(e)eaae ,当ae,g(x)的最大g(1)0.e 1e1(本小分14分)解:(Ⅰ)由已知F(p,0),A(x 1,y 1),y 122px 1,2心坐(2x 1p ,y 1),心到y 的距离2x 1 p ,⋯⋯⋯⋯⋯⋯⋯2分4 24的半径FA 1 x 1(p2x 1 p⋯⋯⋯⋯⋯⋯⋯4分22 )4 ,2因此,以段FA 直径的与y 相切.⋯⋯⋯⋯⋯⋯⋯5分(Ⅱ)解法一:P(0,y 0),B(x 2,y 2),由FA 1AP ,BF2FA ,得(x 1p,y 1)1(x 1,y 0y 1),(px 2, y 2)2(x1p,y 1),⋯⋯⋯⋯⋯⋯⋯6分222因此x 1p 1x 1,y11(yy 1),2ppx 2(x 1 ), y 22y 1,⋯⋯⋯⋯⋯⋯⋯8分222由y 2 2y 1,得y 2222y 12.又y 122px 1,y 222px 2,因此 x 2 22x 1.⋯⋯⋯⋯⋯⋯⋯10分代入px 22(x 1p),得p22x 12(x 1p ),p(12)x 12(12),22222整理得x 1p,⋯⋯⋯⋯⋯⋯⋯12分22代入x 1p1x 1,得pp 1p,222222因此111, ⋯⋯⋯⋯⋯⋯⋯13分22因1 [1,1],因此2的取范是[4,2].⋯⋯⋯⋯⋯⋯⋯14分24 23解法二:A(x 1,y 1),B(x 2,y 2),AB:xpmy,2将x myp代入y 22px ,得y 22pmy p 20,2因此y 1y 2p 2 (*),⋯⋯⋯⋯⋯⋯⋯6分精选文档11由FA 1AP ,BF2FA ,得(x 1p ,y 1)1(x 1,y 0y 1),(px 2, y 2)2(x 1p,y 1),⋯⋯⋯⋯⋯⋯⋯7分222因此,x 1p 1x 1,y11(yy 1),2p x 22(x1p),y 22y 1,⋯⋯⋯⋯⋯⋯⋯8分22将y 22p 2⋯⋯⋯⋯⋯⋯⋯10分2y 1代入(*)式,得y 1,2p 2p⋯⋯⋯⋯⋯⋯⋯12分因此2px 1,x 12 .22代入xp 1 x ,得 111.⋯⋯⋯⋯⋯⋯⋯13分12122因1 [1,1],因此2的取范是[ 4 ,2].⋯⋯⋯⋯⋯⋯⋯14分24 2320.(本小分 13分)(Ⅰ)解:(a 1,a 2,,a 100) |a 1 a 2| |a 2 a 3||a 99a 100|⋯⋯⋯⋯⋯⋯1分22 2 2 99 198 . ⋯⋯⋯⋯⋯⋯3分(Ⅱ)明:因(a,b,c,d) |a b| |b c| |c d|,(a,c,b,d) |a c| |c b| |bd|,因此 (a,b,c,d)(a,c,b,d) |a b| |c d| |a c| |b d|.⋯⋯⋯⋯⋯4分因(a b)(b c) 0,因此a bc ,或a b c .若a b c , (a,b,c,d)(a,c,b,d) a b |c d| ac |b d|cb|cd||bd|当bc d ,上式 c b cd (b d) 2(c b) 0 ,当b d c ,上式 c b d c (b d)2(d b) 0 ,当d b c ,上式 c b d c (d b) 0,即当ab c ,(a,b,c,d)(a,c,b,d) 0. ⋯⋯⋯⋯⋯⋯6分若abc ,(a,b,c,d) (a,c,b,d) b a |c d| c a |b d|,b c |c d| |b d| 0.(同前)因此,当(a b )(b c) 0, (a,b,c,d) (a,c,b,d)成立. ⋯⋯⋯⋯⋯7分(Ⅲ)明:由(Ⅱ)易知于四个数的数列,若第三的介于前两的之,交第二与第三的地点将使数列波度减小或不.(将此作引理)下边来明当a 1 a 2,{a n }减数列.(ⅰ)明a 2a 3.若a 1 a 3 a 2,由引理知交 a 2,a 3的地点将使波度减小或不,与已知矛盾.若 a 3a a 2 ,(a 1 ,a 2,a 3) |a 1 a 2||a 2a 3||a 1 a 2||a 1a 3| (a 2,a 1,a 3) ,与已知矛盾.1因此,a 1 a 2 a 3.⋯⋯⋯⋯⋯⋯9分(ⅱ)a 1 若a i1 a i1 若a i1ai1a 2a i (3in 2),明a i a i1. a i ,由引理知交 a i ,a i1的地点将使波度减小或不,与已知矛盾.a i ,(a i2,a i1,a i ,a i1)(a i2,a i ,a i1,a i1),与已知矛盾.因此,a ia i1.⋯⋯⋯⋯11分精选文档12(ⅲ)a 1 a 2a n1,明a n1a n .若a n a n1,考数列a n ,a n1,,a 2,a 1,由前方推理可得 a na n1an2a 2,与a 1a 2a n1矛盾.因此,a n1 a n .⋯⋯⋯⋯⋯12分上,得.同理可:当a 1a 2 ,有{a n }增数列.⋯⋯⋯⋯⋯⋯13分精选文档 激烈介绍精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有 精选介绍 强力介绍 值得拥有精选介绍 强力介绍 值得拥有。
西城区高三统一测试
数学(理科)2018.4
第Ⅰ卷(选择题共40分)
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,
选出
符合题目要求的一项.
1.若集合,,则
(A)(B)
(C)(D)
2.执行如图所示的程序框图,输出的值为
(A)
(B)
(C)
(D)
3.已知圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系,该圆的极坐标方程为
(A)(B)
(C)(D)
4.正三棱柱的三视图如图所示,该正三棱柱的表面积是
(A)(B)
(C)(D)
5.已知是正方形的中心.若,其中,,则(A)(B)(C)(D)
6.设函数.则“有两个不同的零点”是“,使”的(A)充分而不必要条件(B)必要而不充分条件
(C)充分必要条件(D)既不充分也不必要条件
7.函数则的图象上关于原点对称的点共有
(A)0对(B)1对
(C)2对(D)3对
8.某计算机系统在同一时间只能执行一项任务,且该任务完成后才能执行下一项任务.现有三项任务U,V,W,计算机系统执行这三项任务的时间(单位:s)依次为,,,其中.一项任务的“相对等待时间”定义为从开始执行第一项任务到完成该任务的
时间与计算机系统执行该任务的时间之比.下列四种执行顺序中,使三项任务“相对等待时间”之和最小的是
(A)U V W (B)V W U (C)W U V (D)U W V
第Ⅱ卷(非选择题共110分)
二、填空题:本大题共6小题,每小题5分,共30分.
9.若复数的实部与虚部相等,则实数____.
10.设等差数列的前项和为.若,,则____;____.
11.已知抛物线的焦点与双曲线的一个焦点重合,则____;
双曲线的渐近线方程是____.
12.设,若函数的最小正周期为,则____.
13.安排甲、乙、丙、丁4人参加3个运动项目,每人只参加一个项目,每个项目都有人参加.若甲、乙2人不能参加同一个项目,则不同的安排方案的种数为____.(用数字作答)。