磁电式传感器-霍尔传感器(1)
- 格式:ppt
- 大小:395.50 KB
- 文档页数:8
一般来说,所有的转速传感器都可以作为轮速传感器,但是考虑到车轮的工作环境以及空间大小等实际因素,常用的轮速传感器主要有:磁电式轮速传感器、霍尔式轮速传感器。
图1 磁电式轮速传感器图2 霍尔式轮速传感器磁电式轮速传感器是利用电磁感应原理设计的,其主要部件如下图所示。
它具有结构简单、成本低、不怕泥污等特点,在现代轿车的ABS防抱死制动系统中得到广泛应用。
但是磁电式轮速传感器也有一些缺点:(1)频率响应不高。
当车速过高时,传感器的频率响应跟不上,容易产生误信号;(2)抗电磁波干扰能力差,尤其是输出信号振幅值较小时。
霍尔式轮速传感器利用霍尔效应原理制成,如下图所示。
霍尔式轮速传感器在汽车上也获得了较多应用。
霍尔式轮速传感器具有如下特点:(1)输出信号电压振幅值不受转速的影响;(2)频率响应高;(3)抗电磁波干扰能力强。
(二)原理磁电式轮速传感器(1)结构图3 磁电式轮速传感器安装图图4 磁电式轮速传感器极轴形状磁电式轮速传感器一般由磁感应传感头和齿圈组成,传感头由永磁铁、极轴、感应线圈等组成。
齿圈是一个运动部件,一般安装在轮毂上或轮轴上与车轮一起旋转。
轮速传感头是一个静止部件,传感头磁极与齿圈的端面有一定间隙。
如下图所示。
汽车车轮转速传感器通常安装在车轮处,但在有些车型上则设置在主减速器或变速器中。
极轴根据形状的不同分为凿式、柱式、菱形三种类型,如下图所示。
不同形状的传感头相对于齿圈的安装方式也不同。
菱形极轴车速传感器头一般径向垂直于齿圈安装;凿式极轴车速传感器头轴向相切于齿圈安装;柱式极轴车速传感器头轴向垂直于齿圈安装。
安装时应牢固,为避免水、灰尘对传感器工作的影响,在安装前须将传感器加注润滑脂。
磁电式轮速传感器是由永磁性磁芯和线圈组成。
磁力线从磁芯的一极出来,穿过齿圈和空气,返回到磁芯的另一极。
由于传感器的线圈圈绕在磁芯上,因此,这些磁力线也会穿过线圈。
当车轮旋转时,与车轮同步的齿圈(转子)随之旋转,齿圈上的齿和间隙依次快速经过传感器的磁场,其结果是改变了磁路的磁阻,从而导致线圈中感应电势发生变化,产生一定幅值、频率的电势脉冲。
磁电式传感器结构图分析各种磁电式传感器介绍磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它能把被测对象的机械能转换成易于测量的电信号,是一种无源传感器。
磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定。
磁电式传感器的原理结构磁电式传感器有时也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
根据电磁感应定律,当W匝线圈在均恒磁场内运动时,设穿过线圈的磁通为Φ,则线圈内的感应电势e与磁通变化率dΦ/dt有如下关系:根据这一原理,可以设计成变磁通式和恒磁通式两种结构型式,构成测量线速度或角速度的磁电式传感器。
下图所示为分别用于旋转角速度及振动速度测量的变磁通式结构。
变磁通式结构(a)旋转型(变磁));(b)平移型(变气隙)其中永久磁铁1(俗称“磁钢”)与线圈4均固定,动铁心3(衔铁)的运动使气隙5和磁路磁阻变化,引起磁通变化而在线圈中产生感应电势,因此又称变磁阻式结构。
变磁式结构在恒磁通式结构中,工作气隙中的磁通恒定,感应电势是由于永久磁铁与线圈之间有相对运动——线圈切割磁力线而产生。
这类结构有两种,如下图所示。
图中的磁路系统由圆柱形永久磁铁和极掌、圆筒形磁轭及空气隙组成。
气隙中的磁场均匀分布,测量线圈绕在筒形骨架上,经膜片弹簧悬挂于气隙磁场中。
当线圈与磁铁间有相对运动时,线圈中产生的感应电势e为式中B——气隙磁通密度(T);l——气隙磁场中有效匝数为W的线圈总长度(m)为l=laW(la为每匝线圈的平均长度)v——线圈与磁铁沿轴线方向的相对运动速度(ms-1)。
传感器是一种能把物理量或化学量转变成便于利用的电信号的器件。
其种类有很多:一、按工作原理分类电阻式传感器:其基本原理是将被测物理量变化转换成电阻值的变化,再经相应的测量电路而最后显示被测量量的变化。
电容式传感器:是以各种类型的电容器作为传感元件,将被测物理量或机械量转换成为电容量变化的一种转换装置,实际上就是一个具有可变参数的电容器。
电感式传感器:是利用线圈自感或互感的变化来实现测量的一种装置。
压电式传感器:是基于压电效应的传感器。
是一种自发电式和机电转换式传感器。
热电式传感器:是将温度变化转换为电量变化的装置。
阻抗式传感器:把位移、力、压力、加速度、扭矩等非电物理量转换为电阻值变化的传感器。
磁电式传感器:是利用电磁感应原理,将输入的运动速度转换成线圈中的感应电势输出。
压电式传感器:是基于压电效应的传感器。
是一种自发电式和机电转换式传感器。
光电式传感器:基于光电效应的传感器,在受到可见光照射后即产生光电效应,将光信号转换成电信号输出。
谐振式传感器:利用谐振元件把被测参量转换为频率信号的传感器,又称频率式传感器。
霍尔传感器:是根据霍尔效应制作的一种磁场传感器。
超声波传感器:是将超声波信号转换成其他能量信号(通常是电信号)的传感器。
同位素式传感器:利用放射性同位素来进行测量的传感器,又称放射性同位素传感器。
电化学传感器:通过与被测气体发生反应并产生与气体浓度成正比的电信号来工作。
二、按技术分类超声波传感器:是将超声波信号转换成其他能量信号(通常是电信号)的传感器。
温度传感器:是指能感受温度并转换成可用输出信号的传感器。
气体传感器:是一种将某种气体体积分数转化成对应电信号的转换器。
压力传感器:是能感受压力信号,并能按照一定的规律将压力信号转换成可用的输出的电信号的器件或装置。
加速度传感器加速度传感器是一种能够测量加速度的传感器。
通常由质量块、阻尼器、弹性元件、敏感元件和适调电路等部分组成。
紫外线传感器:是传感器的一种,可以利用光敏元件通过光伏模式和光导模式将紫外线信号转换为可测量的电信号。
磁电式传感器是一种使用磁场和电压相互作用的传感器,常用于测量磁场强度或检测磁性材料的位置、速度和位移等参数。
其基本结构包括以下几个主要组成部分:1. 磁性材料:磁电式传感器中使用的磁性材料通常是铁氧体或其他具有磁性的材料。
这些材料具有良好的磁导率和磁导性能,可以产生和感应出磁场。
2. 磁场感应元件:磁电式传感器中的磁场感应元件是用于感应周围磁场的变化,并将其转换为电信号的部分。
常见的磁场感应元件包括霍尔效应传感器、磁电阻传感器和磁感应电容传感器等。
- 霍尔效应传感器:基于霍尔效应的传感器通过感应磁场中的霍尔电压变化来检测磁场的强度和方向。
当磁场施加在霍尔元件上时,将产生电压差,从而提供有关磁场的信息。
- 磁电阻传感器:磁电阻传感器利用磁场对材料电阻产生的影响来测量磁场。
磁场会改变材料中的电阻,通过测量电阻的变化,可以推断出磁场的强度。
- 磁感应电容传感器:磁感应电容传感器利用磁场对电容器电容值的影响来测量磁场。
磁场的变化会导致电容器中的电容值发生变化,通过测量电容值的变化,可以获得磁场信息。
3. 信号处理电路:磁电式传感器通常需要将感应到的电信号进行放大、滤波和调理,以便后续的测量和分析。
信号处理电路可以将感应到的微弱信号放大到合适的范围,并进行必要的滤波和校准,以提供准确的输出信号。
4. 输出接口:磁电式传感器的输出接口通常是电压信号或数字信号。
电压输出通常是通过模拟电路实现的,可以直接连接到外部测量设备或控制系统。
数字输出通常是通过微处理器或其他数字电路实现的,可以提供数字化的测量结果。
总之,磁电式传感器的基本结构包括磁性材料、磁场感应元件、信号处理电路和输出接口。
通过这些组成部分的协同作用,磁电式传感器能够感应和测量磁场的强度和变化,并将其转换为可用的电信号。
这使得磁电式传感器在许多应用领域中具有广泛的应用价值。