x i a i x ( i 0 ,1 , ,n )
记 f( x i) y i( i 0 ,1 , ,n )
1. 左矩形公式
O a xi1x i
bx
ab f (x)dx y 0 x y 1 x y n 1 x
曲边梯形面积的负值
y
A1
A3
a
A2 O
A5
A4
bx
b
af(x )dxA 1 A 2A 3 A 4A 5
各部分面积的代数和
2020/6/3
同济高等数学课件
目录 上页 下页 返回 结束
可积的充分条件:
定理1. 函数 f(x)在[a,b]上连续f(x)在[a,b]可积 .
定理2. 函数 f(x)在 [a,b]上有 ,且界 只有有限个间断点
2020/6/3
同济高等数学课件
目录 上页 下页 返回 结束
3) 近似和.
n
n
A Ai f (i)xi
i1
i1
4) 取极限. 令 ma{xxi},则曲边梯形面积 1in
n
y
A l im0i1Ai
n
limf 0i1
(i)xi
O a x1 xi1 x i bx i
2020/6/3
同济高等数学课件
2) 常代变. 在第i 个窄曲边梯形上任取 i[xi1,xi]
作以[xi1, xi]为底 , f (i )
y
为高的小矩形, 并以此小
矩形面积近似代替相应
窄曲边梯形面积 Ai , 得
O a x1 xi1 x i bx i
A i f(i) x i ( x i x i x i 1 ,) i 1 ,2, ,n)
nl i m 1p2p n p 1 npnl imin1