高一数学 直线与圆测试题
- 格式:doc
- 大小:256.00 KB
- 文档页数:7
一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k的取值范围是(,[1,)-∞⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-4.光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A .5270x y -+=B .310x y +-=C .3240x y -+=D .230x y --= 5.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4± B .-4C .4D .2± 6.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 7.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( ) A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=08.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( )A .32B .32-C .32±D .12± 10.曲线214y x 与直线(2)4y k x =-+有两个相异交点,则k 的取值范围是( )A .50,12⎛⎫ ⎪⎝⎭B .13,34⎛⎤⎥⎝⎦ C .53,124 D .5,12⎛⎫+∞⎪⎝⎭ 11.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D 12.若圆()2220x y rr +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1 二、填空题13.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by c ax by cδ++=++,以下命题中正确的序号为__________. (1)存在实数δ,使得点N 在直线l 上;(2)若1δ=,则过M 、N 的直线与直线l 平行;(3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.已知直线l经过点(2,1),且和直线30x --=的夹角等于30,则直线l 的方程是_________.16.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab≠0,则2211a b +的最小值为___________ 19.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.20.已知圆C :222x y +=,点P 为直线136x y +=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______. 三、解答题21.已知直线方程为()()221340m x m y m -++++=,其中m R ∈.(1)当m 变化时,求点()3,4Q 到直线的距离的最大值;(2)若直线分别与x 轴、y 轴的负半轴交于A ,B 两点,求AOB 面积的最小值及此时的直线方程.22.已知圆22:(1)5C x y +-=,直线:10l mx y m -+-=.(1)求证:对任意的m R ∈,直线l 与圆 C 恒有两个交点;(2)设l 与圆 C 相交于,A B 两点,求线段AB 的中点M 的轨迹方程.23.设函数()f z 对一切实数m ,n 都有()()(21)f m n f n m m n +-=++成立,且(1)0f =,(0)f c =,圆C 的方程是22(1)()9x y c +++=.(1)求实数c 的值和()f z 的解析式;(2)若直线220ax by -+=(0a >,0b >)被圆C 截得的弦长为6,求4a b ab +的最小值.24.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.25.根据所给条件求直线的方程:(1)直线过点()3,4-,且在两坐标轴上的截距之和为12;(2)直线m :3260x y --=关于直线l :2310x y -+=的对称直线m '的方程. 26.若过点P 的两直线1l ,2l 斜率之积为()0λλ≠,则称直线1l ,2l 是一组“P λ共轭线对”. (1)若直线1l ,2l 是一组“3O -共轭线对”,当两直线夹角最小时,求两直线倾斜角; (2)若点()0,1A ,()1,0B -,()1,0C 分别是直线PQ ,QR ,RP 上的点(A ,B ,C ,P ,Q ,R 均不重合),且直线PR ,PQ 是一组“1P 共轭线对”,直线QP ,QR 是一组“4Q 共轭线对”,直线RP ,RQ 是一组“9R 共轭线对”,求点P 的坐标;(3)若直线1l ,2l 是一组“2M -共轭线对”,其中点(1,M -,当两直线旋转时,求原点到两直线距离之积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率.【详解】 倾斜角的范围为0,2π⎛⎫ ⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C.【点睛】 关于直线的倾斜角与直线斜率之间的关系需要注意:(1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫ ⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大; (3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.A解析:A【分析】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以0m =或1m =-,再根据充分必要条件的定义判断得解.【详解】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以23(21)0,220,0m m m m m m ⨯+-⨯=∴+=∴=或1m =-.当1m =-时,直线(21)10mx m y +-+=和直线390x my ++=垂直;当直线(21)10mx m y +-+=和直线390x my ++=垂直时,1m =-不一定成立. 所以1m =-是直线()2110mx m y +-+=和直线390x my ++=垂直的充分不必要条件,故选:A .【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.3.B解析:B【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解.【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+, 整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6. 故选:B.【点睛】 关键点睛:解决本题的关键是将题转化为直线31x y +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解. 4.A解析:A【分析】根据题意做出光线传播路径,求()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于x 轴的对称点()'1,6D ,进而得BC 所在直线的方程即为''A D 直线方程,再根据两点式求方程即可.【详解】解:根据题意,做出如图的光线路径,则点()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于y 轴的对称点()'1,6D ,则BC 所在直线的方程即为''A D 直线方程,由两点是方程得''A D 直线方程为:436413y x ++=++,整理得:5270x y -+= 故选:A.【点睛】本题解题的关键在于做出光线传播路径,将问题转化为求A 关于x 轴的对称点'A 与D 关于y 轴的对称点'D 所在直线''A D 的方程,考查运算求解能力,是中档题.5.B解析:B【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案.【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±.当4a =时,两直线重合,所以4a =舍去.当4a =-时,符合题意.所以4a =-.故选:B【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题6.C解析:C【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果.【详解】圆C :()()22232++-=x y ,圆心为()2,3C -, 由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -, 且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C.【点睛】关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心;(2)入(反)射光线关于反射面的对称直线即为反(入)射光线. 7.D解析:D当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程.【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=,∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =- .:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-= 故选:D【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.8.B解析:B【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解.【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-, ∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确; 若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误. 故选:B .本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.A解析:A【分析】先根据半径和周长计算弦长AB =即可.【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r ,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==, 故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A.【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.C解析:C【分析】 曲线214y x 表示半圆,作出半圆,直线过定点(2,4),由直线与圆的位置关系,通过图形可得结论. 【详解】 曲线214y x 是半圆,圆心是(0,1)C ,圆半径为2,直线(2)4y k x =-+过定点(2,4)P ,作出半圆与过P 的点直线,如图,PD2=,解得512k =,即512PD k =, (2,1)A -,4132(2)4PA k -==--, ∴53,124k ⎛⎤∈ ⎥⎝⎦. 故选:C .【点睛】本题考查直线与圆的位置关系,数形结合思想是解题关键,由于题中曲线是半圆,因此作出图形,便于观察得出结论.11.B解析:B【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短.【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA b k a =-,AA '的中点为2,22a b +⎛⎫ ⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离,即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径,“将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由已知可得直线的斜率所以倾斜角为因为直线与的夹角为所以直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为解析:1y =10y --= 【分析】分析可得已知直线的倾斜角为30,则直线l 的倾斜角为0或60,分类讨论并利用点斜式方程求解即可. 【详解】由已知可得直线y x =k =30, 因为直线l与y x =30,所以直线l 的倾斜角为0或60, 当倾斜角为60时,直线l为)12y x -=-10y -+-=; 当倾斜角为0︒时,直线l 为1y =, 故答案为:1y =10y -+-=. 【点睛】本题考查直线与直线的夹角,关键点是求出直线30x --=的倾斜角得到l 的倾斜角,考查求直线方程,考查分类讨论思想.16.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程. 【详解】设切线长为L ,则21L PC =-,所以当切线长L 取最小值时,PC 取最小值,过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3.此时22(32)(30)10PC =-+-=,此时,213L PC =-=故答案为:3 【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则21L PC =-,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.17.【解析】试题分析:由题意得圆心到直线的距离即为半径此题只要求出半径即可试题解析:22256(1)(3)25x y -+-=【解析】试题分析:由题意得,圆心到直线的距离即为半径,此题只要求出半径即可. 试题 因为点到直线的距离由题意得圆的半径则所求的圆的方程为考点:1.直线与圆的相切的应用;2.圆的方程;18.9【分析】圆C1C2只有一条公切线则两圆的位置关系为内切由此可以得到ab 的等量关系然后利用均值不等式求的最小值【详解】圆C1:x2+y2+4ax +4a2-4=0标准方程:圆C2:x2+y2-2by +【分析】圆C 1、C 2只有一条公切线,则两圆的位置关系为内切,由此可以得到a 、b 的等量关系,然后利用均值不等式求2211a b +的最小值 【详解】圆C 1:x 2+y 2+4ax +4a 2-4=0 标准方程:22x 2a y 4++=() 圆C 2:x 2+y 2-2by +b 2-1=0标准方程:22x y b 1+-=()因为圆C 1 、C 2内切,1=, 即224a b 1+=, (2211a b +)=2222114a b a b++()() =2222b 4a 59a b++≥()当且仅当224a b =时等号成立. 【点睛】本题考查了两圆的位置关系和均值不等式求最值;两圆位置关系有:内含、内切、相交、外切、外离,圆与圆的位置关系也决定了切线的条数,两圆相内切只有一条切线,圆心距和两圆半径的关系是解题的关键,利用该关系可以构造出均值不等式所需要的等式;均值不等式求最值要注意:一正二定三相等.19.【分析】设点的坐标为根据可得点的轨迹方程为然后将问题转化为两圆有公共点的问题解决根据圆心距和半径的关系可得结果【详解】由题意得圆的圆心为半径为1设点的坐标为∵∴整理得故点的轨迹是以为圆心2为半径的圆 解析:[0,3]【分析】设点M 的坐标为(),x y ,根据2MA MO =可得点M 的轨迹方程为()2214x y +-=,然后将问题转化为两圆有公共点的问题解决,根据圆心距和半径的关系可得结果. 【详解】由题意得圆()()22:21C x a y a -+-+=的圆心为(),2a a -,半径为1.设点M 的坐标为(),x y , ∵2MA MO =,∴=整理得()2214x y +-=,故点M 的轨迹是以()0,1为圆心,2为半径的圆. 由题意得圆C 和点M 的轨迹有公共点, ∴13≤≤,解得03a ≤≤.∴实数a 的取值范围是[]0,3. 【点睛】本题考查两圆位置关系的判断和利用,解题的关键是根据题意得到点M 的轨迹方程,然后将问题转化为两圆有公共点的问题出处理,再利用代数法求解可得所求的结果.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离5d ==,设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max ||,3OQ ==故答案为:53. 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)2132)4,240x y ++= 【分析】(1)求出动直线所过定点(1,2)P --,当m 变化时,PQ ⊥直线l 时,点()3,4Q 到直线l 的距离的最大.(2)直线l 的斜率k 存在且0k ≠,因此可设直线l 的方程为2(1)y k x +=+,求出直线在x 轴、y 轴的截距.可得AOB 的面积,利用基本不等式的性质即可得出结果. 【详解】(1)直线方程为(2) (21) 340m x m y m -++++=, 可化为(24)(23)0x y m x y +++-++=对任意m 都成立, 所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点(1,2)--.设定点为(1,2)P --,当m 变化时,PQ ⊥直线l 时,点(3,4)Q 到直线的距离最大,可知点Q 与定点(1,2)P --的连线的距离就是所求最大值, 22(31)(42)213+++=(2)由于直线l 经过定点(1,2)P --.直线l 的斜率k 存在且0k ≠, 因此可设直线方程为2(1)y k x +=+可得与x 轴、y 轴的负半轴交于21,0A k ⎛⎫- ⎪⎝⎭,(0,2)B k -两点 ∴20kk-<,20k -<,解得0k <. ∴121221|2|1(2)2224222AOBkS k k k k k -⎛⎫=--=--=++≥+= ⎪-⎝⎭当且仅当2k =-时取等号,面积的最小值为4此时直线l 的方程为:22(1)y x +=-+,化为:240x y ++=. 【点睛】关键点点睛:求三角形面积最小时,一般首先表示出三角形的面积,本题利用直线在坐标轴的截距表示可得222k S k -=++-,再根据均值不等式或利用函数求最值,确定最值取得的条件,求解即可.22.(1)证明见解析;(2)2211()(1)(1)24x y x -+-=≠.【分析】(1)确定直线过定点()1,1,计算定点在圆内,得到证明.(2)由已知得点M 在以CP 为直径的圆上,求得圆心和半径可得到答案. 【详解】(1)由已知可得直线 :(1)10l x m y --+=,所以直线l 恒过定点(1,1)P .又()2211115,+-=<所以点P 在圆内,所以对任意的m R ∈,直线l 与圆 C 恒有两个交点.(2)由(1)知,知直线l 恒过定点(1,1)P ,且直线l 的斜率存在. 又M 是AB 的中点,CM MP ∴⊥,所以点M 在以CP 为直径的圆上.又()()0,1,1,1,C P 所以以CP 为直径的圆的方程为2211()(1)24x y -+-=,又直线l 的斜率存在,1x ∴≠,所以点M 的轨迹方程为2211()(1)(1)24x y x -+-=≠.【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.23.(1)2c =-;2()2f z z z =+-;(2)9. 【分析】(1)令1m =,0n =代入等式中可求得c .再令m n =-代入得()f z 的解析式;(2)由已知求得直线过圆心()12-,,有1a b +=.由均值不等式得4144()5a b a b a b ab a b b a +⎛⎫=++=++ ⎪⎝⎭,可求和4a bab +的最小值. 【详解】(1)令1m =,0n =代入等式中可得,(0)2f =-,即2c =-.再令m n =-得,(0)()(21)f f n n n n -=--++,2()2f n n n =+-, 所以2()2f z z z =+-.(2)因为直线被圆22(1)(2)9x y ++-=截得的弦长为6,所以直线过圆心()12-,,有1a b +=.于是由均值不等式得,414144()559a b a b a b ab a b a b b a +⎛⎫=+=++=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即13a =,23b =时等号成立.故4a b ab +的最小值是9.【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.24.(1)224x y +=;(2)k =;(3)(4,0). 【分析】(1)设出圆心(,0)C a ,根据直线与圆C 相切,得到圆心到直线的距离等于4,确定圆心坐标,即可得圆C 的方程.(2)根据垂径定理及勾股定理,由过点(1,1)P 的直线1l 被圆C 截得的弦长等于斜率存在与不存在两种情况讨论,即可求出直线1l 的方程.(3)当AB x ⊥轴时,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设出方程与圆的方程联立,结合AN BN k k =-,即可求出点N 的坐标. 【详解】(1)设圆心5(,0)2C a a ⎛⎫>-⎪⎝⎭,则|410|25a , 解得0a =或5a =-(舍). 故圆C 的方程为224x y +=.(2)由题意可知圆心C 到直线1l 的距离为2sin301.1,解得k =.(3)当直线AB x ⊥轴时,对x 轴正半轴上任意一点,N x 轴平分ANB ∠; 当直线AB 的斜率存在时,设直线AB 的方程为()()1122(1)(0),(,0),,,,y k x k N t A x y B x y =-≠, 由224,(1)x y y k x ⎧+=⎨=-⎩得()22221240k x k x k +-+-=, 2212122224,11k k x x x x k k -∴+==++ 若x 轴平分ANB ∠,则AN BN k k =-,即12120y yx t x t+=--, 即()()1212110k x k x x tx t--+=--,即()12122(1)20x x t x x t -+++=,即()2222242(1)2011k k t t k k -+-+=++,解得4t =. 综上,当点N 的坐标为(4,0)时,x 轴平分ANB ∠.【点睛】关键点点睛:本题第二问解题的关键是得到圆心到直线的距离为1,第三问解题的关键是由x 轴平分ANB ∠,得AN BN k k =-,进而利用坐标表示斜率求解. 25.(1)4160x y -+=或390x y +-=;(2)9461020x y -+= 【分析】(1)设出截距式方程,由条件列出式子即可求出;(2)在直线m 上取一点,如()2,0M ,求出()2,0M 关于直线l 的对称点M ',求出m 与l 的交点,即可求出直线方程. 【详解】(1)由已知得直线不过原点,设直线方程为1x y a b+=, 则可得34112a b a b -⎧+=⎪⎨⎪+=⎩,解得416a b =-⎧⎨=⎩或93a b =⎧⎨=⎩, 则直线方程为1416x y +=-或193x y +=, 整理可得4160x y -+=或390x y +-=; (2)在直线m 上取一点,如()2,0M ,则()2,0M 关于直线l 的对称点M '必在直线m '上,设(),M a b ',则2023102202123a b b a ++⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪-⎩,解得630,1313M '⎛⎫ ⎪⎝⎭, 设直线m 与l 的交点为N ,则联立方程32602310x y x y --=⎧⎨-+=⎩可解得()4,3N , 则m '的方程为34306341313y x --=--,即9461020x y -+=. 【点睛】方法点睛:关于轴对称问题:(1)点(),A a b 关于直线0Ax By C ++=的对称点(),A m n ',则有1022n b A m a B a m b n A B C ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪⋅+⋅+=⎪⎩;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决.26.(1)2,33ππ;(2)()3,3或33,55⎛⎫ ⎪⎝⎭;(3)⎡⎣ 【分析】(1)设1l 的斜率为tan k α=,则2l 的斜率为3tan kβ-=,两直线的夹角为γ, 不妨设0k >,利用两角差的正切公式计算,利用基本不等式求得最值;(2)设直线RP ,PQ ,QR 的斜率分别为123,,k k k ,可得122313149k k k k k k =⎧⎪=⎨⎪=⎩,可解出123,,k k k 的值,进一步求得直线RP 和直线PQ 的方程,联立得点P 的坐标;(3)设()()122:1,:1l y k x l y x k=++=-+,,设原点到两直线距离分别为12,d d ,求出12d d ,然后变形利用基本不等式求解.【详解】解:(1)设1l 的斜率为tan k α=,则2l 的斜率为3tan kβ-=,两直线的夹角为γ, 不妨设0k >, 则()()313tan tan 132k k k k γβα--⎛⎫=-==+≥ ⎪+-⎝⎭k = 此时3πα=,23πβ=, 即两直线倾斜角分别为2,33ππ; (2)设直线RP ,PQ ,QR 的斜率分别为123,,k k k ,则122313149k k k k k k =⎧⎪=⎨⎪=⎩,解得12332,,623k k k ===或12332,,623k k k =-=-=-, 当12332,,623k k k ===时, 直线RP 的方程为()312y x =-,直线PQ 的方程为213y x =+, 联立得()3,3P , 当12332,,623k k k =-=-=-时, 直线RP 的方程为()312y x =--,直线PQ 的方程为213y x =-+, 联立得33,55P ⎛⎫⎪⎝⎭, 故所求为()3,3P 或33,55P ⎛⎫ ⎪⎝⎭;(3)设()()122:1,:1l y k x l y x k=++=-+, 设原点到两直线距离分别为12,d d ,则12d d =====,由于22459kk++≥,当且仅当22k=时等号成立,故[)22910,145kk-∈++,12d d⎡∈⎣,即原点到两直线距离之积的取值范围为⎡⎣.【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
课时提能演练(二十四)(30分钟 50分)一、选择题(每小题4分,共16分)1.直线l:2x-y+3=0与圆C:x2+(y-1)2=5的位置关系是( )(A)相交 (B)相切(C)相离 (D)不确定2.(2012·唐山高一检测)已知点P为圆x2+y2-2x-2y+1=0上一点,且点P到直线x-y+m=0则m的值为( )(A) -2 (B)2(C)±23.(2012·哈尔滨模拟)已知直线l过点P(-2,0),当直线l与圆x2+y2=2x有两个交点时,其斜率k的取值范围是( )(A)() (B)((C)( (D)(-18,18)4.直线y=x+b与曲线则实数b的取值范围是( )≤1或(C)-1≤b≤二、填空题(每小题4分,共8分)5.(2012·北京高考)直线y=x被圆x2+(y-2)2=4截得的弦长为___________.)且被圆x2+y2=25截得的弦长为6.(易错题)若直线l过点(-3,-328,则直线l的方程是______________ .三、解答题(每小题8分,共16分)7.a为何值时,直线2x-y+1=0与圆x2+y2=a2(a>0)相离、相切、相交?8.已知圆C是圆心在直线y=2x上,且经过原点及点M(3,1)的圆,N(2,1)是圆内一点.(1)求圆C的方程;(2)求过N点与圆C相交的所有直线中,被圆C所截得的弦最短时的直线方程.【挑战能力】(10分)已知曲线C:x2+y2+4x-2y+m=0.(1)若曲线C表示圆,求m的取值范围;(2)若直线l:x+y-1=0被曲线C所截弦长为m的值.答案解析1.【解析】选A.因为圆心到直线的距离,220132d <5r 521===+所以直线与圆相交.2.【解题指南】圆上的点到直线的距离的最小值等于圆心到直线的距离减去圆的半径,进而可求出m 的值.【解析】选D.圆x 2+y 2-2x-2y+1=0化为标准方程为(x-1) 2+(y-1) 2=1,圆心为(1,1),半径为1,因为圆上的点P 到直线x-y+m=0距离的最小值为2-1,所以圆心到直线的距离等于2,即,11m22-+=解得m=±2.3.【解析】选C.如图,设过点P (-2,0)且与圆x 2+y 2=2x 相切的直线方程为y=k(x+2),圆x 2+y 2=2x 的圆心为(1,0), 半径为1,故有2k 2k 1,k 1+=+ 得k=±24, 故当l 与圆有两个交点时,k 的取值范围为(-24,24). 4.【解析】选B.曲线x=21y -表示半圆,如图,作斜率为1的半圆的切线l 1和经过端点A ,B , 斜率为1的直线l 3,l 2,由图可知,当直线y=x+b 位于l 2和l 3之间或为直线l 1时, 满足题意.∴-1<b ≤1.而l 1与半圆相切,此时可求得2因此b 的取值范围是-1<b ≤1或2【方法技巧】数形结合在求解直线与圆交点个数中的应用直线与圆的一部分有交点时,如果采用代数法去研究,则消元以后转化成了给定区间的二次方程根的分布问题,求解过程相对复杂,而如果采用数形结合及直线与圆的几何法求解,先找出边界,然后结合直线或圆的变化特征求解,相对来说就简单得多了.5.【解题指南】利用圆心到直线的距离、半弦长与半径构成直角三角形,求弦长.【解析】如图所示,|CO|=2,圆心C (0,2)到直线y=x 的距离02CM 2,2-==所以弦长为.2OM24222=-=答案:226.【解析】当l的斜率不存在时,其方程为x=-3,显然其截圆所得的弦长为8,符合题意.当l的斜率存在时,设l的方程为y+32=k(x+3),即kx-y+3k-32=0,,23|3k|22516k1-=-+解得k=-34.即此时l的方程为3x+4y+15=0.答案:x=-3或3x+4y+15=0【误区警示】在求解直线方程时,容易遗漏斜率不存在的情况.而导致求出的直线少一种情况.7.【解题指南】求出圆心到直线的距离,利用直线与圆相离、相切、相交的条件可得a的范围.【解析】由圆x2+y2=a2 (a>0),知圆心为O(0,0),半径为a,O到直线2x-y+1=0的距离为2215d521==+(1)若直线与圆相离,则d>r,即5>a, ∴0<a<5. (2)若直线与圆相切,则d=r,即a=5. (3)若直线与圆相交,则d<r,即a>5. 综上所述,当当a=直线与圆相切;当a>5时,直线与圆相交. 8.【解析】(1)因为圆心在直线y=2x 上,所以设圆心C 为(a,2a),半径为r(r >0),所以圆的方程为(x-a)2+(y-2a) 2=r 2又因为圆经过点M(3,1)和原点,所以有()()222222a 4a r a 1r 3a 12a r ⎧+==⎧⎪⎪⇒⎨⎨=-+-=⎪⎪⎩⎩所以圆的方程是(x-1) 2+(y-2) 2=5.(2)要使过点(2,1)且被圆所截得的弦最短,则只有点N(2,1)是被截弦的中点时才满足条件,此时直线的斜率为1,所以直线方程为x-y-1=0. 【挑战能力】【解析】(1)若C 表示圆,则16+(-2)2-4m>0, ∴m<5.(2)由题意可知曲线C 表示圆,故m<5,圆心为(-2,1),半径∵弦长为d==,∴r=2∴m=1.。
专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。
高中直线与圆练习题一、选择题1. 在平面直角坐标系中,直线l的方程为y = 2x + 1,圆C的方程为(x 1)² + (y + 2)² = 16,则直线l与圆C的位置关系是:A. 相离B. 相切C. 相交D. 无法确定2. 已知直线y = kx + b与圆(x 2)² + (y + 3)² = 1相交于A、B两点,若|AB| = 2,则k的值为:A. 0B. 1C. 2D. 33. 直线y = 3x 2与圆x² + y² = 9的位置关系是:A. 相离B. 相切C. 相交D. 无法确定二、填空题1. 已知直线l:2x 3y + 6 = 0,圆C:(x 1)² + (y + 2)² = 25,则直线l与圆C的交点坐标为______。
2. 圆(x 3)² + (y + 4)² = 16的圆心坐标为______,半径为______。
3. 若直线y = kx + 1与圆x² + y² = 4相交,则k的取值范围是______。
三、解答题1. 已知直线l:x + 2y 5 = 0,圆C:(x 2)² + (y + 3)² = 16,求直线l与圆C的交点坐标。
2. 设直线l的方程为y = kx + b,圆C的方程为(x 1)² + (y +2)² = 9,若直线l与圆C相切,求k和b的值。
3. 已知直线l:y = 2x + 3,圆C:(x 2)² + (y + 1)² = 25,求直线l与圆C的公共弦长。
4. 在平面直角坐标系中,直线l的方程为y = kx + 1,圆C的方程为(x 3)² + (y + 4)² = 16,若直线l与圆C相交,求k的取值范围。
5. 已知直线l:2x y + 3 = 0,圆C:(x 2)² + (y + 1)² = 9,求直线l与圆C的交点坐标及弦心距。
高一数学选择性必修第一册第二章《直线和圆的方程》章末练习题卷(共22题)一、选择题(共10题)1.已知直线l过点(1,2)且到点A(3,3)和B(5,7)的距离相等,求直线l的方程.情况二、直线l过线段AB的中点(5,7),直线l的方程为( )A.32B.54C.5x−4y+3=0D.3x−2y+1=0 2.已知直线l过点(2,1)和点(4,0),则直线l的斜率为( )A.−2B.−12C.12D.23.“m=43”是“直线x−my+4m−2=0与圆x2+y2=4相切”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.已知实数x,y满足x2+y2+4x−6y+12=0,则y的最小值是( )A.4B.2C.−1D.−35.直线ax+by+a+b=0(ab≠0)和圆x2+y2−2x−5=0的交点个数为( )A.0B.1C.2D.与a,b有关6.对于平面直角坐标系内的任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“距离”:∣∣AB∣∣=∣x2−x1∣+∣y2−y1∣.给出下列三个命题:①若点C在线段AB上,则∣∣AC∣∣+∣∣CB∣∣=∣∣AB∣∣;②在△ABC中,∣∣AC∣∣+∣∣CB∣∣>∣∣AB∣∣;③在△ABC中,若∠A=90∘,则∣∣AB∣∣2+∣∣AC∣∣2=∣∣BC∣∣2.其中错误的个数为( )A.0B.1C.2D.37.圆x2+y2−2x=0与圆x2+y2+4y=0的位置关系是( )A.相离B.外切C.相交D.内切8.圆(x−2)2+(y+3)2=2上的点与点(0,−5)的最大距离为( )A.√2B.2√2C.4√2D.3√29.阿波罗尼斯(约公元前262∼190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0且k≠1)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A,B间的距离为2,动点P与A,B距离之比为√2,当P,A,B不共线时,△PAB面积的最大值是( )A.2√2B.√2C.2√23D.√2310.下列关于直线倾斜角的说法中,正确的是( )A.任意一条直线都有唯一的倾斜角B.一条直线的倾斜角可以为−π6C.倾斜角为0的直线只有一条,即x轴D.若直线的倾斜角为α,则sinα∈(0,1)二、填空题(共6题)11.已知0<k<4,直线l1:kx−2y−2k+8=0和直线l2:2x+k2y−4k2−4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为.12.已知直线l的倾斜角为2α−20∘,则α的取值范围是.13.设圆(x−3)2+(y+5)2=r2上有且只有两个点到直线4x−3y−2=0的距离等于1,则半径r取值范围的区间为.14.两条直线的夹角的取值范围为.15.过点A(2,−1)与B(1,2)半径最小的圆的方程为.16.若两圆x2+y2=4与x2+y2−2ax+a2−1=0相内切,则a=.三、解答题(共6题)17.已知圆C经过点O(0,0),A(8,−4),且圆心C在直线l:x−y−7=0上,求圆C的一般方程.18.直线l的方程为(a+1)x+y+2−a=0(a∈R).(1) 若l在两坐标轴上的截距相等,求实数a的值;(2) 若l不经过第二象限,求实数a的取值范围.19.在平面直角坐标系xOy中,已知圆M:x2+y2−12x−14y+60=0及其上一点A(2,4).(1) 设圆N与x轴相切,与圆M内切,且圆心N在直线x=6上,求圆N的标准方程;(2) 设垂直于 OA 的直线 l 与圆 M 相交于 B ,C 两点,且 BC =OA ,求直线 l 的方程; (3) 设点 T (0,t ) 满足:存在圆 M 上的两点 P ,Q ,使得 TA ⃗⃗⃗⃗⃗ +TP ⃗⃗⃗⃗⃗ =TQ ⃗⃗⃗⃗⃗ ,求实数 t 的取值范围.20. 已知两条直线的方程分别为 x +y +a =0 和 x +y +b =0,设 a ,b 是方程 x 2+x +c =0 的两个实数根,其中 0≤c ≤18,求两条直线间距离的最大值和最小值.21. 已知 △ABC 的顶点 B (3,4) 、 AB 边上的高所在的直线方程为 x +y −3=0,E 为 BC 的中点,且 AE 所在的直线方程为 x +3y −7=0. (1) 求顶点 A 的坐标;(2) 求过 E 点且在 x 轴、 y 轴上的截距相等的直线 l 的方程.22. 已知直线 l 1:ax +by +1=0(a ,b 不同时为 0),l 2:(a −2)x +y +a =0.(1) 若 b =−3 且 l 1⊥l 2,求实数 a 的值.(2) 当 b =3 且 l 1∥l 2 时,求直线 l 1 与 l 2 之间的距离.答案一、选择题(共10题)1. 【答案】C【知识点】直线的一般式方程、两直线交点坐标与两点间距离公式2. 【答案】B【解析】由题意可知,直线l的斜率为0−14−2=−12.【知识点】直线倾斜角与斜率3. 【答案】A【解析】由直线x−my+4m−2=0与圆x2+y2=4相切,得√1+m2=2,解得m=0或m=43.则由m=43能推出直线x−my+4m−2=0与圆x2+y2=4相切,反之,由直线x−my+4m−2=0与圆x2+y2=4相切,不一定得到m=43,则“m=43”是“直线x−my+4m−2=0与圆x2+y2=4相切”的充分不必要条件.【知识点】直线与圆的位置关系4. 【答案】B【知识点】圆的一般方程5. 【答案】C【解析】因为直线ax+by+a+b=0(ab≠0)可化为a(x+1)+b(y+1)=0,所以直线恒过定点(−1,−1),而(−1,−1)在圆x2+y2−2x−5=0内,故直线ax+by+a+b=0过圆内的点,则直线与圆相交,且有2个交点,故选C.【知识点】直线与圆的位置关系6. 【答案】B【解析】不妨设直线AB的方程为y=kx+b(k>0),令x2>x0>x1,因为点C(x0,y0)在线段AB上,所以∣AC∣=∣x0−x1∣+∣y0−y1∣=(k+1)(x0−x1),同理可得,∣CB∣=(k+1)(x2−x0),∣AB∣=(k+1)(x2−x1),因为∣∣AC∣+∣CB∣∣=(k+1)(x0−x1)+(k+1)(x2−x0)=(k+1)(x2−x1)=∣AB∣,所以①正确.②取C(0,0),A(1,0),B(0,1),则∣AC∣+∣CB∣=∣AB∣=2,故②正确.③因为在△ABC中,若∠C=90∘,取C(1,1),A(3,2),则B在直线x+y=3上,不妨取B(0,3),∣CA∣=∣3−1∣+∣2−1∣=2+1=3,∣CB∣=∣0−1∣+∣3−1∣=1+2=3,∣AB∣=∣3−0∣+∣2−3∣=4,显然,∣AC∣+∣CB∣≠∣AB∣,所以③错误.综上所述,其中真命题的个数为1.【知识点】直线的点斜式与斜截式方程7. 【答案】C【解析】圆O1:(x−1)2+y2=1,圆心O1(1,0),半径r1=1.圆O2:x2+(y+2)2=4,圆心O2(0,−2),半径r2=2.则有O1O2=√5,r2−r1<O1O2<r1+r2,故两圆相交.【知识点】圆与圆的位置关系8. 【答案】D【解析】圆(x−2)2+(y+3)2=2的圆心为(2,−3),点(0,−5)与圆心的距离为√(2−0)2+(−3+5)2=2√2,又圆的半径为√2,故所求的最大距离为2√2+√2=3√2.【知识点】圆的标准方程9. 【答案】A【解析】如图,以经过A,B的直线为x轴,线段AB的垂直平分线为y轴,建立直角坐标系:则:A(−1,0),B(1,0),设P(x,y),因为∣PA∣∣PB∣=√2,所以√(x+1)2+y2√(x−1)2+y2=√2,两边平方并整理得:x2+y2−6x+1=0⇒(x−3)2+y2=8.所以当点P在点C或点D时,△PAB面积的最大值是12×2×2√2=2√2.【知识点】圆的标准方程、轨迹与轨迹方程10. 【答案】A【解析】任意一条直线都有唯一的倾斜角,故A正确;若直线的倾斜角为α,则α的取值范围是[0,π),所以sinα∈[0,1],故B错误,D错误;倾斜角为0的直线不唯一,所有与x轴平行或重合的直线的倾斜角都是0,故C错误.【知识点】直线倾斜角与斜率二、填空题(共6题)11. 【答案】18【解析】直线l1:kx−2y−2k+8=0即k(x−2)−2y+8=0,过定点B(2,4),与y轴的交点为C(0,4−k);直线l2:2x+k2y−4k2−4=0,即2x−4+k2(y−4)=0,过定点(2,4),与x轴的交点为A(2k2+2,0).如图所示,由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为12×4×(2k2+2−2)+2×(4−k+4)2=4k2−k+8,所以k=18时,所求四边形的面积最小.【知识点】直线的基本量与方程12. 【答案】 10°≤α<100°【解析】由 0∘≤2α−20∘<180∘,得 10∘≤α<100∘. 【知识点】直线倾斜角与斜率13. 【答案】 (4,6)【知识点】直线与圆的位置关系14. 【答案】 [0,π2]【知识点】直线倾斜角与斜率15. 【答案】 (x −32)2+(y −12)2=52【解析】设所求的圆的圆心为 C ,圆的半径为 R ,圆心到直线 AB 的距离为 d ,则 R 2=d 2+(AB 2)2,由已知得 AB =√(2−1)2+(−1−2)2=√10,要使半径 R 最小,则需 d 最小,d 最小是 0,此时圆的圆心为 AB 的中点,圆的直径为 AB , 圆的方程是 (x −32)2+(y −12)2=(√102)2,即(x −32)2+(y −12)2=52.【知识点】圆的标准方程16. 【答案】 ±1【知识点】圆与圆的位置关系三、解答题(共6题)17. 【答案】设圆 C 的一般方程为 x 2+y 2+Dx +Ey +F =0,则 {F =0,64+16+8D −4E +F =0,−D2−(−E2)−7=0,解得 {D =−6,E =8,F =0,所以圆 C 的一般方程为 x 2+y 2−6x +8y =0. 【知识点】圆的一般方程18. 【答案】(1) 当直线 l 过原点时,直线 l 在 x 轴和 y 轴上的截距都为 0,相等, 所以 2−a =0,a =2.所以直线 l 的方程为 3x +y =0.若 a ≠2,且 a ≠−1,则 a−2a+1=a −2,即 a +1=1, 所以 a =0,所以直线 l 的方程为 x +y +2=0. 所以实数 a 的值为 0 或 2.(2) 当直线 l 过原点时,直线 l 的方程为 y =−3x ,直线 l 经过第二象限,不合题意; 若直线 l 不过原点,且 l 不经过第二象限,则 {a +1=0,a −2<0. 或 {−(a +1)>0,a −2<0.解得 a ≤−1.故实数 a 的取值范围为 (−∞,−1].【知识点】直线的一般式方程、直线的两点式与截距式方程19. 【答案】(1) (x −6)2+(y −6)2=36. (2) y =−12x −32 或 y =−12x +132.(3) 4−4√6≤t ≤4+4√6.【知识点】圆的切线、直线与圆的位置关系、直线与圆的综合问题、圆与圆的位置关系20. 【答案】由一元二次方程根与系数的关系,得 a +b =−1,ab =c .易知两条直线平行,设两条平行直线间的距离为 d ,则 d =√2,所以 d 2=(a+b )2−4ab2=12−2c (0≤c ≤18),因为 d 2 是关于 c 的单调递减函数,所以当 c =0 时,d 2 有最大值,且 d max 2=12,即 d max =√22; 当 c =18 时,d 2 有最小值,且 d min 2=14,即 d min =12.所以两条直线间距离的最大值为√22,最小值为 12. 【知识点】两直线交点坐标与两点间距离公式21. 【答案】(1) 由题意得 k AB =1,所以直线 AB 的方程为 y −4=x −3,即 x −y +1=0. 已知 AE 所在的直线方程为 x +3y −7=0, 由 {x −y +1=0,x +3y −7=0, 解得 {x =1,y =2,所以 A 的坐标为 (1,2).(2) 设 E (x 0,y 0),则 C (2x 0−3,2y 0−4).因为点 E 在直线 AE 上,点 C 在直线 x +y −3=0 上, 所以 {x 0+3y 0−7=0,(2x 0−3)+(2y 0−4)−3=0, 解得 {x 0=4,y 0=1,即点 E 的坐标是 (4,1).因为直线 l 在 x 轴、 y 轴上的截距相等,所以当直线 l 经过原点时,设直线 l 的方程为 y =kx , 把点 E (4,1) 代入,得 1=4k ,解得 k =14,此时直线 l 的方程为 x −4y =0.当直线 l 不经过原点时,设直线 l 的方程为 xa +ya =1, 把点 E (4,1) 代入,得 4a+1a =1,解得 a =5,此时直线 l 的方程为 x +y −5=0.综上所述,所求直线 l 的方程为 x −4y =0 或 x +y −5=0.【知识点】直线的两点式与截距式方程、两直线交点坐标与两点间距离公式22. 【答案】(1) 当 b =−3 时,l 1:ax −3y +1=0,由 l 1⊥l 2 知 a (a −2)−3=0,解得 a =−1 或 a =3. (2) 当 b =3 时,l 1:ax +3y +1=0,当 l 1∥l 2 时,有 {a −3(a −2)=0,3a −1≠0, 解得 a =3,此时,l 1 的方程为:3x +3y +1=0,l 2 的方程为:x +y +3=0,即 3x +3y +9=0, 则它们之间的距离为 d =√32+32=4√23. 【知识点】直线与直线的位置关系、点到直线的距离与两条平行线间的距离。
南京市高一数学单元过关检测题(苏教版·必修2·解析几何初步)(满分100分,检测时间100分钟)一.选择题1. 如果直线0=++C By Ax 的倾斜角为ο45,则有关系式A.B A = B.0=+B A C.1=AB D.以上均不可能2. 直线122=-by a x在y 轴上的截距是A. bB. 2bC. 2b -D. b ± 3. 下列命题中正确的是A .平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角一定相等 C . 垂直的两直线的斜率之积为-1 D.斜率相等的两条直线一定平行4. 圆2)3()2(22=++-y x 的圆心和半径分别是A .)3,2(-,1B .)3,2(-,3C .)3,2(-,2D .)3,2(-,2 5. 如果直线l 上的一点A 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到直线l 上,则l 的斜率是A .3B .13 C .-16. 结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图。
其中实点 建立空间直角坐标系O —xyz 原子所在位置的坐标是A .(12,12,1) B .(0,0,1) C .(1,12,1) D .(1,12,12)7. 已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为31,则m ,n 的值分别为和3 和3 C.- 4和-3 和-3 8. 已知点P (0,-1),点Q 在直线x-y+1=0上,若直线PQ 垂直于直线x+2y-5=0,则点Q的坐标是 A .(-2,1) B .(2,1) C .(2,3) D .(-2,-1) 9. 已知三角形ABC 的顶点A (2,2,0),B (0,2,0),C(0,1,4),则三角形ABC 是A .直角三角形;B .锐角三角形;C .钝角三角形;D .等腰三角形;10. 平行于直线2x-y+1=0且与圆x 2+y 2=5相切的直线的方程是A .2x -y+5=0B .2x -y -5=0C .2x +y+5=0或2x +y -5=0D .2x -y+5=0或2x -y -5=0 二.填空题11. 如图,直线12,l l 的斜率分别为k 1、k 2,则k 1、k 2的大小关系是; . 12. 如果直线l 与直线x+y -1=0关于y 轴对称,则直线l 的方程是 . 13. 已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 . 14. 直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是. 15. 直线0323=-+y x 截圆422=+y x 所得的劣弧所对的圆心角为 . 16. 连接平面上两点111(,)P x y 、222(,)P x y 的线段12P P 的中点M 的坐标为1212(,)22x x y y ++,那么,已知空间中两点1111(,,)P x y z 、2222(,,)P x y z ,线段12P P 的中点M 的坐标为 .三.解答题17. 已知一条直线经过两条直线0432:1=--y x l 和0113:2=-+y x l 的交点,并且垂直于这个交点和原点的连线,求此直线方程。
1.已知圆C 的圆心与点(2,1)P -关于直线y =x +1对称,直线3x +4y -11=0与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______.2. 已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______.3. 经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线程是 .4. 直线032=-+y x 与直线04=++b y ax 关于点)0,1(A 对称,则b =___________。
5. 已知圆222410x y x y ++-+=关于直线220(,)ax by a b R -+=∈对称,则ab 的取值范围是6. 若PQ 是圆22x 9y +=的弦,PQ 的中点是(1,2)则直线PQ 的方程是7. 将圆x y x 沿122=+轴正方向平移1个单位后得到圆C ,若过点(3,0)的直线l 和圆C 相切,则直线l 的斜率为8. 已知直线422=+=+y x a y x 与圆交于A 、B 两点,且||||OB OA OB OA -=+,其中O 为原点,则实数a 的值为9. 由直线1y x =+上的点向圆(x -3)2+(y +2)2=1引切线,则切线长的最小值为10. 若圆2225()3(r y x =++-)上有且仅有两个点到直线4x -3y -2=0的距离为1,则半径r 的取值范围是11. 设直线03=+-y ax 与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦长为32,则a = 。
12. ⊙M :x 2+y 2=4,点P(x 0,y 0)在圆外,则直线x 0x +y 0y =4与⊙M 的位置关系是___13. 设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) 14.已知直线l :y =x +m ,m ∈R .若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程;15. 直线l :y =x +b 与抛物线C :x 2=4y 相切于点A . (1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.16. 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为________. 17. 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上. (1)求圆C 的方程;(2)若圆C 与直线x -y +a =0交于A 、B 两点,且OA ⊥OB ,求a 的值18.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为2,则直线l 的斜率为________.19.如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆12422=+y x 的顶点,过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 由题设知,),2,0(),0,2(,2,2--==N M b a 故所以线段MN 中点的坐标为)22,1(--,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过坐标原点,所以.22122=--=k (2)直线PA 的方程2221,42x y y x =+=代入椭圆方程得解得).34,32(),34,32(,32--±=A P x 因此于是),0,32(C 直线AC 的斜率为.032,13232340=--=++y x AB 的方程为故直线.32211|323432|,21=+--=d 因此(3)解法一:将直线PA 的方程kx y =代入221,42x y x μ+==解得记则)0,(),,(),,(μμμμμC k A k P 于是--故直线AB 的斜率为,20kk =++μμμ 其方程为,0)23(2)2(),(222222=+--+-=k x k x k x ky μμμ代入椭圆方程得解得223222(32)(32)(,)222k k k x x B kkkμμμμ++==-+++或因此.于是直线PB 的斜率.1)2(23)2(2)23(2222322231k k k k k k k k kkk k -=+-++-=++-+=μμμ因此.,11PB PA k k ⊥-=所以20. 已知椭圆G :2214x y +=,过点(m ,0)作圆221x y +=的切线l 交椭圆G 于A ,B 两点。
直线与圆的月考测试题一、选择题(本大题共12小题,共60.0分)1.已知圆的方程为,过点的该圆的所有弦中,最短弦的长为A. B. 1 C. 2 D. 42.直线l:y=x+1上的点到圆C:x2+y2+2x+4y+4=0上的点的最近距离为()A. B. C. 1 D.3.直线l过点(0,2),被圆C:x2+y2-4x-6y+9=0截得的弦长为2,则直线l的方程是()A. y=x+2B. y=-x+2C. y=2D. y=x+2或y=24.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()A. a<-2B. -<a<0C. -2<a<0D. -2<a<5.已知圆x2+y2-2x+6y=0,则该圆的圆心及半径分别为()A. (1,-3),-10B. (1,-3),C. (1,3),-10D. (1,3),-6.以点为圆心,且与y轴相切的圆的标准方程为A. B.C. D.7.设点A(2,-3),B(-3,-2),直线l过P(1,1)且与线段AB相交,则l的斜率k的取值范围是( )A. -≤k≤4B. -4≤k≤C. k≥,或k≤-4D. 以上都不对8.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为()A. 2x+y-1=0B. 2x+y-5=0C. x+2y-5=0D. x-2y+7=09.若直线l1:ax+2y+a+3=0与l2::x+(a+1)y+4=0平行,则实数a的值为()A. 1B. -2C. 1或-2D. -1或210.在同一直角坐标系中,表示直线y=ax与y=x+a正确的是()A. B.C. D.11.若某直线的斜率k∈(-∞,],则该直线的倾斜角α的取值范围是()A. B. C. D.12.点与圆C:的位置关系是A. 圆内B. 圆外C. 圆上D. 不能确定二、填空题(本大题共4小题,共20.0分)13.圆的圆心到原点的距离为______________.14.直线x+y-1=0被圆x2+y2=1所截得的弦长为______.15.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以点C为圆心,半径的圆的方程为________ .16.已知直线l:x+my+4=0,若曲线x2+y2+2x-6y+1=0上存在两点P,Q关于直线l对称,则m的值为____.三、解答题(本大题共6小题,共72.0分)17.已知圆与圆C2关于直线y=x+1对称.求圆C2的方程;18.已知直线,,与交于点.(Ⅰ)求点的坐标,并求点到直线的距离;(Ⅱ)分别求过点且与直线平行和垂直的直线方程.19.(14分)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a、b的值.(1)l1⊥l2,且l1过点(-3,-1);(2)l1∥l2,且坐标原点到这两条直线的距离相等.20.根据下列条件求圆的方程:(1)求经过点A(5,2),B(3,2),圆心在直线2x-y-3=0上的圆的方程;(2)求以O(0,0),A(2,0),B(0,4)为顶点的三角形OAB外接圆的方程.21.已知圆C:,直线l:.当a为何值时,直线l与圆C相切;当直线l与圆C相交于A,B两点,且时,求直线l的方程.22.已知在平面直角坐标系xoy中,圆C:(x-1)2+y2=4(Ⅰ)过点做圆的切线,求切线方程.(Ⅱ)求过点B(2,1)的圆的弦长的最小值,并求此时弦所在的直线的方程.答案和解析1.【答案】C【解析】【分析】本题考查圆的弦有关的问题,属基础题.关键是当过点P的直线与连接P与圆心的直线垂直时,弦AB最短——利用垂径定理求得答案.【解答】解:由x2+y2-6x=0,得(x-3)2+y2=9,∴圆心坐标为A(3,0),半径为R=3.如图,当过点P(1,2)的直线与连接P与圆心的直线垂直时,弦AB最短,∵A(3,0),P(1,2),∴,则最短弦长为.故选C.2.【答案】D【解析】【分析】本题考查直线和圆的位置关系,点到直线的距离公式的应用,是基础题。
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
直线与圆直线与圆一、填空题1.1.若函数若函数1()ax f x e b=-的图象在x =0处的切线l 与圆C:221x y +=相离,则P(a P(a,,b)b)与圆与圆C 的位置关系是的位置关系是 2.2.实数实数x 、y 满足不等式组ïîïíì³-³³001y x y x ,则W=xy 1-的取值范围是的取值范围是_____________. _____________. 3.已知x ,y 满足îïíì£++£+³041c by ax y x x 且目标函数y x z +=2的最值大值为为7,最值小值为为1,则=++a c b a_____________.4.4.已知点已知点A (3,23,2),),),B B (-2,7-2,7),若直线),若直线y=ax-3与线段AB 的交点P 分有向线段AB 的比为4:14:1,则,则a 的值为的值为5.5.设设E 为平面上以为平面上以 (4,1),(1,6),(3,2)A B C ---为顶点的三角形区域为顶点的三角形区域((包括边界包括边界 ) ) ),,则Z =4x -3y 的最大值和最小值分别为小值分别为_____________. _____________.6.6.实数实数y x z y x y x y x y x -=ïîïíì³³³+-£-+则满足条件,0,0,022,04,的最大值为的最大值为_____________. _____________. 7.7.由直线由直线1y x =+上的点向圆22(3)(2)1x y -++= 引切线,则切线长的最小值为引切线,则切线长的最小值为_____________. _____________.8.8.圆圆()2211y x +=-被直线0x y -=分成两段圆弧,则较短弧长与较长弧长之比为分成两段圆弧,则较短弧长与较长弧长之比为_____________. _____________.9.9.设定点设定点A (0,1),动点(),P x y 的坐标满足条件0,,x y x ³ìí£î则PA 的最小值是的最小值是_____________. _____________. 10.10.直线直线2)1(0122=+-=++y x y x 与圆的位置关系是的位置关系是_____________. _____________.11.11.设实数设实数y x ,满足线性约束条件ïîïíì³³-£+013y y x y x ,则目标函数y x z +=2的最大值为的最大值为 _____________. _____________.12.12.直线直线()23--=x y 截圆422=+y x 所得的劣弧所对的圆心角为所得的劣弧所对的圆心角为_____________. _____________. 13.已知点()y x P ,在不等式组ïîïíì³-+£-£-0220102y x y x 表示的平面区域内运动,则y x z -=的取值范围是_____________.14.14.已知直线已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,两点,O O 是坐标原点,向量是坐标原点,向量OA OA →、OB →满足满足|OA |OA →+OB →|=|OA →-OB →|,则实数a的值是的值是_____________. _____________.1.1.求过两点求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.与圆的关系.2. 2. 圆圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个?的点有几个?3.3.已知圆已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线.相切的切线.4.4.求半径为求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程相切的圆的方程5. 5. 已知圆已知圆0622=+-++m y x y x 与直线032=-+y x 相交于P 、Q 两点,O 为原点,且OQ OP ^,求实数m 的值.的值.6. 6. 两圆两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程所在直线的方程参考答案参考答案1.在圆内.在圆内2.[2.[--1,1)3.-24.-95.14 5.14 ,, -186.47.178.18.1∶∶39.9.根号根号根号2/2 2/210.10.相切相切相切11.612.π/313.[]2,1-14.214.2或或-2设圆的标准方程为222)()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点.两点.∴ïîïíì=+-=+-22224)3(16)1(r a r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x .16.符合题意的点是平行于直线01143=-+y x ,且与之距离为,且与之距离为111的直线和圆的交点.的直线和圆的交点.设所求直线为043=++m y x ,则1431122=++=m d ,∴511±=+m ,即6-=m ,或16-=m ,也即,也即06431=-+y x l :,或016432=-+y x l :.设圆9)3()3(221=-+-y x O :的圆心到直线1l 、2l 的距离为1d 、2d ,则,则34363433221=+-´+´=d ,143163433222=+-´+´=d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共有两个公共点.即符合题意的点共33个.个.17.∵点()42,P 不在圆O 上,上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴ 21422=++-k k解得解得 43=k所以所以()4243+-=x y 即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .4.则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:.圆C 与直线0=y 相切,且半径为相切,且半径为44,则圆心C 的坐标为)4,(1a C 或)4,(2-a C .又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为,半径为33.734=+=CA 134=-=CA10)102)1026)62)62(9(3++m )))(+x y x y 12=+m。
高一数学直线与圆期末复习练习题班级: 学号 姓名一、填空题;(每题7分,共70分)1、求符合下列条件的各圆方程:①圆心在直线2x-y-3=0上,且过点(5,2)和(3,-2): ;②圆过三点A(-1,5),B(-2,-2),C(5,5): ;③直线3x+4y-12=0和两坐标轴围成的三角形外接圆方程: ;④圆心为(2,-1),且截直线y=x-1所得弦长为: ;⑤已知A(-4,-5),B(6,-1),以线段AB 为直径的圆方程: ;⑥圆22(3)(4)1x y -++=关于直线1x y +=对称的圆方程为: ,关于原点对称的圆方程为: 。
2.①点(1,1)a a +-在圆2240x y x y +-+-=的外部,则a ∈ ;②,,a b c 是直角三角形的三边,c 为斜边,那么直线0ax by c ++=与圆22()()1x a y b -+-=的位置关系是 ;③若两圆O :22x y m +=与C :2268110x y x y ++--=有公共点,则m ∈ 。
3.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在直线与圆224470x y x y +--+=相切,则l 所在直线方程为 。
4.直线30ax y -+=与圆22(1)(2)4x y -+-=相交于A,B 两点,且弦AB 长为,则a = 。
5.如果直线l 把圆22240x y x y +--=平分,且不通过第四象限,则直线l 的 斜率范围为 。
6.若直线y x k =-+与曲线x =k 的取值范围为 。
7.两个圆221:2220C x y x y +++-=与圆2:C 224210x y x y +--+=的公切线有且只有 条。
8.圆222(1)(1)x y r -++=上有且仅有两个点到直线43110x y +-=的距离等于1,则r ∈ 。
9.两圆22280x y x +--=和222440x y x y ++--=公共弦所在直线方程为 ,公共弦长为 ,公共弦中垂线方程为 ,以公共弦为直径的圆方程为 。
圆的标准方程基础过关练题组一圆的标准方程的认识1.圆(x-2)2+(y+3)2=2的圆心坐标和半径分别是()A.(-2,3),1B.(2,-3),3C.(-2,3),√2D.(2,−3),√22.方程(x-a)2+(y-b)2=0表示的是()A.以(a,b)为圆心的圆B.以(-a,-b)为圆心的圆C.点(a,b)D.点(-a,-b)3.方程|x-1|=√1-(y-1)2表示的曲线是()A.一个圆B.两个半圆C.两个圆D.半圆4.方程x=√1-y2表示的图形是()A.两个半圆B.两个圆C.圆D.半圆题组二求圆的标准方程5.圆心为(1,-2),半径为3的圆的方程是 ()A.(x+1)2+(y-2)2=9B.(x-1)2+(y+2)2=3C.(x+1)2+(y-2)2=3D.(x-1)2+(y+2)2=96.圆心在y轴上,半径为1,且过点(1,2)的圆的标准方程是()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=17.若一圆的圆心坐标为(2,-3),一条直径的端点分别在x轴和y轴上,则此圆的标准方程是()A.(x-2)2+(y+3)2=13B.(x+2)2+(y-3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=528.求以A(2,2),B(5,3),C(3,-1)为顶点的三角形的外接圆的标准方程.9.(2021山西怀仁一中高二上月考)已知点A(1,-2),B(-1,4),求:(1)过点A,B且周长最小的圆的标准方程;(2)过点A,B且圆心在直线2x-y-4=0上的圆C的标准方程.题组三点与圆的位置关系10.点(sin30°,cos30°)与圆x2+y2=1的位置关系是()2A.点在圆上B.点在圆内C.点在圆外D.不能确定11.(2020湖北宜昌高二上期末)若原点在圆(x-3)2+(y+4)2=m的外部,则实数m的取值范围是 ()A.m>25B.m>5C.0<m<25D.0<m<512.若点P(-1,√3)在圆x2+y2=m2上,则实数m=.13.已知圆C的圆心为C(-3,-4)且过原点O,求圆C的标准方程,并判断点M1(-1,0),M2(1,-1),M3(3,-4)与圆C 的位置关系.能力提升练题组一圆的标准方程的求法及应用1.(2021吉林长春外国语学校高二上月考,)已知Rt△ABC的斜边的两端点A,B的坐标分别为(-3,0)和(7,0),则直角顶点C的轨迹方程为()A.x2+y2=25(y≠0)B.x2+y2=25C.(x-2)2+y2=25(y≠0)D.(x-2)2+y2=252.(2020辽宁大连高二上期中,)若圆C与圆C':(x+2)2+(y-1)2=1关于原点对称,则圆C的标准方程为(深度解析)A.(x+1)2+(y-2)2=1B.(x-2)2+(y-1)2=1C.(x-1)2+(y+2)2=1D.(x-2)2+(y+1)2=13.()圆C1:(x-1)2+(y-2)2=1关于直线x-y-2=0对称的圆C2的标准方程为()A.(x-4)2+(y+1)2=1B.(x+4)2+(y+1)2=1C.(x+2)2+(y+4)2=1D.(x-2)2+(y+1)2=14.(2021山东新泰中学高二上月考,)已知等腰三角形ABC的底边BC对应的顶点是A(4,2),底边的一个端点是B(3,5),则底边另一个端点C的轨迹方程是.易错5.(2021山西怀仁一中高二上月考,)经过二次函数y=x2-3x+2的图象与坐标轴的三个交点的圆的方程为.6.(2019安徽六安一中高一阶段测试,)已知直线l1经过点A(-3,0),B(3,2),直线l2经过点B,且l1⊥l2.(1)分别求直线l1,l2的方程;(2)设直线l2与直线y=8x的交点为C,求△ABC的外接圆的标准方程.题组二点与圆的位置关系7.()设P(x,y)是圆C:(x-2)2+y2=1上任意一点,则(x-5)2+(y+4)2的最大值为()A.6B.25C.26D.368.(2020四川成都石室中学高二上期中,)已知实数x,y满足x2+y2=1,则√3x+y的取值范围是()A.(-2,2)B.(-∞,2]C.[-2,2]D.(-2,+∞)9.(2021吉林长春外国语学校高二上月考,)已知圆过A(1,4),B(3,2)两点,且圆心在直线y=0上.(1)求圆的标准方程;(2)判断点P(2,4)与圆的关系.答案全解全析 基础过关练1.D 由圆的标准方程可得圆心坐标为(2,-3),半径为√2.2.C 由(x -a )2+(y -b )2=0,解得{y =y ,y =y ,因此它只表示一个点(a ,b ).故选C .3.A 原方程可化为(x -1)2+(y -1)2=1,表示的曲线是一个圆,故选A .4.D 根据题意得x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D. 5.D 由圆的标准方程得(x -1)2+(y +2)2=9. 6.A 设圆的圆心为C (0,b ),则√(0-1)2+(y -2)2=1,∴b =2,∴圆的标准方程是x 2+(y -2)2=1.7.A 易知直径两端点的坐标分别为(4,0),(0,-6),可得圆的半径为√13,因为圆心坐标为(2,-3),所以所求圆的标准方程是(x -2)2+(y +3)2=13.8.解析 设所求圆的圆心为(a ,b ),标准方程为(x -a )2+(y -b )2=r 2(r >0), 则有{(2-y )2+(2-y )2=y 2,(5-y )2+(3-y )2=y 2,(3-y )2+(-1-y )2=y 2,解得{y =4,y =1,y 2=5,所以△ABC 的外接圆的标准方程为(x -4)2+(y -1)2=5.9.解析 (1)当AB 为直径时,过点A ,B 的圆的半径最小,从而周长最小.易知所求圆的圆心为AB 的中点(0,1),半径r =12|yy |=√10,故圆的标准方程为x 2+(y -1)2=10.(2)设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0),则{(1-y )2+(-2-y )2=y 2,(-1-y )2+(4-y )2=y 2,2y -y -4=0,解得{y =3,y =2,y 2=20,∴圆的标准方程为(x -3)2+(y -2)2=20. 10.C 因为sin 230°+cos 230°=(12)2+(√32)2=1>12,所以点在圆外.11.C 依题意得,m >0,且(0-3)2+(0+4)2>m ,所以0<m <25,故选C . 12.答案 ±2解析 ∵P 点在圆x 2+y 2=m 2上, ∴(-1)2+(√3)2=4=m 2, ∴m =±2.13.解析 因为圆C 过原点O ,圆心为C (-3,-4),所以圆C 的半径r =|OC |=√(-3-0)2+(-4-0)2=5,因此圆C 的标准方程为(x +3)2+(y +4)2=25.因为(-1+3)2+(0+4)2=20<25,所以点M 1(-1,0)在圆C 内;因为(1+3)2+(-1+4)2=25,所以点M 2(1,-1)在圆C 上;因为(3+3)2+(-4+4)2=36>25,所以点M 3(3,-4)在圆C 外.能力提升练1.C 依题意得,直角顶点C 在以AB 为直径的圆上运动,且点C 与点A 、B 不重合,由AB 的中点坐标为(2,0),|AB |=10得,直角顶点C 的轨迹方程为(x -2)2+y 2=25(y ≠0),故选C .2.D 已知圆C 与圆C'关于原点对称,则两圆的圆心关于原点对称,半径相等,因此,圆C 的圆心为(2,-1),半径为1,从而圆C 的标准方程为(x -2)2+(y +1)2=1,故选D .解题模板 与圆有关的对称问题,由对称前后两圆全等,知两圆的半径相等,因此只要利用对称关系求出圆心坐标,就可得到圆的标准方程.3.A 由题意得,圆C 1的圆心坐标为(1,2),设圆心C 1(1,2)关于直线x -y -2=0的对称点为C 2(a ,b ),则{y -2y -1×1=-1,y +12-y +22-2=0,解得{y =4,y =-1,所以圆C 2的标准方程为(x -4)2+(y +1)2=1.4.答案 (x -4)2+(y -2)2=10(去掉(3,5),(5,-1)两点)解析 设C (x ,y ),由题意知,△ABC 的腰长为√(3-4)2+(5-2)2=√10,∴C 的轨迹方程为(x -4)2+(y -2)2=10. 又点A 、B 、C 构成三角形,即三点不可共线, ∴需要去掉重合点(3,5),反向共线点(5,-1). 故答案为(x -4)2+(y -2)2=10(去掉(3,5),(5,-1)两点).易错警示 解决以三角形为条件的问题时,要注意隐含条件三角形的三个顶点不共线,在求出轨迹方程后,要去掉三点共线时轨迹上的点. 5.答案 (y -32)2+(y -32)2=52解析 令x =0,则y =2;令y =0,则x =1或x =2,所以二次函数y =x 2-3x +2的图象与坐标轴的三个交点不妨设为A (0,2),B (1,0),C (2,0). 线段BC 的垂直平分线方程为x =32,①线段AC 的垂直平分线为y =x ,② 设圆的方程为(x -a )2+(y -b )2=r 2(r >0),③联立①②得x =32,y =32,即y =32,y =32,易求得y 2=52, 则圆的方程为(y -32)2+(y -32)2=52.6.解析 (1)因为直线l 1经过点A (-3,0),B (3,2),所以y -02-0=y +33+3,所以l 1的方程为x -3y +3=0.因为l 1⊥l 2,所以设直线l 2的方程为3x +y +c =0.因为点B (3,2)在直线l 2上,所以c =-11.所以直线l 2的方程为3x +y -11=0.(2)由{3y +y -11=0,y =8y得{y =1,y =8,即y (1,8),所以|yy |=4√5,|yy |=2√10,又|yy |=2√10,所以|AB |2+|BC |2=|AC |2,所以△ABC 是以AC 为斜边的直角三角形.又AC 的中点为(-1,4),所以Rt △ABC 的外接圆的圆心为(-1,4),半径为2√5.所以△ABC 的外接圆的标准方程为(x +1)2+(y -4)2=20. 7.D (x -5)2+(y +4)2的几何意义是点P (x ,y )到点Q (5,-4)的距离的平方.因为点P 在圆C :(x -2)2+y 2=1上,所以所求最大值为(|QC |+1)2=36.8.C 设x =sin α,y =cos α,则√3y +y =√3sin y +cos y =2sin (y +π6),所以√3x +y 的取值范围是[-2,2].故选C .9.解析 (1)∵圆心在直线y =0上,∴设圆心坐标为C (a ,0),又圆过A ,B 两点, ∴|AC |=|BC |,即√(y -1)2+16=√(y -3)2+4,即(a -1)2+16=(a -3)2+4,解得a =-1, ∴圆心为C (-1,0),半径r =|AC |=√(-1-1)2+16=√20=2√5,∴圆的标准方程为(x +1)2+y 2=20.(2)∵|PC |=√(-1-2)2+(0-4)2=√9+16=√25=5>r ,∴点P (2,4)在圆外.。
直线与圆的方程检测题1.过点P (0,1)与圆22230x y x +--=相交的所有直线中,被圆截得的弦最长时的直线方程是 ( )A. 0x =B. 1y =C. 10x y -+=D. 10x y +-= 2.圆0422=-+x y x 在点)3,1(P 处的切线方程为 ( )A 023=-+y x B.043=-+y x C .043=+-y x D .023=+-y x 3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a 的值为 ( ) A 、1,-1B 、2,-2C 、1D 、-14.过点M(1,5)-作圆22(1)(2)4x y -+-=的切线,则切线方程为( ) A .1x =-B .512550x y +-=C .1512550x x y =-+-=或D .15550x x y =-+-=或125.以N (3,-5)为圆心,并且与直线720x y -+=相切的圆的方程为( ) A.22(3)(5)32x y -++= B. 22(3)(5)32x y ++-= C. 22(3)(5)25x y -++= D. 22(3)(5)23x y -++=6.若圆222)5()3(r y x =++-上有且只有两个点到直线0234=--y x 的距离等于1,则半径r 的取值范围是( ) A.()6,4B.[)6,4C. (]6,4D.[]6,47.斜率为3且与圆2210x y +=相切的直线方程为____________. 8.已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为___________.9.两圆相交于两点)3,1(P 和)1,(-m Q ,两圆圆心都在直线0=+-c y x 上,且c m ,均为实数,则=+c m _______。
10.已知实数,x y 满足250x y --=,则22x y +的最小值为________.11.分别求出下列条件确定的圆的方程:(1)圆心为M (3,-5),且经过点P (7,-2) (2)圆心在x 轴上,半径长是5,且与直线x-6=0相切.12已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B两点.当l 经过圆心C 时,求直线l 的方程; 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.13.2y x=上,圆被直线0x y-=截得的弦长为14.已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,求:(1)动点M的轨迹方程;(2)若N为线段AM的中点,试求点N的轨迹.15.已知方程22240x y x y m+--+=.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线240x y+-=相交于M N、两点,且OM ON⊥(O为坐标原点)求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.试卷答案1.D2.D3.D4.C5.A6.A7.103=+-yx或0103=--yx 8.29.22(2)(2)2x y-+-=10.5 11.12解:(1)已知圆C:()2219x y-+=的圆心为C(1,0),因直线过点P、C,所以直线l的斜率为2,直线l的方程为2(1)y x=-,即220x y--=.(2)当弦AB被点P平分时,l⊥PC,直线l的方程为12(2)2y x-=--,即260x y+-=.(3)当直线l的倾斜角为45º时,斜率为1,直线l的方程为22y x-=-,即0x y-=,圆心C到直线l的距离为12,圆的半径为3,弦AB的长为34.13.14.解:(1)设动点M(x,y)为轨迹上任意一点,则点M的轨迹就是集合P1{|||||}2M MA MB==.由两点距离公式,点M适合的条件可表示为22221(2)(8)2x y x y-+=-+平方后再整理,得2216x y+=.可以验证,这就是动点M的轨迹方程.(2)设动点N的坐标为(x,y),M的坐标是(x1,y1).由于A(2,0),且N为线段AM的中点,所以122xx+=,12yy+=.所以有122x x=-,12y y=①由(1)题知,M是圆2216x y+=上的点,所以M坐标(x1,y1)满足:221116x y+=②,将①代入②整理,得22(1)4x y-+=.所以N的轨迹是以(1,0)为圆心,以2为半径的圆.15.(3)设圆心为(),a b 则:121248,,2525x x y y a b ++====半径45r = 圆的方程为2248805525x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.。
高一数学必修二直线和圆单元测试一、填空题130y +-=的倾斜角是 .2.直线l 经过A (2,1)、B (1,m 2)(m ∈R)两点,那么直线l 的倾斜角的取值范围是 .3. 若圆2244100x y x y +---=上至少有三个不同点到直线l :0ax by +=的距离为,则直线l 的倾斜角的取值范围是 .4. 直线()00≠=++ab c by ax 截圆522=+y x 所得弦长等于4,则以|a |、|b |、|c |为边长的确定三角形一定是 .5. 已知直线1l 的方程为y x =,直线2l 的方程为0ax y -=(a 为实数).当直线1l 与直线2l 的夹角在(0,12π)之间变动时,a 的取值范围是 . 6若直线1+=kx y 与圆122=+y x 相交于P 、Q 两点,且∠POQ =120°(其中O 为原点),则k 的值为 .7.如果点P 在平面区域22020210x y x y y -+⎧⎪+-⎨⎪-⎩≥≤≥上,点Q 在曲线22(2)1x y ++=上,那么PQ 的最小值为 .8.若曲线x 2+y 2+a 2x +(1–a 2)y –4=0关于直线y –x =0的对称曲线仍是其本身,则实数a = . 9.已知圆22:1C x y +=,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆C挡住,则a 的取值范围是 .10.在圆x 2+y 2=5x 内,过点)23,25(有n 条弦的长度成等差数列,最小弦长为数列的首项a 1,最大弦长为a n ,若公差]31,61[∈d ,那么n 的取值集合为 .11.点P (a ,3)到直线0134=+-y x 的距离等于4,且在不等式032<-+y x 表示的平面区域内,则点P 的坐标是 .12.将一张画有直角坐标系的图纸折叠一次,使得点A (0,2)与点B (4,0)重合.若此时点C (7,3)与点D (m ,n )重合,则m +n 的值是 .13.已知圆22((2)16x y -+-=与y 轴交于A B ,两点,与x轴的另一个交点为P ,则APB ∠= .14.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点其中真命题的代号是 .(写出所有真命题的代号) 二、解答题 15.已知点A(2, 0), B(0, 6),坐标原点O 关于直线AB 的对称点为D, 延长BD 到P, 且|PD|=2|BD|.已知直线l :ax+10y+84-1083=0经过P, 求直线l 的倾斜角。
高考数学复习-直线与圆练习试题第Ⅰ卷 (选择题 共40分)一、选择题(10×4′=40′)1.直线l 与直线y =1、x-y -7=0分别交于P 、Q 两点,线段PQ 的中点为(1,-1),则直线l 的斜率为( )A.23 B.32 C.-32D.-232.点P 在直线2x +y +10=0上,P A 、PB 与圆422=+y x 分别相切于A 、B 两点,则四边形P AOB 面积的最小值为 ( )A.24B.16C.8D.43.已知直线1l :y =x ,2l :ax -y =0,其中a 为实数,当这两直线的夹角θ∈(0,12π)时,a 的取值范围为 ( )A.(0,1)B.(33,3) C.(33,1)∪(1,3) D.(1,3) 4.设a 、b 、k 、p 分别表示同一直线的横截距、纵截距、斜率和原点到直线的距离,则有( ) A.)1(2222k p k a += B.k =abC.b a 11+=pD.a =-kb5.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,则实数k 等于 ( ) A.-3 B.3 C.-6 D.66.若圆222r y x =+(r >0)上恰有相异两点到直线4x -3y +25=0的距离等于1,则r 的取值范围是( ) A.[4,6] B.[4,6) C.(4,6] D.(4,6)7.直线1l :0=++c by ax ,2l :0=++p ny mx ,则bnam=-1是1l ⊥2l 的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分又不必要条件8.过圆422=+y x 外一点P(4,-1)引圆的两条切线,则经过两切点的直线方程为 ( ) A.4x -y -4=0 B.4x +y -4=0 C.4x +y +4=0 D.4x -y +4=09.倾斜角为60°,且过原点的直线被圆222)()(r b y a x =-+-(r >0)截得弦长恰好等于圆的半径,则a 、b 、r 满足的条件是 ( )A.)3(|3|3a b b a r ≠-=B.)3(|3|23a b b a r ≠-=C.)3(|3|3a b b a r ≠+=D.)3(|3|23a b b a r ≠-=10.直线y =kx +1与圆0922=--++y kx y x 的两个交点关于y 轴对称,则k 为 ( )A.-1B.0C.1D.任何实数第Ⅱ卷 (非选择题 共60分)二、填空题(4×3′=12′)11.若点P (a ,b )与点Q (b +1,a -1)关于直线l 对称,则直线l 的方程是 .12.已知圆16)1()2(22=-+-y x 的一条直径通过直线x -2y -3=0被圆截弦的中点,则该直径所在直线的方程为 .13.关于x 的方程kx +1=21x -有且只有一个实根,则实数k 的取值范围是 . 14.经过点P (-2,4),且以两圆0622=-+x y x 和422=+y x 的公共弦为一条弦的圆的方程是 .三、解答题(6×8′=48′)15.若直线1l :x+y+a =0,2l :x+ay +1=0,3l :ax+y +1=0能围成三角形,求a 的取值范围.16.已知点P 是直线l 上的一点,将直线l 绕点P 逆时针方向旋转α(0<α<2π)所得直线1l 的方程为3x -y -4=0,若继续绕点P 逆时针方向旋转α-π2,则得2l 的方程为x +2y +1=0,试求直线l 的方程.17.设P 是圆M :1)5()5(22=-+-y x 上的动点,它关于A (9,0)的对称点为Q ,把P 绕原点依逆时针方向旋转90°到点S ,求|SQ |的最值.18.已知点A (3,0),点P 在圆122=+y x 的上半圆周上,∠AOP 的平分线交P A 于Q ,求点Q 的轨迹方程.19.如图,已知⊙A :425)2(22=++y x ,⊙B :41)2(22=+-y x ,动圆P 与⊙A 、⊙B 都外切. (1)求动圆圆心P 的轨迹方程,并说明轨迹是什么曲线;(2)若直线y=kx +1与(1)中的曲线有两个不同的交点1P 、2P ,求k 的取值范围; (3)若直线l 垂直平分(2)中的弦21P P ,求l 在y 轴上的截距b 的取值范围.20.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使得l 被圆C 截得弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由.参考答案1.C 方法1 设直线l 为y=kx+b ,分别与y =1,x-y -7=0联立解得P (-b k ,1),Q (k b -+17,kb k -+17).由PQ 中点为(1,-1),∴217=-++-k b b k ,且1+kb k -+17=-2,∴k =-32,故选C. 方法2 设P (a ,1),Q (b +7,b ),因PQ 的中点为(1,-1),∴⎪⎪⎩⎪⎪⎨⎧-=+=++121127b b a ,解得⎩⎨⎧-=-=32b a ,故P 为(-2,1),Q 为(4,-3),∴3224131-=+--==PQ k k ,故选C. 2.C 如图,PAOB S =22||||2||2||||21232AO PO PA OA PA PAO -==⋅⋅=⋅∆=24||2-PO . 要求PAOB S 的最小值,只需求|PO |的最小值即可.5212|10002|||22min =+++⨯=PO ,∴8)(min =PAOB S ,故选C.3.C 如图,设直线y=ax 的倾斜角为α, 则α≠4π,∴|α-4π|<12π, ∴6π<α<3π,且α≠4π.a =tan α∈(33,1)∪(1,3).4.A 应用点到直线的距离公式,选A.5.B 如图,设围成四边形为OABC ,因OABC 有外接圆,且∠AOC =90°,故∠ABC =90°. ∴两条直线x +3y -7=0,kx -y -2=0互相垂直,(-31)·k =-1,即k =3,故选B.说明 运用圆的几何性质是解决圆的问题的有效途径.6.D 如图,设l :4x -3y +25=0,与l 平行且距离等于1的直线为4x -3y +b =0. ∴2015|25|=⇒=-b b 或b =30.第2题图解第3题图解第5题图解1l :4x -3y +20=0,2l :4x -3y +30=0.圆心(0,0)到1l 和2l 的距离分别为5201=d =4,5302=d =6. 故满足条件的r 取值范围(4,6).实际上,圆222r y x =+没有点到直线4x -3y +25=0的距离等于1, 则0<r <4,若圆上只有一点到直线4x -3y +25=0的距离等于1,则r =4,类似可求出圆上有三点、四点到直线的距离等于1 的r 的取值范围.7.A 由1-=bnam,可得1l ⊥2l ,∴选A. 8.A 方法1 设切点为A 、B ,则AB ⊥OP , ∵410401-=---=OP k ,∴4=AB k .故排除B 、C. 又由图可知,AB 在y 轴的截距为负,故排除D,所以选A.方法2 设A (1x ,1y ),B (2x ,2y ), 由AP ⊥OA 可得AP k ·OA k =-1, 即1411111-=⋅-+x y x y .∴04112121=+-+y x y x ,又42121=+y x , ∴04411=++-y x .同理可得04422=++-y x ,∴AB 直线为-4x +y +4=0,即4x -y -4=0.方法3 设A (1x ,1y ),B (2x ,2y ),则切线P A 为411=+y y x x ,422=+y y x x . ∴4411=-y x ,4422=-y x ,∴A 、B 在直线4x -y -4=0上.另:此题可推广到一般结论,若P (0x ,0y )为圆222r y x =+ (r >0)外一点,过P 引圆的两条切线,则经过两切点的直线方程为200r y y x x =+.9.A 直线方程为x y 3=,则圆心(a ,b )到直线3x -y =0的距离为d =2|3|b a -,又因截得弦长恰好等于圆的半径,故d =23r ,∴|3a -b |=3r ,故选A. 10.B 方法1 将y =kx +1代入922=-++y kx y x 中有092)1(22=-++kx x k . 设交点为 A (1x ,1y ),B (2x ,2y ),∵A 、B 关于y 轴对称,∴021=+x x , ∴k =0.故选B.方法2 因直线与圆的两个交点A (1x ,1y ),B (2x ,2y )关于y 轴对称 ∴021=+x x ,21y y =,故圆心在y 轴上,∴k =0,故选B.11.x-y -1=0 P 、Q 关于直线l 对称,故1k k PQ ⋅=-1且PQ 中点在l 上, ∴11111=---+-=-=aa bb k k PQ,又PQ 中点为(21++b a ,21-+a b ),第6题图解第8题图解∴l 的方程为y -21-+a b =x -21++b a ,即x-y -1=0.此题也可将a ,b 赋特殊值去求直线l .12.2x +y -3=0 由圆的几何意义知该直径与直线x -2y -3=0垂直.故该直径方程为y +1=-2(x -2),即2x +y -3=0.13.{k |k >1或k =0或k <-1} 画出函数y =kx +1、y =21x -的图象,两曲线相切及只有一个交点时如图所示.14.08622=-++x y x 设圆的方程为0)4(62222=-+λ+-+y x x y x 经过P (-2,4), ∴0]44)2[()2(64)2(2222=-+-λ+--+-, ∴λ=-2,∴所求的圆的方程为08622=-++x y x .15.解 由1l 、2l 相交,需1·a -1·1≠0,得a ≠1,此时解方程组⎩⎨⎧=++=++010ay x a y x ,可解得⎩⎨⎧=-=11y x 即1l 、2l 的交点为(-1-a ,1),由1l 、3l 相交,需1·1-1·a ≠0,∴a ≠1,由2l ,3l 相交,需1·1-a ·a ≠0,∴a ≠±1,又(-1-a ,1)∉3l , ∴a ·(-1-a )+1+1≠0,得a ≠1且a ≠-2,综上所述,a ∈R 且a ≠±1且a ≠-2,能保证三交点(-1-a ,1),(1,-1-a )、(-1-a ,-1+a +2a )互不重合,所以所求a 的范围为a ∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞).16.解 由已知条件知P 为直线3x -y -4=0和直线x +2y +1=0的交点,联立两直线方程得⎩⎨⎧=++=--012043y x y x ,∴⎩⎨⎧-==11y x .∴P 点为(1,-1). 又l 与2l 垂直,故l 的方程为y +1=2(x -1),即l 的方程为2x -y -3=0. 17.解 设P (x ,y ),则Q (18-x ,-y ),记P 点对应的复数为x +y i, 则S 点对应的复数为:(x +y i )·i=-y +x i,即S (-y ,x ),∴|SQ |=xy y x xy y x y x x y y x 22363618)()18(2222222+++-+-++=--++- =2222)9()9(2818118182++-⋅=+++-+⋅y x y x y x其中22)9()9(++-y x 可以看作是点P 到定点B (9,-9)的距离,其最大值为|MB |+r =253+1,最小值为|MB |-r =253-1,则|SQ |的最大值为2106+2,|SQ |的最小值为2106-2.第13题图解18.解 方法1 如图,设P (0x ,0y )(0y >0),Q (x ,y ). ∵OQ 为∠AOP 的平分线,∴31||||==OA OP QA PQ , ∴Q 分P A 的比为31.∴⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=000043311031)1(43311313y y y x x x 即⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413400.又因12020=+y x ,且0y >0,∴1916)43(91622=+-y x . ∴Q 的轨迹方程为169)43(22=+-y x (y >0). 方法2 设∠AOP =α,α∈(0,π),则P (cos α,sin α),∠AOQ =2α, 则OQ 直线方程为y =x ·tan2α=kx ① 3cos sin -αα=PA k ,∴直线P A 方程为y =3cos sin -αα(x -3) ②由Q 满足①②且k =tan2α. 由②得y =12)3()3(311122222+--=-⋅-+-+k x k x k k k k.消去k 有y =12)3(22+--x y x x y,∴02322=-+x y x ,由图知y >0. 故所求Q 点轨迹方程为02322=-+x y x (y >0). 说明 上述两种方程为求轨迹的基本方法、相关点及参数法. 19.解 (1)如图,设⊙P 的圆心P (x ,y ),半径为R , 由题设,有|P A |=R +25,|PB |=R +21,∴|P A |-|PB |=2. ∴⊙P 的圆心轨迹是实轴长为2,焦点在x 轴上,且焦距长 为4的双曲线的右支,其方程为1322=-y x (x >0).第18题图解第19题图解(2)由方程组⎪⎩⎪⎨⎧>=-+=)0(13122x y x kx y ,有042)3(22=---kx x k (x >0). ①因为直线与双曲线有两个不同交点,∴⎪⎪⎩⎪⎪⎨⎧≠->⋅>+>∆030022121k x x x x .从而,有⎪⎪⎩⎪⎪⎨⎧><-<3034222k k kk ⇒⎪⎩⎪⎨⎧>-<<<-<<<-3330322k k k k k 或或. ∴-2<k <-3. (3)设21P P 的中点为M (M x 、M y ),则M x =22132k kx x -=+. 又M 在y=kx +1上,∴M y =k M x +1=233k-.∴M (23k k-,233k -).∴21P P 的垂直平分线l 的方程为:y-M y =-k 1(x -M x ),即y -233k -=-k 1(x -23kk -). 令x =0,得截距b =234k-,k ∈(-2,-3),又-2<k <-3,∴-1<3-2k <0.∴b <-4.20.解 假设存在这样的直线,设直线l 方程为y=x+b .方法1 将y=x+b 代入圆的方程有0222)1(22=+-+++b b x b x .由题设知OA ⊥OB ,设A (1x ,1y ),B (2x ,2y ),∴1x 2x +1y 2y =0.又1y 2y =(1x +b )(2x +b )=1x 2x +b (1x +2x )+2b ,∴21x 2x +b (1x +2x )+2b =0. 又∵1x +2x =-(b +1),1x 2x =2b -2+22b ,∴2(22b +2b -2)-b (b +1)+ 2b =0.∴b =1或b =-4.此时Δ=0)22(4)1(2>--+b b , ∴存在这样的直线l :y=x +1或y=x -4满足题设.方法2 设过圆C 与l 的交点的圆系D 为.0)(44222=+-λ+-+-+b y x y x y x 即04)4()2(22=-λ+λ-+-λ++b y x y x . 圆心为(-22-λ,-24λ-),在直线y=x+b 上,∴-24λ-=-22-λ+b ,即λ=3+b . ①又圆D 过原点,∴b λ-4=0. ② 由①②得,0432=-+b b ,即b =1或b =-4.此时圆D 的方程存在.故存在直线y=x +1或y=x -4.。
(完整版)高中圆与直线练习题及答案41、选择题: 1. 2. 3. 4. 直线x- 3 y+6=0的倾斜角是() A 600B 1200C 300D 1500经过点A(-1,4),且在x 轴上的截距为3的直线方程是( )A x+y+3=0B x-y+3=0C x+y-3=0D x+y-5=0直线(2m 2+m-3)x+(m 2-m)y=4m-1与直线2x-3y=5平行,则的值为(39 9A- 3或 1 B1 C-9D -9或 1288直线ax+(1-a)y=3与直线(a-1)x+(2a+3)y=2互相垂直,则a 的值为A -3 3C 0 或-D 1 或-3 2 圆(x-3) 2+(y+4)2=2关于直线x+y=0对称的圆的方程是( 6、 A. (x+3)2+(y-4)2=2 B. (x-4)2+(y+3)2=2 11.已知则bC .( M {( x, y) | y ,9 x 2,y3\2,3、2]12 . 一束光线从点A( 1,1)出发,经径是0}, N{(x,y)|y 3.2,3、, 2) 33,2]x 轴反射到圆C:(xx b },若2)2 (y 3)2C .(x+4)2+(y-3)2=2 若实数x 、y 满足(x 2)2D. A. ? 3 7. 圆(x 1)2 (y A . x — y = 0 8. 若直线ax 2y 3,则 (x-3)2+(y-4)2=2 1的最大值为( x B. 3D.1上的最短路二、填空题:13过点M (2, -3)且平行于A (1,2),B (-1,-5)两点连线的直线方程是 14、直线I 在y 轴上截距为2,且与直线I': x+3y-2=0垂直,则I 的方程是 15.已知直线5x12y a 0与圆x 2 2x y 20相切,则a 的值为.3)2 1的切线方程中有一个是B . x + y = 01 0与直线x yC . x = 0D .2 0互相垂直,那么 y = 0 a 的值等于 B .-39 .设直线过点(0, a),其斜率为1,且与圆x 2y 2 B . 2.2 232相切,则a 的值为2 D . .2 16 圆 x 2 y 2 4x 17 .已知圆M :直线I : y = kx ,下面四个命题:(A ) (B ) (C ) (D ) 其中真命题的代号疋4y 6 0截直线x y 5 0所得的弦长为(x + cos ) 2+(y — sin ) 2= 1,对任意实数对任意实数对任意实数对任意实数 i=r.曰k 与,直线I 和圆M 相切; k 与,直线I 和圆M 有公共点;,必存在实数k ,使得直线I 与和圆M 相切; k ,必存在实数,使得直线I 与和圆M 相切. (写出所有真命题的代号) .18已知点M (a, b )在直线3x 4y 15上,贝X a 2 b 2的最小值为10 .如果直线I 1,l 2的斜率分别为二次方程 x 24x 10的两个根,那么I 1与I 2的夹角为()三、解答题:19、平行于直线2x+5y-1=0的直线I 与坐标轴围成的三角形面积为 5,求直线I 的方程。
高一数学 直线与圆测试题
一、选择题(共50分)
★【题1】、已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于
(A )2 (B )1 (C )0 (D )1-
★【题2】、已知过点()2A m -,和()4B m ,的直线与直线210x y +-=平行,则的值为 A 0 B 8- C 2 D 10 ★【题3】、经过点)1,2(-M 作圆52
2
=+y x 的切线,则切线的方程为: A.
52=+y x B. 052=++y x C. 052=--y x D.
250x y ++=
★4、圆9)2()(:221=++-y m x C 与圆4)()1(:2
22=-++m y x C 外切,则m 的值为: A. 2 B. -5 C. 2或-5 D. 不确定 ★5、圆0222=++x y x 和042
2=-+y y x 的公共弦所在直线方程为
A. x-2y=0
B. x+2y=0
C. 2x-y=0
D. 2x+y=0 ★6、直线1x y +=与圆2
2
20(0)x y ay a +-=>没有公共点,则a 的取值范围是
A .1)-
B .1)
C .(1)
D .1) ★【题7】、圆0104422=---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是
A .36
B . 18 C. 26 D . 25 ★【题8】设直线过点(0,a),其斜率为1, 且与圆x 2+y 2=2相切,则a 的值为
A .±2
B .±2 B .±2 2 D .±4
★【题9】、已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于( ) A 9π (B )8π (C )4π (D )π
★【题10】、如果直线L 将圆:x 2+y 2-2x-4y=0平分且不通过第四象限,则直线L 的斜率的取值范围是
A [0,2]
B [0,1]
C [0, 12]
D [0, 12
)
二、填空题(共25分)
★【题11】已知两条直线12:330,:4610.l ax y l x y +-=+-=若12//l l ,则a =
★【题12】已知圆2x -4x -4+2
y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ★【题13】圆1O 是以R 为半径的球O 的小圆,若圆1O 的面积1S 和球O 的表面积S 的比为
1:2:9S S =,则圆心1O 到球心O 的距离与球半径的比1:OO R =____
★【题14】、若直线x+y=k 与曲线y=1-x 2 恰有一个公共点,则k 的取值范围是____ ★【题15】、过点(1,2)的直线L 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角
最小时,直线L 的斜率k = . ★答案:
★11.__________________; ★12题 :_____________;
★13题:__________________; ★14题:__________________; ★15题:________________
三、解答题(共75分)
★16题、(1)、若半径为1的圆分别与y
轴的正半轴和射线(0)3
y x x =≥相切,求出这个圆的方程。
(2)、已知点)1,1(-A 和圆4)7()5(:2
2=-+-y x C ,求一束光线从点A 经x 轴反射到圆周C 的最短 路程。
★17题、(Ⅰ)、已知圆C 的圆心坐标是(-1,3),且圆C 与直线x+y-3=0相交于P,Q 两点,又OP ⊥OQ,O 是坐标原点,求圆C 的方程.
(Ⅱ)、已知⊙C 满足:(1)、截y 轴所得的弦长为2;(2)被x 轴分成两段圆弧,
其弧长之比为3:1;(3)、圆心到直线L:x-2y=0的距离为 5
5
,求此圆的方程。
★ 【题18】、(1)已知直线5120x y a -+=与圆2
2
20x x y -+=相切,求出a
的值。
(2)、某条直线过点)2
3
,3(--P ,被圆252
2=+y x 截得的弦长为8,求此弦所在的直线方程。
★【例题19】已知直线过点P(-1,2),且与以点A(-2,-3)、B(3,0)为端点的线段相交,求出直线L的斜率的取值范围是多少?
※★【题20】在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、
AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将
矩形折叠,使A点落在线段DC上.若折痕所在直线的斜率为k,试写出折痕
所在直线的方程。
★【题21】、已知圆C:(x-1)2+(y-2)2= 25,直线L:(2m+1)x+(m+1)y-7m-4=0;①证明;不论m取什么值,直线L恒与圆C相交于两点;②求直线被圆C所截得的弦长最
小时,直线L的方程是什么?
参考答案 ★一、选择题和填空题:
★11.2 ★12题 : |201|2
211
d --==+ ★13题: 1 : 3_ ★14题: -1≤k<1或k= 2 ★15题:
2
2
★16题、(1)、解:若半径为1的圆分别与y 轴的正半轴和射线3
(0)3
y x x =
≥相切,则圆心在直线y=
3x 上,且圆心的横坐标为1,所以纵坐标为3,这个圆的方程为
22(1)(3)1x y -+-=。
★17题、(Ⅰ)解:(1)设而不求思想的应用,(2)OP ⊥OQ 转化为x 1x 2+y 1y 2=0,从而可求得r 2=13
(3)、所求的圆的方程为()()22
1313x y ++-=
(Ⅱ)、解:()()22112x y +++=或()()22
112x y -+-=
★18题、(1)、解:圆的方程可化为2
2
(1)1x y -+=,所以圆心坐标为(1,0),半径为1,由已知可得
|5|
1|5|1313
a a +=⇒+=,所以a 的值为-18或8。
★题19 k ≥5,或k ≤-1
2
★题20:(Ⅰ)( i ) 当0=k 时,此时A 点与D 点重合, 折痕所在的直线方程
题次
1
2
3
4
5
6
7
8
9
10
答案
D
B
C
C
B
A
C
B
C
A
2
1=
y ,( ii ) 当0≠k 时,设A 点落在线段DC 上的点)1,(0x A ', )20(0≤≤x ,则直线A O '的斜率0
01x A k =
',∵,A O '折痕所在直线垂直平分∴1-=⋅'k k A O ,∴11
0-=⋅k x ,∴k x -=0;又∵折痕所在的直线与A O '的交点坐标(线段A O '的中点);为)2
1
,2(k M -,∴折
痕所在的直线方程)2
(21k x k y +=-,即21
22k y kx =++,由( i ) ( ii )得折痕所在的直线方程
为:21
22
k y kx =++)02(≤≤-k
★题21、(1)证明直线L 恒过定点(3,1);(2)、直线L 的方程为:2x-y-5=0。