马鞍山市七年级上册数学期末试卷及答案-百度文库
- 格式:doc
- 大小:1.13 MB
- 文档页数:28
【解析版】安徽省马鞍山市 2019-2020 年七年级上期末数学试卷3-2014 学年马七年级(上)期末数学试卷一、选择题(本大题共 10 小题,每小题 3 分,共 30 分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.( 3 分)(秋 ?马鞍山期末)﹣的相反数是() A .﹣B .C .﹣D .考点 :相反数.分析: 根据相反数的概念解答即可.解答: 解:﹣的相反数是﹣(﹣) =. 故选 D .点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上 “﹣ ”号;一个正数的相反数是负数,一个负数的相反数是正数,0 的相反数是 0.2.( 3 分)(秋 ?马鞍山期末)下列算式正确的是()A .﹣ 2+1= ﹣ 3B . ( ﹣ ) ÷(﹣2D .﹣ 5﹣(﹣4) =1 C .﹣ 3 =92) =﹣ 3考点 :有理数的混合运算.专题 :计算题.分析: 原式各项计算得到结果,即可做出判断. 解答: 解: A 、原式 =﹣ 1,错误;B 、原式 = × =,错误;C 、原式 =﹣ 9,错误;D 、原式 =﹣ 5+2= ﹣ 3,正确, 故选 D点评: 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 3.( 3 分)(秋 ?马鞍山期末)已知关于 x 的方程 2x+a ﹣ 8=0 的解是 x=3,则 a 的值为( )A . 2B . 3C . 4D . 5考点 :一元一次方程的解.分析: 把 x=3 代入方程即可得到一个关于 a 的方程,解方程即可求解. 解答: 解:把 x=3 代入方程得: 6+a ﹣ 8=0, 解得: a=2. 故选 A .点评: 本题考查了方程的解的定义,理解定义是关键.4.( 3 分)( ?攀枝花)为了了解年中考数学学科各分数段成绩分布情况,从中抽取 150名考生的中考数学成绩进行统计分析.在这个问题中,样本是指( )A . 150B .被抽取的150 名考生C.被抽取的150 名考生的中考数学成绩D .年中考数学成绩考点:总体、个体、样本、样本容量.分析:根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解答:解:了解年中考数学学科各分数段成绩分布情况,从中抽取 150 名考生的中考数学成绩进行统计分析.样本是,被抽取的150 名考生的中考数学成绩,故选 C.点评:此题主要考查了样本确定方法,根据样本定义得出答案是解决问题的关键.5.( 3 分)( ?德州)已知,则a+b等于()A . 3 B.C. 2 D . 1考点:解二元一次方程组.专题:计算题.分析:① +②得出 4a+4b=12,方程的两边都除以 4 即可得出答案.解答:解:,∵① +②得: 4a+4b=12,∴a+b=3.故选: A .点评:本题考查了解二元一次方程组的应用,关键是检查学生能否运用巧妙的方法求出答案,题目比较典型,是一道比较好的题目.6.( 3 分)(秋 ?马鞍山期末)我市对某主干道进行绿化,计划在此公路的一侧全部栽上“市树”﹣﹣樟树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔 5 米栽 1 棵,则树苗缺21 棵;如果每隔 6 米栽 1 棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是()A .5( x+2 ) =6( x﹣ 1)B . 5( x+21﹣ 1)=6( x﹣ 1)C.5( x+21﹣ 1) =6x D.5( x+21 )=6x考点:由实际问题抽象出一元一次方程.分析:设原有树苗 x 棵,由栽树问题栽树的棵数 =分得的段数 +1,可以表示出路的长度,由路的长度相等建立方程即可.解答:解:设原有树苗x 棵,则路的长度为5(x+21 ﹣ 1)米,由题意,得5( x+21 ﹣ 1) =6( x﹣1),故选 B .点评:本题考查了栽树问题的运用,栽树的棵数 =分得的段数 +1 的运用,列一元一次方程解实际问题的运用,解答时由路的长度不变建立方程是关键.7.( 3 分)( ?金华)如图,若 A 是实数 a 在数轴上对应的点,则关于a,﹣ a,1 的大小关系表示正确的是()A .a<1<﹣ aB . a<﹣ a< 1C. 1<﹣ a<aD .﹣ a< a< 1考点:实数与数轴.分析:根据数轴可以得到a< 1<﹣ a,据此即可确定哪个选项正确.解答:解:∵实数 a 在数轴上原点的左边,∴a< 0,但 |a|> 1,﹣ a> 1,则有 a< 1<﹣ a.故选 A .点评:本题考查了实数与数轴的对应关系,数轴上的数右边的数总是大于左边的数8.( 3 分)( ?娄底)如图,自行车的链条每节长为 2.5cm,每两节链条相连接部分重叠的圆的直径为0.8cm,如果某种型号的自行车链条共有60 节,则这根链条没有安装时的总长度为()A .150cmB . 104.5cm C. 102.8cm D.102cm考点:规律型:图形的变化类.专题:压轴题.分析:根据已知可得两节链条的长度为: 2.5×2﹣ 0.8, 3 节链条的长度为:2.5×3﹣ 0.8×2,以及 60 节链条的长度为: 2.5×60﹣ 0.8×59,得出答案即可.解答:解:∵根据图形可得出:两节链条的长度为: 2.5×2﹣ 0.8,3 节链条的长度为: 2.5×3﹣ 0.8×2,4 节链条的长度为: 2.5×4﹣ 0.8×3,∴60 节链条的长度为: 2.5×60﹣0.8×59=102.8 ,故选: C.点评:此题主要考查了图形的变化类,根据题意得出60 节链条的长度与每节长度之间的关系是解决问题的关键.9.( 3 分)(秋 ?马鞍山期末)如图,,D为AC的中点,DC=3cm,则AB的长是()A .3cmB . 4cm C. 5cm D.6cm考点:两点间的距离.专题:推理填空题.分析:先根据 D 为 AC 的中点, DC=3cm 求出 AC 的长,再根据BC= AB 可知 AB=AC ,进而可求出答案.解答: 解:∵ D 为 AC 的中点, DC=3cm ,∴ A C=2DC=2×3=6cm , ∵BC= AB ,∴ A B= AC= ×6=4cm .故选 B .点评: 本题考查的是两点间的距离,在解答此类题目时要注意运用各线段之间的倍数关系.10.( 3 分)(秋 ?马鞍山期末)如图是年 1 月的日历表,在此日历表上可以用一个矩形圈出 3×3 个位置的 9 个数(如 6, 7,8, 13, 14, 15, 20, 21, 22).若圈出的 9 个数中, 最大数是最小数的 3 倍,则这 9 个数的和为( )A . 32B . 126C . 135D .144考点 :一元一次方程的应用.分析: 设圈出的数字中最小的为 x ,则最大数为 x+16 ,根据题意列出方程,求出方程的解得到 x 的值,进而确定出 9 个数字,求出之和即可. 解答: 解:设圈出的数字中最小的为 x ,则最大数为 x+16 , 根据题意得: x+16=3x , 解得: x=8 ,所以 9 个数之和为: 8+9+10+15+16+17+22+23+24=144 . 故选: D .点评: 此题考查了一元一次方程的应用,掌握日期排列的规律,找出题中的等量关系是解本题的关键.二、填空题(本大题共 8 小题,每小题 3 分,共 24 分.请将答案直接填在题后的横线上.)11.( 3 分)(秋 ?马鞍山期末)计算: 80°37′﹣ 37°46′28″=42°50′32″ .考点 :度分秒的换算.分析: 首先将分化为秒,乘以 60,与秒相减,将度化为分与分相减,最后度与度相减. 解答: 解: 80°37′﹣37°46′28″=79°96′60″﹣ 37°46′28″ =42°50′32″,故答案为: 42°50′32″.点评: 本题考查角度的运算,注意将高级单位化为低级单位时,乘以 60,反之,将低级单位转化为高级单位时除以 60 是解答此题的关键.12.( 3 分)( ?佛山)地球上的海洋面积约为361000000km 2,则科学记数法可表示为3.61×10 8 km 2.考点 :科学记数法 —表示较大的数.分析: 科学记数法的表示形式为a ×10n 的形式,其中 1≤|a|<10, n 为整数.确定 n 的值时, 要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原 数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答: 解:将 361 000 000 用科学记数法表示为 3.61×108.故答案为 3.61×108.a ×10n 的形式,其中 点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为1≤|a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.13.( 3 分)(秋 ?马鞍山期末) 3 点 30 分,时钟的时针与分针的夹角是 75° .考点 :钟面角.分析: 根据时钟 3 时 30 分时,时针在 3 与 4 中间位置,分针在 6 上,可以得出分针与时针 的夹角是 2.5 大格,每一格之间的夹角为 30°,可得出结果. 解答: 解:∵钟表上从 1 到 12 一共有 12 格,每个大格 30°,∴时钟 3 时 30 分时,时针在 3 与 4 中间位置,分针在 6 上,可以得出分针与时针的夹角是 2.5 大格, ∴分针与时针的夹角是 2.5×30=75°.故答案为: 75°.点评: 此题主要考查了钟面角的有关知识,得出钟表上从 1 到 12 一共有 12 格,每个大格30°,是解决问题的关键.3 n5x m2n ﹣ m )= ﹣ 1 .14.( 3 分)(秋 ?马鞍山期末)若 2x y 与﹣ y 是同类项,则( 考点 :同类项. 分析: 利用同类项所含字母相同,并且相同字母的指数也相同求解即可.3 n与﹣ 5x m解答: 解:∵ 2x y y 是同类项,∴ m =3 , n=1 ,∴( 2n ﹣ m ) =(﹣ 1) =﹣1,故答案为:﹣ 1.点评: 本题主要考查了同类项,解题的关键是熟记同类项的定义.15.( 3 分)( 2001?河南)一个锐角的补角比它的余角大 90 度.考点 :余角和补角. 专题 :计算题.分析: 相加等于 90°的两角称作互为余角,相加和是 180 度的两角互补,因而可以设这个锐角是 x 度,就可以用代数式表示出所求的量.解答: 解:设这个锐角是 x 度,则它的补角是( 180﹣ x )度,余角是( 90﹣ x )度. 则( 180﹣ x )﹣( 90﹣ x ) =90°.故填 90.点评: 本题主要考查补角,余角的定义,是一个基础的题目.16.( 3 分)(秋 ?马鞍山期末)为了拓展销路,商店对某种照相机的售价作了调整,按原价的 8 折出售,此时的利润率为 14%,若此种照相机的进价为 1200 元,问该照相机的原售价是 1710 元 .考点:一元一次方程的用.分析:照相机的原售价是x 元,从而得出售价0.8x ,等量关系:售价=价(1+ 利率),列方程求解即可.解答:解:照相机的原售价是x 元,根据意得:0.8x=1200 ×( 1+14% ),解得: x=1710.答:照相机的原售价是1710 元.故答案: 1710 元.点:此考了一元一次方程的用,与合,是近几年的点考,首先懂目的意思,根据目出的条件,找出合适的等量关系,列出方程,再求解17.( 3 分)(秋 ?鞍山期末)某校开跆拳道、法两合践活,参加跆拳道的有 a 人,参加法的人数比参加跆拳道的人数少10 人,两活都参加的有7 人,参加两合践活的同学共有( 2a 17)人(用含有 a 的代数式表示).考点:列代数式.分析:根据参加法的人数比参加跆拳道的人数少10 人,两活都参加的有7 人列出代数式即可.解答:解:参加两合践活的同学共有(2a 17),故答案:( 2a 17).点:此考列代数式,关是根据意中参加跆拳道的有 a 人,参加法的人数比参加跆拳道的人数少10 人,两活都参加的有7 人列出代数式.18.( 3 分)(秋 ?鞍山期末)有一列数 a1, a2, a3,⋯,a n,从第二个数开始,每个数都等于 1 与它前一个数的倒数的差,即 a2=1 ,a3=1 ,⋯,若 a1=2, a= 1 .考点:律型:数字的化.分析:根据:每个数都等于 1 与它前面那个数的倒数的差,逐一行算找出律解决即可.解答:解:当a1=2,a2=1=,a3=1 2= 1,a4=1( 1) =2,a5=1=,一列数是按照2,,1的序依次循,由此可知,÷3=671 ,所以 a 与 a3相同,即a= 1.故答案: 1.点:此考数字的化律,通算,数据的律,利用律一步解决.三、解答(本大共 6 小,共46 分.)19.( 8 分)(秋 ?鞍山期末)算:(1)(﹣+)×(﹣36);(2)﹣ 2 2 3 3).×(﹣)﹣ |﹣ 2| +(﹣考点:有理数的混合运算.专题:计算题.分析:(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解答:解:( 1)原式 =﹣ 12+6﹣ 9=﹣ 15;(2)原式 = ﹣8﹣ =﹣ 8.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.( 7 分)(秋 ?马鞍山期末)已知2 2) ]﹣ab 的a=﹣1, b=2 ,求 2a ﹣ [8ab+ ( ab﹣4a值.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把 a 与 b 的值代入计算即可求出值.解答:解:原式 =2a 2﹣ 8ab﹣ ab+2a2﹣ab=4a2﹣ 9ab,当a=﹣ 1, b=2 时,原式 =4 ﹣ 9×(﹣ 1)×2=22.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.( 8 分)(秋 ?马鞍山期末)(1)解方程:﹣2=(2)在等式 y=kx+b 中,当 x=1 时, y=2 ; x=2 时, y=1;当 x=3 时, y=a,求 a 的值.考点:解二元一次方程组;解一元一次方程.专题:计算题.分析:(1)方程去分母,去括号,移项合并,把x 系数化为 1,即可求出解;(2)把 x 与 y 的两对值代入等式求出k 与 b 的值,确定出y=kx+b ,把 x=3 代入计算即可求出 a 的值.解答:解:(1)去分母得:5(3x+1)﹣20=3x﹣2,去括号得: 15x+5 ﹣ 20=3x ﹣ 2,移项合并得: 12=13 ,解得: x=;(2)把 x=1, y=2; x=2, y=1 代入等式得:,解得:,∴y= ﹣ x+3当x=3 时, a=0.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.( 7 分)(秋 ?马鞍山期末)在“走基层,树新风”活动中,青年记者深入边远山区,随机走访农户,调查农村儿童生活教育现状.根据收集的数据,编制了不完整的统计图表如下:山区儿童生活教育现状类别现状户数比例A 类父母常年在外打工,孩子留在老家由老人照顾100B 类父母常年在外打工,孩子带在身边20 10%C 类父母就近在城镇打工,晚上回家照顾孩子50D 类父母在家务农,并照顾孩子15%请你用学过的统计知识,解决问题:(1)记者走访了边远山区多少家农户?(2)将统计表中的空缺数据填写完整;(3)分析数据后,你能得出什么结论?考点:条形统计图;统计表.分析:(1)利用受访的总户数=B 类÷对应的百分比求解即要可;(2)先求出 A 类的比例, C 类的比例及 D 类的人数补全图表空缺数据即可;(3)由图表可知孩子带在身边有益孩子的身心健康,建议社会关心留守儿童的生活状况.解答:解:( 1)由图、表可知受访的总户数为20÷10%=200 ;(2) A 类的比例为×100%=50% ,C 类的比例为×100%=25% ,D 类的人数为200×15%=30 ,补全图表空缺数据;类别现状户数比例A 类父母常年在外打工孩子留在老家由老人照顾100 50%B 类父母常年在外打工,孩子带在身边20 10%C 类父母就近在城镇打工,晚上回家照顾孩子50 25%D 类父母在家务农,并照顾孩子30 15%(3)由图表可知孩子带在身边有益孩子的身心健康,建议社会关心留守儿童的生活状况.点评:本题主要考查了条形统计图,扇形统计图,中位数及众数,解题的关键是读懂统计图,获得准确的信息.23.( 8 分)(秋 ?马鞍山期末)(1)如图,已知∠AOB=90 °,∠ BOC=30 °, OM 平分∠AOC ,ON 平分∠ BOC ,求∠ MON 的度数;(2)如果( 1)中的∠ AOB= α,∠ BOC= β,其它条件不变,请用求α或β来表示∠ MON 的度数.考点:角的计算;角平分线的定义.分析:(1)根据角平分线的定义得到∠MOC=∠ AOC,∠NOC=∠ BOC,则∠MON= ∠ MOC ﹣∠ NOC=(∠ AOC﹣∠BOC)=∠ AOB,然后把∠AOB的度数代入计算即可;(2)由∠ AOB= α,∠ BOC= β,得到∠ AOC= ∠ AOB+ ∠ BOC= α+β,根据 OM 平分∠AOC ,ON 平分∠ BOC ,于是得到∠ MOC= ∠AOC= (α+β),∠NOC=∠BOC=β,即可得到结果.解答:解:(1)∵∠ AOB=90°,∠BOC=30°,∴∠ AOC= ∠ AOB+ ∠ BOC=90 °+30°=120°,又∵ OM 平分∠ AOC , ON 平分∠ BOC,∴∠ MOC=∠ AOC=60°,∠NOC=∠ BOC=15°,∴∠ MON= ∠ MOC ﹣∠ NOC=60 °﹣ 15°=45 °,(2)∵∠ AOB= α,∠ BOC= β,∴∠ AOC= ∠ AOB+ ∠ BOC= α+β,又∵ OM 平分∠ AOC , ON 平分∠ BOC,∴∠ MOC=∠ AOC=(α+β),∠NOC=∠ BOC=β,∴∠ MON= ∠ MOC ﹣∠ NOC=(α+β)﹣β=α.点评:本题考查的是角平分线的定义,熟知角平分线的定义是解答此题的关键.24.( 8 分)(秋 ?马鞍山期末)为了鼓励市民节约用电,某市居民生活用电按阶梯式电价计费.下表是该市居民“一户一表”生活用电阶梯式计费价格表的一部分信息:生活用电销售价格每户每月用电量单价:元 /度180 度及以下 a超过 180 度不超过350 度的部分 b超过 350 度的部分0.87已知小王家年 6 月份用电160 度,交电费91.20 元; 7 月份用电300 度,交电费177.00 元.(1)求 a,b 的值;(2)因 8 月份高温天气持续较长,小王家 8 月份电费达到 234.10 元,则小王家 8 月份用电多少度?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)根据题意结合表格中数据得出160a=91.20, 180a+( 300﹣ 180) b=177.00 即可求出;(2)首先求出当月用电量为350 度时的电费,进而表示出8 月份的电费,求出即可.解答:解:(1),解得;(2)当月用电量为 350 度时,电费为: 180×0.57+(350﹣ 180)×0.62=208(元)< 234.10元,故小王家用电量超过350 度.设小王家 8 月份用电 x 度,则得到180×0.57+( 350﹣180)×0.62+( x﹣ 350)×0.87=234.10 ,解得 x=380 (度),答:小王家8 月份用电量为380 度.点评:本题考查了二元一次方程组的应用,根据题意得出正确等量关系是解题关键.。
一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.D4.C5.B6.B7.D8.B9.A10.D11.D12.B13.D14.A15.A二、填空题16.【解析】【分析】根据题意分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律用n表示可得答案【详解】根据题意分析可得:17.﹣1010【解析】【分析】先求出前6个值从而得出据此可得答案【详解】当a1=0时a2=﹣|a1+1|=﹣1a3=﹣|a2+2|=﹣1a4=﹣|a3+3|=﹣2a5=﹣|a4+4|=﹣2a6=﹣|a518.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理19.8【解析】【分析】根据题意得出单项式与是同类项从而得出两单项式所含的字母ab 的指数分别相同从而列出关于mn的方程再解方程即可求出答案【详解】解:∵单项式与的和仍是单项式∴单项式与是同类项∴∴∴故答案20.【解析】∵OB=∴OA=OB=∵点A在数轴上原点的左边∴点A表示的数是−故答案为:−21.﹣6或2【解析】【分析】先利用AB点表示的数得到AB=16则BC=4然后把B点向左或向右平移4个单位即可得到点C表示的数【详解】解:∵点A表示的数为﹣18点B 表示的数为﹣2∴AB=﹣2﹣(﹣18)=22.【解析】【分析】由题意根据多项式的定义求出m和n的值进而代入关于的方程并解出方程即可【详解】解:∵是关于的二次二项式∴解得将代入则有解得故答案为:【点睛】本题考查多项式的定义以及解一元一次方程熟练掌23.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM为∠CBE的平分线∴∠EBM=∠CBE=×75°=375°∵BN为∠DBE的平分线∴∠EBN=∠EBD=×624.140【解析】【分析】首先根据题意设这件商品的成本价为x元则这件商品的标价是(1+40)x元;然后根据:这件商品的标价×80=15列出方程求出x的值是多少即可【详解】解:设这件商品的成本价为x元则这25.674【解析】【分析】根据图中前几行的数字可以发现数字的变化特点从而可以写出第n行的数字个数和开始数字从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020【详解】解:由图可知第一行1个三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:解析丢失2.D解析:解析丢失3.D解析:解析丢失4.C解析:解析丢失5.B解析:解析丢失6.B解析:解析丢失7.D解析:解析丢失8.B解析:解析丢失9.A解析:解析丢失10.D解析:解析丢失11.D解析:解析丢失12.B解析:解析丢失13.D解析:解析丢失14.A解析:解析丢失15.A解析:解析丢失二、填空题16.【解析】【分析】根据题意分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律用n表示可得答案【详解】根据题意分析可得:解析:解析丢失17.﹣1010【解析】【分析】先求出前6个值从而得出据此可得答案【详解】当a1=0时a2=﹣|a1+1|=﹣1a3=﹣|a2+2|=﹣1a4=﹣|a3+3|=﹣2a5=﹣|a4+4|=﹣2a6=﹣|a5解析:解析丢失18.1【解析】【分析】把-3代入程序中计算判断结果比0小将结果代入程序中计算直到使其结果大于0再输出即可【详解】把-3代入程序中得:把-2代入程序中得:则最后输出结果为1故答案为:1【点睛】本题考查有理解析:解析丢失19.8【解析】【分析】根据题意得出单项式与是同类项从而得出两单项式所含的字母ab的指数分别相同从而列出关于mn的方程再解方程即可求出答案【详解】解:∵单项式与的和仍是单项式∴单项式与是同类项∴∴∴故答案解析:解析丢失20.【解析】∵OB=∴OA=OB=∵点A在数轴上原点的左边∴点A表示的数是−故答案为:−解析:解析丢失21.﹣6或2【解析】【分析】先利用AB点表示的数得到AB=16则BC=4然后把B点向左或向右平移4个单位即可得到点C表示的数【详解】解:∵点A 表示的数为﹣18点B表示的数为﹣2∴AB=﹣2﹣(﹣18)=解析:解析丢失22.【解析】【分析】由题意根据多项式的定义求出m和n的值进而代入关于的方程并解出方程即可【详解】解:∵是关于的二次二项式∴解得将代入则有解得故答案为:【点睛】本题考查多项式的定义以及解一元一次方程熟练掌解析:解析丢失23.5°【解析】∵∠CBE=180°-∠ABC-∠DBE=180°-45°-60°=75°BM为∠CBE 的平分线∴∠EBM=∠CBE=×75°=375°∵BN为∠DBE的平分线∴∠EBN=∠EBD=×6解析:解析丢失24.140【解析】【分析】首先根据题意设这件商品的成本价为x元则这件商品的标价是(1+40)x元;然后根据:这件商品的标价×80=15列出方程求出x的值是多少即可【详解】解:设这件商品的成本价为x元则这解析:解析丢失25.674【解析】【分析】根据图中前几行的数字可以发现数字的变化特点从而可以写出第n行的数字个数和开始数字从而可以得到第20行第2个数是几和第多少行的最后一个数字是2020【详解】解:由图可知第一行1个解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。
2020-2021学年马鞍山市七年级上学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A. −3B. −1C. 2D. 42.若−2xy m和x n y3是同类项,则m和n的值分别为()A. m=1,n=1B. m=1,n=3C. m=3,n=1D. m=3,n=33.甲、乙两个施工队分别从两端共同修一段长度为380米的公路,在施工过程中,乙队因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.施工期间,甲队每天的施工进度相同,乙队技术改进前和改进后每天的施工进度也分别相同,下表是每天的工程进度:下列说法正确的是()A. 甲施工队每天修路15米B. 乙施工队第一天修路20米C. 整个工程中,甲施工队比乙施工队少修路20米D. 乙施工队技术改进后每天修路55米4. 今年五月份香港举办“保普选反暴力”大联盟大型签名行动,9天共收集超1210000个签名,将1210000用科学记数法表示为A. 1.21×106B. 12.1×105C. 0.121×107D. 1.21×1055. 在解方程(x−1)−2(2x+3)=6时,下列去括号正确的是()A. x−1−4x+3=6B. x−1−4x−6=6C. x+1−4x−3=6D. x−1+4x−6=66. 已知|a|=3,b2=16,且|a+b|≠a+b,则代数式a+b的值为()A. 1或7B. 1或−7C. −1或−7D. ±1或±77. 一个角为65°,则它的余角等于()A. 25°B. 35°C. 115°D. 135°8. 用配方法解方程x2+px+q=0,其配方正确的是()A. (x+p2)2=p2−4q4B. (x−P2)2=p2−4q4C. (x+p2)2=4q−p24D. (x−P2)2=4q−p249. 用一条长40cm的绳子围成一个面积为75cm2的长方形.设长方形的长为xcm,则可列方程为A. x(x+20)=75B. x(20−x)=75C. x(x+40)=75D. x(40−x)=7510. 若点P是线段AB上一点,能得到“P是线段AB的中点”的条件有()(1)AP=AB(2)AB=2PB(3)AP+PB=AB(4)AP=PB=ABA. 1个B. 2个C. 3个D. 4个二、填空题(本大题共8小题,共24.0分)11. 若(a−1)x|a|+5=0是一元一次方程,则a的值为______.12. 先阅读,再解答:对于三个数a、b、c中,我们用符号来表示其中最大的数和最小的数,规定min{a,b,c}表示这三个数中最小的数,max{a,b,c}表示这三个数中最大的数.例如:min{−1,1,3}=−1,max{−1,1,3}=3;(1)min{2,0,−3}=______;(2)若min{−1,−2,|x|}=max{2x+1,−1+2x,2x},则x的值为______.13. 根据a1=n,a2=1−1a1,a3=1−1a2,a4=1−1a3所蕴含的规律可得a2018=______.14. 如图,在数轴上有一个动点A,从表示1的位置开始以每秒2个单位长度的速度沿负方向运动,运动t秒之后停止,此时点A表示的数为______.15. 据四川省统计信息网《2007年1季度四川民营经济发展状况分析》,2007年1季度四川民营经济增加值分类统计如下表.根据此表作出的扇形统计图如图:组别 增加值(亿元)第一产业 146.50 第二产业 521.39 第三产业315.94请判断扇形统计图中对应组别名称:A 对应______ ,B 对应______ ,C 对应______ .16. 如图,已知线段AB =12cm ,点N 在AB 上,NB =2cm ,M 是AB 中点,那么线段MN 的长为______cm .17. 昭通沃尔玛在国庆期间搞活动,一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是______ 元.18. 某商场2007年的销售利润为a 元,预计以后每年比上一年增长10%,那么2008年该商场的销售利润将是____________元.三、计算题(本大题共1小题,共8.0分) 19. 计算:(1)−42−9÷(−34)+(−2)×(−1)2019; (2)(−34−59+712)×(−36).四、解答题(本大题共5小题,共38.0分) 20. 计算:−(3xy −2x 2)−2(3x 2−xy)21. 解方程组:{5x −4y =33x −y =2.22. 国家规定,“中小学生每天在校体育锻炼时间不小于1小时”,某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A 组:时间小于0.5小时;B 组:时间大于等于0.5小时且小于1小时;C 组:时间大于等于1小时且小于1.5小时;D 组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A组的人数是______人,并补全条形统计图;(2)本次调查数据的中位数落在组______;(3)根据统计数据估计该地区25000名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有______人.23. 学校6名教师和234名学生外出黄冈遗爱湖湿地公园春游一天,计划租车总费用不超过2300元,每辆车上至少要有1名教师跟车.现有甲、乙两种客车可供租用,甲种车每车限载45人,乙种车每车限载30人,限载量均不含司机.按天计算,租1辆甲种车和2辆乙种车,共需租金1000元;租2辆甲种车和1辆乙种车,共需租金1100元.(1)求甲、乙两种车每天每车的租金;(2)求最省钱的租车方案.24. 画图说明:(1)画∠AOB=90°;(2)在∠AOB内部任意画一条射线OP;(3)画∠AOP的平分线OM,∠BOP的平分线ON;(4)通过量角器度量,你猜想∠MON=______.试用符号语言说明你猜想的正确性.参考答案及解析1.答案:B解析:此题主要考查了正负数的意义,属于基础题.根据正负数的意义,绝对值最小的即为最接近标准的.解:|−3|=3,|−1|=1,|2|=2,|4|=4,4>3>2>1,∴从轻重的角度来看,最接近标准的是记录为−1.故选B.2.答案:C解析:本题考查同类项的概念,属于基础题.根据相同字母的指数要相同,可求出m与n的值.解:由题意可知:1=n,m=3,故选:C.3.答案:C解析:解:由题意可得,甲施工队每天修路:160−140=20(米),故选项A说法错误;乙施工队第一天修路:35−20=15(米),故选项B说法错误;整个工程中,甲施工队一共修路:20×9=180(米),乙甲施工队一共修路:380−180=200(米),甲施工队比乙施工队少修路200−180=20(米),故选项C说法正确;乙施工队技术改进后每天修路215−160−20=35(米),故选项D说法错误;故选:C.根据题意和表格中的数据可以判断各个选项中的说法是否正确,本题得以解决.本题考查了统计表,读懂统计表,从统计表中得到必要的信息是解决问题的关键.解析:解:将1210000用科学记数法表示为1.21×10².故选A.5.答案:B解析:解:方程(x−1)−2(2x+3)=6,去括号得:x−1−4x−6=6.故选:B.方程去括号得到结果,即可作出判断.此题考查了解一元一次方程,熟练掌握去括号法则是解本题的关键.6.答案:C解析:解:∵|a|=3,∴a=±3;∵b2=16,∴b=±4;∵|a+b|≠a+b,∴a+b<0,∴a=3,b=−4或a=−3,b=−4,(1)a=3,b=−4时,a+b=3+(−4)=−1;(2)a=−3,b=−4时,a+b=−3+(−4)=−7;∴代数式a−b的值为−1或−7.故选:C.首先根据题意,可得:a=±3,b=±4;然后根据:|a+b|≠a+b,可得:a+b<0,据此求出代数式a+b的值为多少即可.此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数−a;③当a是零时,a的绝对值是零.7.答案:A解析:解:根据余角的定义得,65°的余角=90°−65°=25°.和为90度的两个角互为余角,依此计算即可求解.本题考查了余角和补角,属于基础题,较简单,主要记住互为余角的两个角的和为90度.8.答案:A解析:解:x2+px+q=0,x2+px=−q,x2+px+p24=−q+p24,(x+p2)2=p2−4q4;故选:A.先移项,再进行配方,把左边配成完全平方式,右边化为常数,即可得出答案.此题考查了配方法解一元二次方程,用配方法解一元二次方程的步骤是:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.9.答案:B解析:本题可设长方形的长为xcm,根据长方形的周长可以用x表示宽的值,然后根据面积公式即可列出方程。
七年级数学第一学期期末素质测试一、选择题(每小题4分,计40分)1. 3的相反数的倒数是( ) A. 3- B. 13-C. 3D. 132.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( ) A. 92810⨯ B. 82.810⨯ C. 92.810⨯ D. 102.810⨯3.下列说法中正确的是( ) A. 0不是单项式; B. 316x π的系数为16; C.27ah的次数为2; D. 365x y +-不是多项式; 4.下列说法中,其中正确的的个数是( ) (1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则a -一定是负数;(4)a 是大于1-的负数,则2a 小于3aA. 1B. 2C. 35.甲、乙两个超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,购买此商品更合算的超市是( )A. 甲超市B. 乙超市C. 两超市一样D.与商品价格有关6.下列四个图形中,经过折叠能围成如图一所示的几何图形的是( )(图一)DCBA7.在有理数范围内定义运算“*”,其规则为2*3a bA B +=-,则方程(2*3)(4*x)49=的解为( )A. 3- B. 55- C. 56-8.方程213x -=与方程3103a x--=的解相同,则的值为( ) A. 3 B. 2 C. 1 D. 539.如图二,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是( )10.下列说法中,不正确的有( ) (1)正方体有8个顶点和6个面;(2)两个锐角的和一定大于90°; (3)若2AOB BOC ∠=∠,则OC 是AOB ∠的平分线;(4)两点之间,线段最短; (5)钝角的补角一定大于这个角的本身;(6)射线OA 也可以表示为射线AO A. 2个 B. 3个 C. 4个 个二、填空题(每小题5分,计20分)11.若多项式22232(5y 3x mx )x -+-+的值与x 无关,则m 的等于________; 12.写出一个满足下列条件的一元一次方程:(1)未知数的系数为23-;(2)方程的解是6,则这样的方程可写为_____________________________;13.如果线段10AB =,点C 、D 在直线AB 上,6BC =,D 是AC 的中点,则A 、D 两点间的距离是____________;14.有理数a 和b 在数轴的位置如图三所示,则下列结论中:(1) 0a b -> (2) 0ab > (3) 0a b -<< (4) a b a -<-< (5) |a ||b ||a b |+=-其中正确的是________________________(把正确的结论的序号都选上) 三、解答题(共8小题,计90分) 15.(8分)计算:23213|3|(3)()24348-------⨯16.(10分)先化简,再求值:22228102(2a 10ab 8b )a ab b -+--+,其中12a =,13b =-17.(10分)解方程:113(x 1)45225x x x --+=-18.(12分)2017年李明家买了一辆轿车,他连续记录了一周中每天行驶的路程(如下表),以为标准,多于50km 的记“+”,不足50km 的记“-”,刚好50km 的记“0”。
马鞍山市2020—2021学年度第一学期期末教学质量监测七年级数学试题本试卷共4页,24小题,满分100分. 考生注意事项:1.答题前,务必在试题卷、答题卷规定的地方填写自己的姓名、准考证号、座位号.2.答选择题时,每小题选出答案后,请将正确的答案代号在答题卷上用2B 铅笔涂黑.3.答非选择题时,请使用0.5毫米的黑色墨水签字笔在答题..卷.上.书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题..卷.规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区.....域书写的答案无效........,在试题卷....、草稿纸上答题无效......... 4.考试结束,请将试题卷和答题卷一并上交.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果向右走5步记为+5,那么向左走3步记为( ) A .+3B .3-C .1+3D .13-2.若3a x y -与b x y 是同类项,则a b +的值为( ) A .2B .3C .4D .53.某地区元月份连续七天的空气质量指数(AQI )分别为:118,96,60,82,56,69,86. 为了反映这七天空气质量的变化情况,最直观的表示方法是( ) A .统计表B .条形统计图C .扇形统计图D .折线统计图4.中国是严重缺水的国家之一,人均淡水资源为世界人均水平的四分之一,所以我们要节约用水.若每人每天浪费水0.3升,则马鞍山全市230万人每天浪费的水的总升数,用科学记数法表示为( ) A .56.910⨯B .46910⨯C .66.910⨯D .56910⨯5.已知关于x 的方程322x a +=的解为1x a =-,则a 的值是( ) A .1B .35C .15D .1-6.对于任何有理数a ,下列一定为负数的是( )A .(3)a --+B .a -C .1a -+D .1a --7.若α∠与β∠互补(αβ∠<∠),则α∠与1()2βα∠-∠的关系是( ) A .互补B .互余C .和为45︒D .和为22.5︒8.已知,x y 满足3735x y x y +=⎧⎨+=⎩,则x y -的值等于( )A .1-B .1C .2D .39.互联网“微商”经营已成为大众创业新途径,某“微商”平台上一件商品标价为200元,按五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元10.如图,B 为线段AC 上一点,H 为AC 的中点,M 为AB 的中点,N 为BC 的中点,则下列说法:①MN HC =;②1()2MH AH HB =-;③1()2MN AC HB =+;④1()2HN HC HB =+,其中正确的是( ) A .①②B .①②③C .①②③④D .①②④二、填空题:本大题共8个小题,每小题3分,共24分.请把答案填在答题卷的相应位置. 11.已知20a +=,则a 的值为__________. 12.比较大小:12-__________ 13-(用>、<或=填空) 13.有一组单项式:2a ,32a -,43a ,54a -,…请观察它们的构成规律,用你发现的规律写出第2n 个单项式为__________.14.纸上画一数轴,将纸对折后,表示7的点与表示1-的点恰好重合,则此时与表示3-的点重合的点所表示的数是__________.15.某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图(如图),其中“其他”部分所对应的扇形的中心角度数为36︒,则“步行”部分所占的百分数是__________. 16.有两根木条,一根长为60cm ,一根长为100cm .如果将它们放乘车15%骑车35%步行其他在同一条直线上,并且使一个端点重合,那么这两根木条的中点间的距离是__________.17.家住山脚下的小明从家出发登山游玩,他下山的速度比上山的速度快1/km h,他上山2h 到达的位置离山顶还有1km,到山顶后抄近路下山,下山路程比上山路程近2km,下山用了1h,那么小明上山的路程(到山顶)为__________km.18.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S,2S.已知小长方形纸片的宽为a,长为4a,则21=S S-__________(结果用含a的代数式表示).三、解答题:本大题共6题,共46分.解答题应写出文字说明、演算步骤或证明过程.解答写在答题卷上的指定区域内.19.(本题满分8分,每小题4分)计算下列各式:(1) 5215(9)17(3)632-+-++-(2) 202113(1)15(3)532-⨯÷--⨯20.(本题满分6分)已知多项式22A x xy=-,26B x xy=+-,当17x=,15y=时,求4A B-的值.21.(本题满分8分,每小题4分)解下列方程(组):(1)114 0.20.5x x+--=(2)S2S1②图①图aDCBA(第18题图)人数组别数学英语101520255英语语文数学50%22.(本题满分8分)某年级组织部分学生参加语文、数学、英语课外活动兴趣小组,下面两幅统计图反映了学生自愿报名(每人限报一科)的情况,请你根据图中信息回答下列问题:(1)该年级报名参加英语课外活动兴趣小组的人数占全年级人数的百分数是______,请补全条形统计图;(2)根据实际情况,需从英语课外活动小组抽调部分同学到数学课外活动小组,使数学课外活动小组的人数是英语课外活动小组人数的3倍,则应从中抽调多少名学生?23.(本题满分8分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,请问有多少匹大马、多少匹小马?24.(本题满分8分)如图,O 为直线AB 上一点,过点O 作射线OC ,使120BOC ∠=︒.将一直角三角尺的直角顶点放在O 处.NMCAO BNMO ②图①图CB(1)当三角尺一边OM 在BOC ∠的内部(图①),且恰好平分BOC ∠,此时直线ON 是否平分AOC ∠?请说明理由;(2)当三角尺一边ON 在AOC ∠的内部(图②),求AOM CON ∠-∠的值.马鞍山市2020—2021学年度第一学期期末素质测试七年级数学试题参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确选项的代号填在题后的括号内.)二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.) 11.2-;12. <;13.212n a n+-;14.9; 15.40%; 16.80cm 或20cm (说明:单位没写不扣分);17.5;18.24a .三、解答题(本大题共6小题,共46分)19.(本题满分8分,每小题4分)计算下列各式:(1) 解:原式521(5)()(9)()17(3)()632=-+-+-+-++-+- ……………2分 521[(5)(9)17(3)][()()()]632=-+-++-+-+-+- 0(2)=+-2=- ………………………………4分 (2)解:原式2515()56=-÷-⨯ ……………………6分1855=⨯ 18= ………………………8分20.(本题满分6分)解:2244(2)(6)A B x xy x xy -=--+- 2756x xy =-+ ………………………4分当17x =,15y =时 211147()56775A B -=⨯-⨯⨯+6= ………………………6分21.(本题满分8分,每小题4分)(1)解:5(1)2(1)4x x +--= ………………………2分 55224x x +-+= 33x =-1x =- ………………………4分 (2)解:由①式可得4()3x y x y +=- ③将③代入②得:4()2()43x y x y ---=-,解得:6x y -= (2)将6x y -= 代入③中得8x y += 所以得方程组86x y x y +=⎧⎨-=⎩解得71x y =⎧⎨=⎩………………………4分说明:只要解法合理,答案对均可.22.(本题满分8分)解:(1)30%,补全的条形图如图;………………………4分(2)设从英语组抽调x 名学生.则 253(15)x x +=-解得5x =答:从英语组抽调5名学生. ………………………8分23.(本题满分8分)解:设大马有x 匹,小马有y 匹,则得100131003x y x y +=⎧⎪⎨+=⎪⎩………………4分 解得2575x y =⎧⎨=⎩ …………………6分答:大马有25匹,小马有75匹 ………………………8分 24.(本题满分8分)解:(1)如图①,设ON 的反向延长线为OD , 由于120BOC ∠=︒,OM 平分BOC ∠,所以1602COM BOC ∠=∠=︒,18060AOC BOC ∠=︒-∠=︒ 而90MOD ∠=︒,所以30COD MOD COM ∠=∠-∠=︒, 即12COD AOC ∠=∠, 所以直线ON 平分AOC ∠.………4分(2)如图②,由于90MON ∠=︒,60AOC ∠=︒, 所以90AOM MON AON AON ∠=∠-∠=︒-∠, 60CON AOC AON AON ∠=∠-∠=︒-∠所以(90)(60)30AOM CON AON AON ∠-∠=︒-∠-︒-∠=︒.…8分。
一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个2.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12AB D .AD=12(CD+AB ) 3.已知:∠AOC =90°,∠AOB :∠AOC =2:3,则∠BOC 的度数是( ) A .30°B .60°C .30°或60°D .30°或150° 4.已知α∠和β∠互补,且αβ∠>∠,则有下列式子:①90β︒-∠;②90α∠-︒;③()12αβ∠+∠;④()12αβ∠-∠;⑤()1902α∠-︒;其中,表示β∠的余角的式子有( ) A .4个 B .3个 C .2个D .1个 5.已知,每本练习本比每根水性笔便宜2元,小刚买了6本练习本和4根水性笔正好用去18元,设水性笔的单价为x 元,下列方程正确的是( )A .6(x+2)+4x =18B .6(x ﹣2)+4x =18C .6x+4(x+2)=18D .6x+4(x ﹣2)=18 6.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= 7.下列变形中,正确的是( )A .变形为B .变形为C .变形为D .变形为8.“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x - = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅2m + 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .49.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6 10.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 11.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12 12.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>-二、填空题13.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a 和b 的大小,结果可能有 种情况,它们是_______________. 14.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B 为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.15.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.16.小亮用40元钱买了5千克苹果和2千克香蕉,找回4元.已知每千克香蕉的售价是每千克苹果售价的2倍,则每千克苹果的售价是________元.17.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n 的代数式表示).18.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.19.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.20.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____.三、解答题21.如图,是一个几何体的表面展开图.(1)该几何体是________;A .正方体B .长方体C .三棱柱D .四棱锥(2)求该几何体的体积.22.如图所示,长度为12cm 的线段AB 的中点为点M ,点C 将线段MB 分成:1:2MC CB =,求线段AC 的长度.23.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,一块小正方形以及另两块长方形的纸板,恰好拼成一个大正方形,求大正方形的面积.24.统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的3倍多52座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?25.计算:(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ (2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭26.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确; ②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误; ④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B .【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.D解析:D【解析】解:A 、由点C 是线段AB 的中点,则AB=2AC ,正确,不符合题意;B 、AC+CD+DB=AB ,正确,不符合题意;C 、由点C 是线段AB 的中点,则AC=12AB ,CD=AD-AC=AD-12AB ,正确,不符合题意;D 、AD=AC+CD=12AB+CD ,不正确,符合题意.故选D . 3.D解析:D【分析】根据两角的比和两角的和即可求得两个角的度数.【详解】由∠AOC =90°,∠AOB :∠AOC =2:3,可得当B 在∠AOC 内侧时,可以知道∠AOB 23=⨯90°=60°,∠BOC =30°; 当B 在∠AOC 外侧时,∠BOC =150°.故选:D .【点睛】本题考查了三角形中角的求法,解题的关键是分两种情况讨论. 4.B解析:B【分析】根据余角和补角的概念进行角度的计算即可得解.【详解】∵9090ββ︒-∠+∠=︒,∴①正确;∵α∠和β∠互补,∴180αβ∠+∠=︒,∴901809090αβ∠-︒+∠=︒-︒=︒,∴②正确,⑤错误; ∵()11180909022αββββ∠+∠+∠=⨯︒+∠=︒+∠≠︒, ∴③错误; ∵()()11118090222αββαβ∠-∠+∠=∠+∠=⨯︒=︒, ∴④正确;∴①②④正确,故选:B.【点睛】 本题主要考查了余角和补角的含义,熟练掌握相关角度的计算是解决本题的关键. 5.B解析:B【分析】等量关系为:6本练习本总价+4支水性笔总价钱=18.【详解】解:水性笔的单价为x 元,那么练习本的单价为(x ﹣2)元,则6(x ﹣2)+4x =18,故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,列方程解应用题的关键是找出题目中的相等关系.6.A解析:A【分析】根据A 工程队修建此项工程xm ÷修建速度+B 工程队修建此项工程(3600-x )m÷修建速度= 20天.列出方程即可.【详解】设A 工程队修建此项工程xm ,则B 工程队修建此项工程(3600-x )m ,由题意,得360020240160x x -+= 故选:A .【点睛】此题考查一元一次方程的应用,找出合适的等量关系是解题的关键.7.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2,两边同时乘以2,即可得到x+3=4+2x ;故选项正确. C. 根据等式性质2,两边都除以−2,应得到x−4=−1,故选项错误; D. 根据等式性质2,两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键. 8.D解析:D【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断.【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x -个,需要长方形纸板3×1202x -张,因此可得120433602x x -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m 个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m +4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个故③④正确.故选D.本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.9.C解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.B解析:B【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.11.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.12.C解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b<a<0,∴a+b<a+(-b)=a-b.∵b>-1,∴a-1=a+(-1)<a+b.又∵-b<1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b<a-b<a+1,故选:C.【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.二、填空题13.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.14.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.15.200元或210元【分析】根据购物顺序不同分类讨论即可【详解】①若先买单价为120元的物品赠送一张50元购物券再去买单价为60元和80元的物品实际花费为:120+60+80-50=210元;②若先买解析:200元或210元【分析】根据购物顺序不同分类讨论即可.【详解】①若先买单价为120元的物品,赠送一张50元购物券,再去买单价为60元和80元的物品,实际花费为:120+60+80-50=210元;②若先买60元和80元的物品,赠送一张50元购物券,再去买120元的物品,实际花费为:60+80+120-50=210元;③若先买60元和120元的物品,赠送一张50元购物券,再去买80元的物品,实际花费为:60+120+80-50=210元;④若先买80元和120元的物品,赠送两张50元购物券,再去买60元的物品,此时购物券可抵扣60元,实际花费为:120+80=200元;故答案为200元或210元.【点睛】此题考查的是分类讨论的数学思想.16.4【解析】【分析】直接设每千克苹果的售价是x元则每千克香蕉售价2x 元利用40元钱买了5千克苹果和2千克香蕉找回4元得出方程求出答案【详解】设每千克苹果的售价是x元则每千克香蕉售价2x元根据题意可得:解析:4【解析】【分析】直接设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,利用40元钱买了5千克苹果和2千克香蕉,找回4元得出方程求出答案.【详解】设每千克苹果的售价是x 元,则每千克香蕉售价2x 元,,根据题意可得:5×x+2×2x=40-4,解得:x=4.即:每千克香蕉售价4元.故答案为:4.【点睛】此题主要考查了一元一次方程的应用,正确表示出两种水果的价格是解题关键. 17.【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个 解析:()31-n【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 18.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键.19.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.20.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.三、解答题21.(1)C;(2)4【分析】(1)本题根据展开图可直接得出答案.(2)本题根据体积等于底面积乘高求解即可.【详解】(1)本题可根据展开图中两个全等的等腰直角三角形,以此判定该几何体为三棱柱,故选C.(2)由图已知:该几何体底面积为等腰三角形面积12222=⨯⨯=;该几何体的高为2;故该几何体体积=底面积⨯高=22=4⨯.本题考查几何体展开图以及体积求法,根据展开图推测几何体时需要以展开图的特征位置作为推测依据,求解体积或者面积时按照公式求解即可.22.8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.23.大正方形的面积是36cm 2【分析】设小正方形的边长为x ,然后表示出大正方形的边长,利用正方形的面积相等列出方程求得小正方形的边长,然后求得大正方形的边长即可求得面积.【详解】设小正方形的边长为x ,则大正方形的边长为4+(5−x )cm 或(x +1+2)cm , 根据题意得:4+(5−x )=(x +1+2),解得:x =3,∴4+(5−x )=6,∴大正方形的面积为36cm 2.答:大正方形的面积为36cm 2.【点睛】本题考查了一元一次方程的应用,解题的关键是设出小正方形的边长并表示出大正方形的边长.24.102座.【分析】根据等量关系为:暂不缺水城市+一般缺水城市+严重缺水城市=664,据此列出方程,解可【详解】设严重缺水城市有x 座,依题意得:(3x+52)+x+2x=664.解得:x=102.答:严重缺水城市有102座.【点睛】此题考查一元一次方程的应用,解题的关键在于找到合适的等量关系,列出方程求解. 25.(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭=1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.26.(1)5x 2-2;(2)-x +1y ;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.。
七年级上册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.庆祝澳门回归祖国20周年时,据统计澳门共有女性约360000人,则360000用科学记数法可以表示为( ) A .53610⨯B .60.3610⨯C .53.610⨯D .43610⨯2.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点3.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数....x 的和为( )A .30B .35C .42D .39 4.已知关于x 的方程34x a -=的解是x a =-,则a 的值是( ) A .1 B .2 C .1- D .2- 5.无论x 取什么值,代数式的值一定是正数的是( ) A .(x +2)2 B .|x +2| C .x 2+2 D .x 2-2 6.下列四个数中,最小的数是()A .5B .0C .1-D .4-7.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯8.下列四个图形中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的是()A .B .C .D .9.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .10.图中几何体的主视图是( )A .B .C .D .11.-8的绝对值是( ) A .8B .18C .-18D .-812.2020的绝对值等于( ) A .2020B .-2020C .12020D .12020-13.下列语句错误的是( ) A .两点确定一条直线 B .同角的余角相等 C .两点之间线段最短D .两点之间的距离是指连接这两点的线段14.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上15.若2(1)210x y -++=,则x +y 的值为( ). A .12B .12-C .32D .32-二、填空题16.地球的半径大约为6400000m ,用科学计数法表示地球半径为___________m . 17.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________. 18.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.19.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________. 20.多项式32ab b +的次数是______.21.当x =1时,代数式ax 2+2bx+1的值为0,则2a+4b ﹣3=_____. 22.若232a b -=,则2622020b a -+=_______. 23.有5个面的棱柱是______棱柱. 24.计算t 3t t --=________.25.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 的度数是________.三、解答题26.如图,已知BD 平分∠ABC ,点F 在AB 上,点G 在AC 上,连接FG 、FC ,FC 与BD 相交于点H ,如果∠GFH 与∠BHC 互补,那么∠1=∠2吗?请说明理由.27.将正整数1至2019按照一定规律排成下表:记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4. (1)直接写出a 35= ,a 54= ;(2)①若a ij =2019,那么i = ,j = ,②用i ,j 表示a ij = ; (3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2026.若能, 求出这5个数中的最小数,若不能请说明理由.28.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.()1过点C 画线段AB 的平行线CD ;()2过点A 画线段BC 的垂线,垂足为E ;()3过点A 画线段AB 的垂线,交线段CB 的延长线于点F ; ()4线段AE 的长度是点______到直线______的距离; ()5线段AE 、BF 、AF 的大小关系是______.(用“<”连接)29.计算:(1)2(2)(3)(4)---⨯-.(2)125(60)236⎛⎫--⨯-⎪⎝⎭. 30.先化简,再求值:(3a 2b -ab 2)-2(ab 2+3a 2b ),其中a =-12,b =2. 31.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数.(2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示) 32.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由. 33.计算:(1)1136()33-⨯+⨯-(2)32(2)4[5(3)]-÷⨯--四、压轴题34.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .35.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.36.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果. 37.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长;(3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.38.数轴上有两点A ,B , 点C ,D 分别从原点O 与点B 出发,沿BA 方向同时向左运动. (1)如图,若点N 为线段OB 上一点,AB=16,ON=2,当点C ,D 分别运动到AO ,BN 的中点时,求CD 的长;(2)若点C 在线段OA 上运动,点D 在线段OB 上运动,速度分别为每秒1cm, 4cm ,在点C ,D 运动的过程中,满足OD=4AC ,若点M 为直线AB 上一点,且AM-BM=OM ,求AB OM的值.39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
七年级上册马鞍山数学期末试卷测试题(Word 版 含解析)一、选择题1.下列各图是正方体展开图的是( )A .B .C .D .2.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为()A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯ 3.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )A .B .C .D .4.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -5.某种商品的进价为100 元,由于该商品积压,商店准备按标价的8折销售,可保证利润16元,则标价为( )A .116元B .145元C .150元D .160元6.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x 人到甲队,列出的方程正确的是( )A .272+x =(196-x )B .(272-x )= (196-x )C .(272+x )= (196-x )D .×272+x = (196-x )7.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是()A .1B .3C .7D .98.下列方程为一元一次方程的是( )A .12y y +=B .x+2=3yC .22x x =D .3y=29.下列平面图形不能够围成正方体的是( ) A . B . C . D .10.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④12.如图正方体纸盒,展开后可以得到( )A .B .C .D . 13.在同一平面内,下列说法中不正确的是( )A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .过直线外一点有且只有一条直线与这条直线垂直D .若AC BC =,则点C 是线段AB 的中点.14.有理数a 、b 在如图所示数轴的对应位置上,则2a b b a +--化简后结果为( )A .aB .a -C .2a b -+D .2b a -15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .二、填空题16.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.17.一个角的度数为2018',则这个角的补角的度数是________.18.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.19.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.20.已知关于x 的方程2ax=(a+1)x+3的解是正整数,则正整数a=_____.21.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.22.按照下图程序计算:若输入的数是 -3 ,则输出的数是________23.已知月球与地球之间的平均距离约为384 000km ,把384 000km 用科学记数法可以表示______km .24.若a -2b =1,则3-2a +4b 的值是__.25.单项式345ax y -的次数是__________. 三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+.27.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.28.如图,在方格纸中,点A 、B 、C 是三个格点(网格线的交点叫做格点)(1)画线段BC ,画射线AB ,过点A 画BC 的平行线AM ;(2)过点C 画直线AB 的垂线,垂足为点D ,则点C 到AB 的距离是线段______的长度;(3)线段CD ______线段CB (填“>”或“<”),理由是______.29.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 . (2)请选择其中一种方法,写出完整的解答过程.30.如图,点 O 在直线 AB 上, O C 、 O D 是两条射线, O C OD ⊥,射线OE 平分 BOC ∠.(1)若 150DOE ∠=︒,求AOC ∠的度数.(2)若DOE α∠=,则 AOC ∠= .(请用含α的代数式表示)31.如图,在三角形ABC 中,CD 平ACB ∠,交AB 于点D ,点E 在AC 上,点F 在CD 上,连接DE ,EF .(1)若70ACB ∠=︒,35CDE ∠=︒,求AED ∠的度数;(2)在(1)的条件下,若180BDC EFC ∠+∠=︒,试说明:B DEF ∠=∠.32.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.33.同学们,我们知道图形是由点、线、面组成,结合具体实例,已经感受到“点动成线,线动成面”的现象,下面我们一起来进一步探究:(概念认识)已知点P 和图形M ,点B 是图形M 上任意一点,我们把线段PB 长度的最小值叫做点P 与图形M 之间的距离.例如,以点M 为圆心,1cm 为半径画圆如图1,那么点M 到该圆的距离等于1cm ;若点N 是圆上一点,那么点N 到该圆的距离等于0cm ;连接MN ,若点Q 为线段MN 中点,那么点Q 到该圆的距离等于0.5cm ,反过来,若点P 到已知点M 的距离等于1cm ,那么满足条件的所有点P 就构成了以点M 为圆心,1cm 为半径的圆.(初步运用)(1)如图2,若点P 到已知直线m 的距离等于1cm ,请画出满足条件的所有点P . (深入探究)(2)如图3,若点P 到已知线段的距离等于1cm ,请画出满足条件的所有点P . (3)如图4,若点P 到已知正方形的距离等于1cm ,请画出满足条件的所有点P .四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。
马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1072.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 3.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④ 5.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 6.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限7.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 8.已知∠A =60°,则∠A 的补角是( ) A .30° B .60° C .120°D .180° 9.下列变形中,不正确的是( ) A .若x=y ,则x+3=y+3B .若-2x=-2y ,则x=yC .若x y m m =,则x y =D .若x y =,则x y m m= 10.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D . 11.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 12.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2 二、填空题13.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.14.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 15.把53°24′用度表示为_____.16.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元.17.单项式22ab -的系数是________. 18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.若方程11222m x x --=++有增根,则m 的值为____. 20.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.21.当x= 时,多项式3(2-x )和2(3+x )的值相等.22.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.23.若523m x y +与2n x y 的和仍为单项式,则n m =__________.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离.27.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?28.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试A B C D四个等级进行统计(说明:A级:90分~100分;B级:75分~89成绩,按,,,分;C级:60分~74分;D级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A级学生约有多少名?29.一件商品先按成本价提高50%后标价,再以8折销售,售价为180元.(1)这件商品的成本价是多少?(2)求此件商品的利润率.30.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?四、压轴题31.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3.C解析:C【解析】试题解析:A∵0的绝对值是0,故本选项错误.B∵互为相反数的两个数的绝对值相等,故本选项正确.C如果一个数是正数,那么这个数的绝对值是它本身.D∵0的绝对值是0,故本选项错误.故选C.4.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.5.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.6.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.7.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.8.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A 的补角只要用180°﹣∠A 即可.【详解】设∠A 的补角为∠β,则∠β=180°﹣∠A =120°.故选:C .【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.9.D解析:D【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m=不成立,故D 选项错误; 故选:D .【点睛】 本题考查等式的变形,熟记等式的基本性质是解题的关键.10.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.二、填空题13.﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x 、y 的值,然后计算即可解答.【详解】解:∵|x|=3,y2=4,∴x =±3,y =±2,∵x <y ,∴x =﹣3,y =±2,当x =﹣解析:﹣1或﹣5【解析】【分析】利用绝对值和乘方的知识确定x 、y 的值,然后计算即可解答.【详解】解:∵|x |=3,y 2=4,∴x =±3,y =±2,∵x <y ,∴x =﹣3,y =±2,当x =﹣3,y =2时,x +y =﹣1,当x =﹣3,y =﹣2时,x +y =﹣5,所以,x +y 的值是﹣1或﹣5.故答案为:﹣1或﹣5.【点睛】本题主要考查了有理数的乘方、绝对值的性质有理数的加法等知识,,解题的关键是确定x 、y 的值.14.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键. 15.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;17.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键20.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式21.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.22.17【解析】【分析】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x +3x=7,则原式=2(2x +3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9. 解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.221122a ab b -+-,值为:799- 【解析】【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】 解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭ =222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】 本题考查化简求值,解题关键在于对整式加减的理解.26.小明家到景蓝小区门口的距离为1000米.【解析】【分析】可设小明家到景蓝小区门口的距离是x 米,根据等量关系:小明家到景蓝小区门口的时间=小明的父母到景蓝小区门口的时间,依此列出方程求解即可.【详解】解:设小明家到景蓝小区门口的距离为x 米,由题意得:54054060x x ⨯+=+ 解得:x =1000,答:小明家到景蓝小区门口的距离为1000米.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27.(1)甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)售完这批T 恤衫商店共获利5960元.【解析】【分析】(1)可设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,根据题意列出方程求解即可;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【详解】(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有:78006400301.5x x+=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60. 答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6400x=160,160﹣30=130(元), 130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元).答:售完这批T 恤衫商店共获利5960元.【点睛】本题考查分式方程的应用,根据等量关系建立方程是关键,注意分式方程需要验根.28.(1)50;(2)36°;(3)作图见解析;(4)100名.【解析】【分析】(1)根据条形统计图和扇形统计图的对应关系,用条形统计图中某一类的频数除以扇形统计图中该类所占百分比即可解决.(2)用单位1减掉A 、B 、C 所占的百分比,得出D 项所占的百分比,然后与360°相乘即可解决.(3)用总数减去A 、B 、C 的频数,得出D 项的频数,然后画出条形统计图即可.(4)用七年级所有学生乘A 项所占的百分比,即可解决.【详解】(1)10÷20%=50;(2)()360146%24%20%36010%36︒⨯---=︒⨯=︒;(3)D 项的人数:50-10-23-12=5.补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A 级学生人数约为100名.【点睛】本题考查了条形图和扇形统计图结合题型,解决本题的关键是正确理解题意,熟练掌握扇形统计图和条形图的各类量的对应关系.29.(1)这件商品的成本价是150元;(2)此件商品的利润率是20%【解析】【分析】(1)设这件商品的成本价为x 元,根据售价=标价×80%,据此列方程.(2)根据利润率=100%⨯利润成本计算. 【详解】解:(1)设这件商品的成本价为x 元,由题意得,x (1+50%)×80%=180.解得:x =150,答:这件商品的成本价是150元;(2)利润率=180150150-×100%=20%. 答:此件商品的利润率是20%.【点睛】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.30.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A ,P 表示的数可找出点M 表示的数,再结合点B 表示的数可求出点M 、B 之间的距离;(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.四、压轴题31.(1)4;(2)12或72;(3)27或2213或2 【解析】【分析】 (1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =【详解】解:(1)∵t+2t+3t=6t,∴当t=4时,6t=24,∵24122=⨯,∴点3Q 与M 点重合,∴134Q Q =(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2= (3)情况一:3t+4t=2, 解得:2t 7= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)解得:t=2.综上所述:t 的值为,2或27或2213. 【点睛】本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x 分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分,∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,。
2019-2020年安徽省马鞍山七年级上学期期末考试数学(沪科版)考生注意:本卷共4页,24小题,满分100分.题号一二三总分 19 20 21 22 23 24 得分一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.) 1.2019-的相反数是( ) A .2019B .2019-C .12019-D .12019【答案】A .考查相反数的概念,简单题(第1章). 2.设x ,y ,a 是有理数,下列说法中,正确的是( ) A.若x y =,则x a y a +=- B.若x y =,则xa ya = C.若x y =,则x ya a= D.若23x ya a=,则23x y = 【答案】B .考查等式的基本性质,简单题(第3章).3.地球绕太阳一天转动通过的路程约是2640000千米, 将2640000用科学记数法表示为( )A .70.26410⨯B .62.6410⨯C .526.410⨯D .426410⨯ 【答案】B .考查科学记数法,简单题(第1章).4.根据下列线段的长度,能判断A 、B 、C 三点不在同一条直线上的是( ) A.2AB cm =,3BC cm =,5AC cm = B.6AB cm =,4BC cm =,2AC cm = C.3AB cm =,4BC cm =,5AC cm = D. 1.5AB cm =,4BC cm =, 2.5AC cm = 【答案】C .考查线段的长短的比较,简单题(第4章). 5.若21a b =+,3c b =,则8a b c -++的值为( ) A .4 B .0 C .2- D .4- 【答案】D .考查代数式的求值,简单题(第2章).6.如图所示,数轴上两点A 、B 分别表示有理数数a 、b ,则下列四个数中最大的一个数是 ( )A .aB .bC .1aD .1b【答案】D .考查有理数大小比较,简单题(第1章).(第6题图)7.下列方程变形正确的是( )A .3221x x -=+,移项,得:3212x x -=-+B .325(1)x x -=--,去括号,得:3251x x -=--C .2332t =,未知数系数化为1,得:1t = D .110.20.5x x--=,化简可得:36x = 【答案】D .考查一元一次方程的解法步骤,简单题(第3章).8.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的正确式子有( ) ①90β︒-∠;②90α∠-︒;③1()2αβ∠+∠;④1()2αβ∠-∠A .①②④B .①②③C .①③④D .②③④ 【答案】A .考查互补与互余角的概念,中等题(第4章). 9.如图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是( ) A .甲户比乙户多B .乙户比甲户多C .甲、乙两户一样多D .无法确定哪一户多【答案】D .考查扇形统计图的应用,简单题(第5章). 10.已知整数1a ,2a ,3a ,4a ,…,满足下列条件:11a =-,212a a =-+,323a a =-+,434a a =-+,…,以此类推,则2019a 的值为( )A .2017-B .1009-C .1010-D .1011- 【答案】C .考查代数式的求值及规律探究的综合应用,较难题(第2章). 二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.) 11.若(3)m =--,那么m =__________.【答案】3±.考查绝对值的概念,简单题(第1章). 12.若x ,y 满足方程235497x y x y -=-⎧⎨+=-⎩,则x y +的值为__________.【答案】-2.考查解二元一次方程组的方法,最简便的方法是两式相加,简单题(第3章).13.计算:1111+++=__________.【答案】45.考查有理数的加减运算,简便方法是原式11111114122334455=-+-+-+-=,中等题(第1章).14.一个代数式加上2532x x -+-得到26x x -,则这个代数式是__________.乙甲其他24%食品34%衣着23%教育19%其他21%教育23%衣着25%食品31%(第9题图)【答案】2395x x -+.考查整式的加减运算,简单题(第2章).15.已知A 、B 两点间的距离是10cm ,C 是线段AB 上的任意一点,则AC 中点与BC 中点间的距离是__________.【答案】5cm .考查线段的有关计算,可以利用方程来计算,简单题(第4章). 16.一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,此时该商品的销售利润率为__________.【注:销售利润率=(售价—进价)÷进价】【答案】40%.考查列一元一次方程解应用题,中等题(第3章).17.如图,AOB 是一条直线,90AOD EOC ∠=∠=︒, 那么图中互为余角的角共有__________对.【答案】4.考查互为余角的概念,简单题(第4章).18.小明、小华和小芳三人到文具店购买同一种笔记本和钢笔,他们把各自购买的数量和总价列成了如下表格.聪明的小明发现其中有且只有一人把总价算错了,这个算错的人是__________.【答案】小芳.考查二元一次方程的应用,可设每本笔记本为x 元,每支钢笔为y 元,那么小明、小华所列方程均为3566x y +=,小芳所列方程为3565x y +=,由于只有一人算错了,故为小芳,中等题(第3章).三、解答题(本大题共6小题,共46分.) 19.(本题满分8分,第(1)题3分,第(2)题5分)(1)计算:()223223410.5⎡⎤-⨯-⨯-⨯-⎣⎦解:原式18[182]=---34=- …………3分说明:本小题考查有理数的计算,简单题(第1章)(2)先化简,再求值:22222222(22)(33)(33)x y xy x y x y x y xy ⎡⎤---++-⎣⎦,其中1x =-,2y =.解:原式22222222223333x y xy x y x y x y xy =-+--+ 22x y xy =-+ …………6分 当1x =-,2y =时 原式22(1)2(1)2=--⨯+-⨯6=- …………8分直接代入计算正确得2分.说明:本小题考查整式的加减运算,简单题(第2章)小明 小华 小芳 笔记本(本) 15 24 27 钢笔(支) 25 40 45 总价(元) 330 528 585 O EDCBA (第17题图)F E D C BA 20.(本题满分8分,每小题4分)解方程(组): (1)解方程:324[2()]1233x -+=;(2)解方程组:224+1x y y x -=⎧⎨=-⎩①②.解:(1)去括号,得:23()213x -+= …………2分 31x =所以13x = …………4分 (2) 由①得:22y x =-③ 将③代入②,得79x =…………6分 将79x =代入③,得49y =- 所以,原方程组的解为7949x y ⎧=⎪⎪⎨⎪=-⎪⎩…………8分说明:本题考查解一元一次方程及二元一次方程组知识,简单题(第3题)21.(本题满分8分)如图,已知线段AB 长13cm ,点C 、D 、E 、F 顺次在AB 上,且C 是AD 的中点,E 、F 是BD 的三等分点,8CF cm =,求AC 的长。
马鞍山市七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .123.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5927.计算(3)(5)-++的结果是()A.-8 B.8 C.2 D.-28.下列调查中,适宜采用全面调查的是()A.对现代大学生零用钱使用情况的调查B.对某班学生制作校服前身高的调查C.对温州市市民去年阅读量的调查D.对某品牌灯管寿命的调查9.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.010.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y11.若a<b,则下列式子一定成立的是( )A.a+c>b+c B.a-c<b-c C.ac<bc D.a b c c <12.3的倒数是()A.3B.3-C.13D.13-13.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥14.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是()A.两点确定一条直线B.两点之间,线段最短C.直线可以向两边延长D.两点之间线段的长度,叫做这两点之间的距离15.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-二、填空题16.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.17.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.18.把5,5,35按从小到大的顺序排列为______.19. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm. 20.计算:()222a -=____;()2323x x ⋅-=_____.21.因式分解:32x xy -= ▲ .22.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.23.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.24.若α与β互为补角,且α=50°,则β的度数是_____.25.数字9 600 000用科学记数法表示为 .26.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.29.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm . 30.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.三、压轴题31.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.32.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.33.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?34.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)35.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
已知:点C 在直线AB 上,AC a =,BC b =,且a b ,点M 是AB 的中点,请按照下面步骤探究线段MC 的长度。
(1)特值尝试若10a=,6b=,且点C在线段AB上,求线段MC的长度.(2)周密思考:若10a=,6b=,则线段MC的长度只能是(1)中的结果吗?请说明理由.(3)问题解决类比(1)、(2)的解答思路,试探究线段MC的长度(用含a、b的代数式表示). 37.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x xxx x-+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x+与|4|x-的零点值分别为;(2)化简式子324x x-++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.3.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.5.B解析:B 【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.7.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.8.B解析:B 【解析】 【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A 、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误; B 、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确; C 、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误; D 、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.9.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.10.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.11.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.12.C解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.14.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.15.C解析:C【解析】【分析】根据相反数的定义进行判断即可.【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意;C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C .【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.二、填空题16.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150 .【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.17.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 19.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.20.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键21.x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x (x ﹣y )(x+y ).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x 3﹣xy 2=x (x 2﹣y 2)=x (x ﹣y )(x+y ),故答案为x (x ﹣y )(x+y ).22.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.23.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.24.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.25.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.26.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.27.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.28.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.29.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.30.2【解析】【分析】根据同类项的定义列出方程,求出n,m的值,再代入代数式计算即可.【详解】∵单项式-3x2m+6y3与2x4yn 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n解析:2【解析】【分析】根据同类项的定义列出方程,求出n ,m 的值,再代入代数式计算即可.【详解】∵单项式-3x 2m+6y 3与2x 4y n 是同类项,∴2m+6=4,n=3,∴m=-1,∴m+n=-1+3=2.故答案为:2.【点睛】本题考查同类项的定义. 所含字母相同,并且相同字母的指数相等的项叫做同类项.三、压轴题31.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=- =1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠=01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+ =()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析.【解析】【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变.【详解】 解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6 ()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t - ()13PQ AB 2= ()43t 162t 10∴-+--=。