人教版七年级下数学---代入消元法
- 格式:doc
- 大小:95.50 KB
- 文档页数:5
第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。
《代⼊消元法》教学设计【初中数学⼈教版七年级下册】第⼋章⼆元⼀次⽅程组8.2 消元——解⼆元⼀次⽅程组代⼊消元法这节课的主要内容是⽤代⼊消元法解⼆元⼀次⽅程组,本节的知识是反映客观世界数量关系的有效模型,不仅能培养学⽣分析问题和解决问题能⼒的重要内容,也为今后学⽣学习三元⼀次⽅程组埋下伏笔.1.会⽤代⼊消元法解⼆元⼀次⽅程组.2.初步体会解⼆元⼀次⽅程组的基本思想――“消元”.【教学重点】⽤代⼊消元法解⼆元⼀次⽅程组.【教学难点】探索如何⽤代⼊法将“⼆元”转化为“⼀元”的消元过程.师:在8.1节中我们已经看到,直接设两个未知数:胜x场、负y场,可以列⽅程组10216x yx y+=+=①②表⽰本章引⾔中问题的数量关系.如果只设⼀个未知数:胜x场,那么这个问题能⽤⼀元⼀次⽅程来解决吗?(抛出问题引发思考)师⽣活动:教师引出本节课内容,我们在上节课列出了⽅程组,并通过列表找公共解的办法◆教材分析◆教学⽬标◆教学重难点◆教学过程得到了这个⽅程组的解,显然这样的⽅法需要⼀个个尝试,有些⿇烦,所以这节课我们就来探究如何解⼆元⼀次⽅程组.⼆、探究新知⽣:……2x+(10-x)=16师:思考⼀下,上⾯的⼆元⼀次⽅程组和⼀元⼀次⽅程有什么关系?(让学⽣⽐较①与②之间的关系,y ⽤x 表⽰,感受换元思想在消元中的作⽤)师:那么怎样求解⼆元⼀次⽅程组呢?上⾯的⼆元⼀次⽅程组和⼀元⼀次⽅程的关系⼤家⼀定有了深刻的认识.下⾯我们来学习如何利⽤“代⼊消元”法解⼆元⼀次⽅程组.师⽣活动:通过对实际问题的分析,认识⽅程组中的两个⽅程中的y 都是这个队负的场数,具有相同的实际意义.因此可以由⼀个⽅程得到y 的表达式,并把它代⼊另⼀个⽅程,从⽽把⼆元⼀次⽅程组转化为⼀元⼀次⽅程.先求出⼀个未知数,再求另⼀个未知数.教师总结:这种将未知数的个数由多化少、逐⼀解决的思想,叫做消元思想.三、应⽤新知师:⾸先请⼤家花3分钟预习⼀下例1,学习如何⽤代⼊法解⼆元⼀次⽅程组.(预留时间)师:哪位同学把你学习到的⽅法与⼤家分享⼀下?⽣:……(让学⽣充分的表达⾃⼰的观点)教师总结并板书演⽰:解:由①,得x=y+3 ①把①代⼊①,得3(3)814y y +-=解这个⽅程,得y=-1把y=-1代⼊①,得x=2所以这个⽅程组的解是21x y =??=-? 例2 根据市场调查,某种消毒液的⼤瓶装(500g )和⼩瓶装(250g )两种产品的销售数量(按瓶计算)⽐为2:5.某⼚每天⽣产这种消毒液22.5t ,这些消毒液应该分装⼤、⼩瓶两种产品各多少瓶?(幻灯⽚出⽰问题)师:请同学们分析⼀下这个问题.并思考这个问题中有哪些重要的关系.这些关系对你有什么启发?⽣:……师⽣共同总结:问题中包含两个条件:①⼤瓶数:⼩瓶数=2:5②⼤瓶所装消毒液+⼩瓶所装消毒液=总⽣产量.通过这两组关系我们可以知道由两个未知得量,可以分别⽤字母设出来列⼀个⼆元⼀次⽅程组.师:那么这个问题得步骤该如何完善呢?由哪位同学能⾛上讲台,在⿊板上演⽰⼀下你得解题过程呢?(对学⽣得每⼀个步骤给与相应评价)教师出⽰过程:解:设这些消毒液应该分装x ⼤瓶、y ⼩瓶.根据⼤、⼩瓶数的⽐,以及消毒液分装量与总⽣产量的数量关系,得52 50025022500000 x y x y ?=??+=??①②由①,得52y x = ③把③代⼊②,得5500250225000002x x +?= 解这个⽅程,得20000x =把20000x =代⼊③,得50000y =所以这个⽅程组的解是2000050000x y =??=?答:这些消毒液应该分装20000⼤瓶和50000⼩瓶⿎励同学们提出不同得解题⽅法,例如⽤y 表⽰x 消去x.若没有同学消x ,⽼师可⾃⼰提出来让学⽣思考.设计意图:分析解题思路,并对⽐、确定消哪⼀个元计算更简捷.使学⽣再次经历代⼊法解⼆元⼀次⽅程组的过程,让学⽣体会程序化思想.四、巩固练习1.把下列⽅程写成⽤含x 的式⼦表⽰y 的形式:(1)2x -y =3 (2)3x +y -1=0(3)5x-3y = x + y (4)-4x+y = -22.解下列⽅程组:3:215x y x y =??+=?2524x y x y +=??+=?(给学⽣充分得时间分享⾃⼰得练习成果)五、课堂⼩结:本节课你学习到了哪些新的知识?①代⼊法的基本思路(⼆元变⼀元);②主要步骤:将其中的⼀个⽅程中的某个未知数⽤含有另⼀个未知数的代数式表现出来,并代⼊另⼀个⽅程中,从⽽消去⼀个未知数,化⼆元⼀次⽅程组为⼀元⼀次⽅程.略.◆教学反思◆。
8.2消元——解二元一次方程组(代入消元法)教学设计
青胜中学杨祖发
教学目标知识目标
1.会用代入法解二元一次方程组
2.初步体会解二元一次方程组的基本思想“消元”
能力目标
1.通过对方程组中的未知数特点的观察和分析,明确解二元
一次方程组的主要思路是“消元”,从而促成由未知向已知
转化,培养观察能力和体会化归思想。
2.通过用代入消元法解二元一次方程组的训练,及选用合
理、简捷的方法解方程组,培养学生的运算能力。
情感目标
通过研究探讨论解决问题的方法,培养学生合作交流意识与
探究精神。
重点:用代入消元法解二元一次方程组。
难点:探索如何用代入消元法将“二元”转化为“一元”的过程。
教学方法:采用自主探究、合作交流的探究式教学方法。
学习方法:本节课学生在独立思考、自主探索中学习并针对老师的问题展开讨论与交流。
教学流程安排
活动流程图活动内容和目的
一、课前检测
二、前置研究处理
三、典例精讲
四、分层应用
五、小结提升
六、课堂检测由学生已有的知识出发,结合检测题激发学生的求知欲用已有的知识解决新问题遇到了困难必须寻求新的方法——代入消元法
通过对解方程组过程的总结丰富学生的认知结构
通过练习巩固所学内容逐步形成知识系统有利不同层次学生对知识的掌握
通过归纳总结找到解决问题的方法并巩固发展提高
及时反馈便于有针对性的辅导学困生
教学过程设计
问题与情境师生行为设计意图
一、课前检测
1.下列各方程中,哪些是二元一次方程,哪些不是?(是的打√,不是的打×)
(1)72-=+y x ( )
(2)68
2=+
y
x ( ) (3)58=ab ( ) (4)0122
=+-x x ( )
2.下列各组未知数的值是二元一次方程组⎩⎨⎧=-=+1
7
2y x y x 的解的
是( )
A.⎩⎨⎧==31y x
B.⎩
⎨⎧==23y x
C.⎩⎨
⎧==34y x D.⎩⎨⎧-=-=1
2
y x
学生齐读二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解
教师布置检测题.
学生独立完成后发表见解与同伴交流.
教师参与学生的交流.
教师给予肯定或帮助.
通过课前检测起到复习的作用,同时为学习新知识做准备.
二、前置研究处理
1.在下列方程中用含y 的式子表示x.
(1)x-y=3 (2)2y-x=3
2.在下列方程中用含x 的式子表示y.
(1)2x-y=3 (2)2x+y-1=0 问题与情境
学生展示成果班内交流. 教师参与学生的交流并给予肯定或帮助.
师生行为
通过 1.2.让学生知道在一个二元一次方程中,如何用含一个未知数的代数式来表示另一个未知数。
为后面的教学做好铺垫.
设计意图
3.观察下列两个方程 1. 32=+x x
2. ⎩⎨⎧=+=32y x x y 问题:
①这两个方程有什么区别? ②你会解哪个方程?
③能把第2个方程组变成第1个方程的形式吗?试一试。
出示学习目标: 教师结合学生的解法过
程给出代入消元法的定义
教师板书课题 让学生通过比较、观察二元一次方程组和一元一次方程,找到了两者间的联系,学生发现了二元一次方程组是可以转化为一元一次方程来求解的。
转入正题,以消去一个未知数为目的,对例题进行探究,很快学生能够找到消去未知数的一个方法。
明确学习目标
三、典例精讲
例1 用代入法解方程组
归纳总结
用代入消元法解方程组的步骤 老师出示例题。
学生观察、比较、说方法、动手尝试(一生板书,其余练习)。
老师巡视。
关注学困生。
老师评判.规范书写.并引导学生总结代入消元法的一般步骤。
其他学生自行发言补充。
老师完善、板书。
让学生在实战中学会概括总结。
从感性认识上升到理性认识。
培养学生的语言组织表达能力。
四、分层应用 解下列方程组 1.⎩⎨
⎧-==+x y y x 312
2(基础题)
2. (基础题)
学生先独立完成.
有困难的学生可在学习小组内寻求帮助.
“困材施教”、“因人而异”的教育思想告诉我们学生的已有知识与学习能力都存在差异.
问题与情境
师生行为
设计意图
⎩⎨
⎧=-=-14833
y x y x ⎩⎨⎧=++=9
573y x x y
3.⎩
⎨⎧=+=+40222y x y x (提高题)
4.⎩⎨⎧=--=-4
231
2y x x y (提高题)
5.⎩⎨
⎧=-=+33
6516
43y x y x (拓展题)
老师有针对性的巡视部分同学,发现问题及时纠正.
老师心中应清楚哪些学生应完成到哪一题。
多鼓励学生向难题向挑战.
学生板书,学生评价,老师强调重点和容易出错的地方.
分层练习是面向全体学生,使每个学生都学有所得,每个学生的能力都有所提高和发展。
打破整齐划一的教学模式或整齐划一的教学进程。
五、小结提升
1. 解二元一次方程组的基本思想是什么?
2. 用代入法解二元一次方程组的一般步骤。
3. 体会转化的数学思想。
(化未知为已知)
学生思考解二元一次方程组的思想是什么?
提问学生总结用代入法解二元一次方程组一般步骤,师生一起补充完善。
老师板书。
知道研究问题的一种方法---化未知为已知。
学生本节课通过自已的尝试、交流、总结.初步掌握了代入消元法,进行小结提升是对解题思路与方法的提升,是对解题能力和知识的升华,此环节在本节课起到画龙点睛的作用。
板书设计:
8.2消元——解二元一次方程组(代入消元法)
解法思想:二元——————一元 消元代入
一般步骤:变形——代入——求出x ,y 的值——写出方程组的解
例1: 学生练习
问题与情境
师生行为
设计意图
六、当堂检测
1.若方程4mx y -=的一个解是
43x y =⎧⎨=⎩
,
,则m 的值是( ) A.4 B.4
1
C.-1
D.-2 2.代入法解方程组⎩⎨
⎧=+-=)
2(7y 3x 2)
1(3x y ,把__代入___,可以消去未知数___。
3.方程组{
1
y 2x 11y -x 2+==的解是()
A ⎩⎨
⎧==0
y 0
x B ⎩⎨⎧==3
7y x C ⎩⎨
⎧==7
3y x D ⎩⎨⎧-===3
7y x 4.用代入法解下列方程组: ⎩⎨⎧==+y 5x y 32x ⑵⎩
⎨⎧=-=+6y x 30
y x
老师出示当堂小测 学生独立完成。
老师要认真监考。
老师要收上来批改,并及
时反馈给学生。
了解各类学生达标情况,及时检漏补缺。
小测题的层次性可以让各个层次的学生都有题可作 ,尝试成功的感觉,体会学习的快乐。
为老师自我反思教学观念、方法、行为提供可靠数据。
布置作业:习题8.2复习巩固1.2.
教学建议(年级组集体备课):
数学不是教会的,而是做会的。
在教学中应尽量让学生多观察、多思考、多动手、多归纳总结。
老师只精讲,进行方法的总结与知识的提升。
因为代入消元法只是解二元一次方程的一种方法,所以在教学中,对于学习能力中等偏下的同学,只要会作基础题与提高题就可以了,对于象拓展题这类方程组可用后面学的加减消元法来补充。
由于本节课是解二元一次方程组的第一课时,因此在教学中一定要注意书写的格式与做题的正确率。