第9章 桁架和梁的有限元分析概论
- 格式:doc
- 大小:2.76 MB
- 文档页数:36
ABaqus是一款广泛使用的有限元分析软件,用于解决工程和科学领域中的复杂力学问题。
在ABaqus中,桁架单元和梁单元是常用的两种元素类型,用来模拟结构的行为和响应。
本文将重点探讨桁架单元和梁单元的区别,以帮助读者更深入地理解它们在有限元分析中的应用和意义。
1. 桁架单元和梁单元的定义和特点桁架单元通常用于模拟结构中的轻型材料,例如薄壁结构或支撑结构。
它们具有较高的刚度和强度,但对于柔性变形的模拟效果较差。
桁架单元通常由两个节点和相连的杆件组成,具有较大的刚度和轻质的特点。
梁单元则用于模拟结构中的梁或横梁部分,具有较好的模拟效果和计算速度。
梁单元通常用于模拟梁的弯曲和剪切行为,具有多个节点和横断面特征。
梁单元通常具有较好的变形模拟效果和求解速度。
2. 桁架单元和梁单元的适用范围桁架单元主要适用于模拟轻型结构的整体刚度和强度,例如建筑物中的支撑结构、飞机机身中的支撑桁架等。
桁架单元可以有效地模拟结构在受压或受拉状态下的行为,具有较高的计算效率和准确性。
梁单元则主要适用于模拟梁或横梁部分的弯曲和剪切行为,例如桥梁、机械装置中的横梁等。
梁单元具有较好的变形模拟效果和计算速度,可以准确地模拟结构在受力状态下的变形和应力分布。
3. 桁架单元和梁单元的差异比较在使用ABaqus进行有限元分析时,选择桁架单元或梁单元需要根据结构的实际情况和分析的目的进行合理的选择。
桁架单元适用于模拟整体刚度和强度较大的结构,而梁单元适用于模拟弯曲和剪切行为较为显著的结构。
桁架单元的刚度和强度较大,但对于柔性变形的模拟效果较差,因此在模拟薄壁结构或支撑结构时需要谨慎使用。
梁单元具有较好的变形模拟效果和计算速度,但在模拟整体刚度和强度较大的结构时需要进行合理的网格划分和边界条件的设定。
总结回顾:通过以上对桁架单元和梁单元的定义、特点、适用范围和差异比较,我们可以更深入地理解它们在有限元分析中的应用和意义。
在实际工程和科学领域中,合理地选择桁架单元或梁单元可以更准确地模拟结构的行为和响应,为工程设计和科学研究提供可靠的分析结果和依据。
ansys桁架和梁的有限元分析————————————————————————————————作者:————————————————————————————————日期:桁架和梁的有限元分析第一节基本知识一、桁架和粱的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表7-1。
通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第128页第二节桁架的有限元分析实例案例1--2D桁架的有限元分析问题人字形屋架的几何尺寸如图7—1所示。
杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。
解题过程制定分析方案。
材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。
1.ANSYS分析开始准备工作(1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。
第9章桁架和梁的有限元分析第1节基本知识一、桁架和梁的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表9-1。
通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第2节 桁架的有限元分析实例一、案例1——2D 桁架的有限元分析图9-1 人字形屋架的示意图 问题人字形屋架的几何尺寸如图9-1所示。
杆件截面尺寸为0.01m 2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0×1011 N/m 2,泊松比为0.3。
解题过程制定分析方案。
材料弹性材料,结构静力分析,属2D 桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N 的力作用。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析 选取Utility>Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
桁架有限元理论知识空间杆系有限元法是计算精度最高的一种方法,适用于各种类型、各种平面形状、不同边界条件的网架,静力荷载、地震作用、温度应力等工况均可计算。
空间钢架结构,有15个未知函数,6个应力分量,分别为xx σ、yy σ、zz σ、xy σ、yz σ、zx σ;6个应变分量,分别为xx ε、yy ε、zz ε、xy ε、yz ε、zx ε;3个位移分量u 、v 、w 。
这15个未知函数满足15个基本方程,分别为3个平衡微分方程、6个几何方程和6个物理方程,以及受力边界条件及位移边界条件[6]。
图1为桁架结构水平段一侧局部示意图。
其中,①为上弦材,②和④为纵梁,③为下弦材,⑤为斜材。
此结构为4个节点和5个单元的钢架结构。
对此桁架任意方向上的杆件离散化,选择单元⑤进行分析。
桁架问题一般需要两个坐标系进行描述,即整图2 自动扶梯桁架结构水平段一侧局部示意图结构分析中为方便杆端力和位移的叠加,应采用统一坐标系,即结构整体坐标xyz 。
这样需对局部坐标系下的单元刚度矩阵进行坐标转换。
体坐标系和局部坐标系,选择固定的整体坐标系XY :1)描述了每个节点的位置,使用角度标记θ记录每个(单元)的方向;2)施加约束及载荷;3)表示问题的解,即在整体方向上的每个节点的位移。
同时,还需要一个局部的单元坐标系来描述各个杆件(单元)的受力情况。
如图3所示为局部坐标系与整体坐标系之间的关系[7]。
图3 整体坐标系与局部坐标系关系图整体位移(在节点i 的U iX ,U iY 和在节点j 的U jX 和U jY )和局部位移(在节点i 的u ix ,u iy 和在节点j 的u jx 和u jy )之间的关系为:θθθθθθθθcos sin sin cos cos sin sin cos jy jx iY jy jx jX iy ix iY iy ix iX u u U u u U u u U u u U +=-=+=-= (1)将方程(1)转化为矩阵形式为:TU U = (2)其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=jy jx iy ix jY jX iY iX u u u u u T U U U U U ,cos sin 00sin cos 0000cos sin 00sin cos ,θθθθθθθθ U 和u 分别代表整体坐标系XY 和局部坐标系xy 下节点i 和节点j 的位移。
有限元上机分析报告~学院:机械工程专业及班级:机械设计及其自动化08级7班姓名:***学号:题目编号: 2》1.题目概况结构组成和基本数据结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。
材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。
载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。
结构的整体状况如下图所示:分析任务】该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。
2.模型建立物理模型简化及其分析由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发生弯曲和扭转等变形。
结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。
单元选择及其分析由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。
这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。
就像铰接结构一样,不承受弯矩。
输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。
输出有:单元节点位移、节点的应力应变等等。
由此可见,LINK180单元适用于该结构的分析。
模型建立及网格划分((1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。
(2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”(3)选择实常数:选择Preprocessor→Real Constants→Add/Edit/Delete→Add,在出现的对话框中的Cross-sectional area中输入100,点击“OK”。
运用ANSYS进行平面刚架模拟建模及误差分析摘要有限单元法(或称有限元法)是在当今工程分析中获得最广泛应用的数值计算方法。
由于它的通用性和有效性,受到工程技术界的高度重视。
伴随着计算机科学和技术的快速发展,现已成为计算机辅助设计和计算机辅助制造的重要组成部分。
ANSYS软件是目前世界范围内增长最快的计算机辅助工程(CAE)软件,能与多数计算机辅助设计软件接口,实现数据的共享和交换。
本文主要分析平面刚架在均布荷载作用下模拟的有限元模型计算与手工计算之间的误差。
关键字:ANSYS软件有限元平面刚架PIANE STEEL FRAME WITH ANSYS SIMULATION MODELINGAND ERROR ANALYSISABSTRACTFinite element method (or finite element method) is the most widely used in modern engineering analysis of numerical calculation method. Because of its versatility and effectiveness, attaches great importance to by the engineering and technology. Along with the rapid development of computer science and technology, has now become a computer aided design and computer aided manufacturing is an important part .At present,the software of ANSY is the fastest growing computer aided engineering (CAE) software on the world, interfacing with the majority of computer aided design software, realizing the sharing and exchange of data. This paper mainly analyzes the model of planar frame software of ANSYS.KEYWARDS:software of ANSYS,finite element,planar frame1 有限元法简介有限元法是一种高效能、常用的数值计算方法。
梁单元-有限元分析一、有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。
是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
有限元法是最重要的工程分析技术之一。
它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。
虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。
随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。
早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。
目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。
二.梁单元的分类所谓梁杆结构是指其长度比横截面尺寸大很多的梁和杆件、以及由它们组成的系统,这一类结构的应力、应变和位移都是一个坐标的函数,所以属于一维单元问题。
1.平面桁架特点:杆件位于一个平面内,杆件间用铰节点连接,作用力也在该平面内。
单元特性:只承受拉力或压力。
单元划分:常采用自然单元划分。
即以两个铰接点之间的杆件作为一个单元。
为使桁架杆件只产生轴力,桁架的计算常作以下假定:①桁架中每根杆件的两端由理想铰联结;②每根杆件的轴线必须是直线;③所有杆件的轴线都只交于所联理想铰的几何中心。
④荷载均只作用于理想铰的几何中心。
在此条件下所算得的各种应力称为主应力。
实际上各种桁架结构不可能完全满足上述各假定,因而杆件将产生弯曲,由这种弯曲而在杆件中所引起的轴向应力称为次应力。
第9章桁架和梁的有限元分析第1节基本知识一、桁架和梁的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表9-1。
通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第2节 桁架的有限元分析实例一、案例1——2D 桁架的有限元分析图9-1 人字形屋架的示意图问题人字形屋架的几何尺寸如图9-1所示。
杆件截面尺寸为0.01m 2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0×1011 N/m 2,泊松比为0.3。
解题过程制定分析方案。
材料弹性材料,结构静力分析,属2D 桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N 的力作用。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析 选取Utility>Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
1KN1KN 1KN123456782m 2m 2m 2m 2m1m(2)指定新的工作文件名指定工作文件名。
选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。
(3)指定新的标题指定分析标题。
选取Utility>Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然后单击OK按钮完成分析标题的定义。
(4)重新刷新图形窗口选取Utility>Menu>Plot>Replot,定义的信息显示在图形窗口中。
(5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。
2.定义单元类型运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择单元大类为Link,接着选择2D Spar 1(Link1),单击OK按钮,完成单元类型选择,单击Close按钮完成设置,如图9-2所示。
图9-2 定义单元类型3.定义实常数运行主菜单Main Menu>Preprocessor>Real Constants Add/Edit/Delete命令,弹出实常数定义对话框,单击Add按钮进入实例常量输入对话框,在AREA项输入杆的横截面面积(实例常数)0.01米,单击OK按钮完成实例常量输入。
回到实例常量对话框,此时显示出新建编号为1的实例常量,单击Close按钮完成输入,如图9-3所示。
图9-3 定义实常数4.定义材料属性运行主菜单Main Menu>Preprocessor>Material Props>Material Models命令,系统显示材料属性设置对话框,在材料属性对话框中依次选择Structure、Linear、Elastic、Isotropic,如图9-4所示。
完成选择后,弹出材料属性输入对话框,分别输入弹性模量2e11,泊松比0.3,如图9-5所示,单击OK按钮完成材料属性输入并返回图9-4。
完成材料属性设置后,单击对话框右上方“X”按钮离开材料属性设置。
1234图9-4 进入材料属性设置图9-5 定义材料属性5.建立分析模型采用直接建模的方式建立桁架的分析模型,具体操作步骤如下:(1)创建节点1—8节点坐标如表9-2所示。
运行主菜单Main Menu>Preprocessor>Modeling>Create>Nodes>In Active CS出现如图9-6所示的创建节点输入对话框,输入节点号1及x,y,z坐标,按Apply完成节点1的创建,同理创建节点2—8,单击OK按钮完成节点创建。
节点号在活动坐标系的X,Y,Z坐标1 (0,0,0)2 (2,0,0)3 (4,0,0)4 (6,0,0)5 (8,0,0)6 (6,1,0)7 (4,2,0)8 (2,1,0)图9-6 创建节点运行菜单Utility Menu>PlotCtrls>Numbering弹出Plot Numbering Controls选择对话框,将NODE置为On,显示节点编号。
(2)建立杆件单元运行主菜单MainMenu>Preprocessor>Modeling>Create >Elements>Auto Numbered>Thru Nodes,弹出Element from Nodes对象拾取框,在屏幕上拾取杆件的两端节点1,2,按Apply完成第一个杆单元的生成,同理,依次拾取杆件的两端节点,按Apply完成杆单元的生成,单击OK按钮完成单元生成,如图9-7所示。
图9-7 人字形屋架有限元模型6.施加约束和载荷(1)施加约束运行主菜单Main Menu>Solution>Define Loads>Apply>Structural>Displacement>On Nodes,出现拾取菜单,依次选择节点1和2,单击OK按钮出现约束定义对话框,如图9-8所示,选择All DOF约束所有自由度,其它项默认,再单击OK按钮,完成约束定义。
(2)施加载荷运行主菜单Main Menu>Solution>Define Loads>Apply>Structural>Force/Moment>On Nodes命令,出现拾取菜单,依次选择节点6、7和8,单击OK按钮出现载荷定义对话框,如图9-9所示,载荷类型为集中力FY,数值为-1000 ,再单击OK按钮完成载荷的施加。
图9-8 施加约束图9-9 施加载荷7.求解运行主菜单Main Menu>Solution>Current LS命令,出现Solve Current Load Step对话框,单击/STAT Command窗口菜单/STAT Command>File>Close关闭/STAT Command窗口,然后单击Solve Current Load Step菜单中OK按钮确定,计算机开始进行求解,求解完成后出现“Solution is done”提示表示求解完成,单击Close按钮完成求解。
选择菜单路径Main Menu>Finish退出求解器。
8.查看分析结果(1)显示节点(单元)位移云图运行主菜单Main Menu>General Postproc>Plot Results>Contour Plot>Nodal Solu(or Element Solu)命令,选择DOF Solution>Displacement Vector sum 合位移,单击OK按钮,节点位移云图如图9-10所示。
(2)定义单元表在ANSYS中有些数据无法直接访问,需要通过定义单元表完成单元结果的访问。
首先,选择拟定义的单元表的识别变量和序列号。
启动ANSYS帮助菜单的Help Topics 出现帮助主题,选择“索引”选项卡并填入分析单元名称Link1回车,出现单元Link1的单元输出定义如图9-11所示。
由Link1的单元输出表可知,本例中拟显示的轴向力和轴向应力的名称为MFORX和SALX;再到Table1.2(如图9-12所示)查得MFORX和SALX的单元命令项目和序列号分别为SMISC,1和LS,1。
其次,定义单元表。
运行主菜单Main Menu>General Postproc>Element Table>Define Table,弹出的菜单按Add…,出现单元表定义对话框如图9-13所示。
图9-10 显示变形图图9-11 Link1的单元输出定义图9-12 Link1的命令项目和序列号输入显示轴向力名称Asix-For,在Item,Comp中分别选By sequence num和SMISC,1,按Apply完成轴向力的定义;同理,输入显示轴向应力名称Asix-Str,在Item,Comp中分别选By sequence num和LS,1,按OK完成轴向应力的定义。
按Close完成定义。
图9-13 定义单元表(3)显示轴向力和轴向应力运行主菜单Main Menu>General Postproc>ElementTable>List Elm Table,弹出选择列表项菜单如图9-14所示,选择前面定义的ASIX-FOR和ASIX-STR,按OK。
输出的轴向力和轴向应力列表如图9-15所示。
图9-14 访问定义的单元表图9-15 输出的轴向力和轴向应力列表(4)显示轴力(轴向应力)图运行主菜单Main Menu>General Postproc>Plot Results>Contour Plot>Line Elem Res,弹出单元表结果选择对话框如图9-16所示,Lab I和Lab J项分别选择ASIX-FOR,KUND(轴力图显示比例)输入0.6,按OK输出轴力图9-17所示。