二元一次方程与不等式应用题
- 格式:doc
- 大小:54.50 KB
- 文档页数:9
一元一次方程例1 某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?解析:如果设从一车间调出的人数为x,那么有如下数量关系设需从第一车间调x人到第二车间,根据题意得:2(64-x)=56+x,解得x=24;答:需从第一车间调24人到第二车间二元一次方程例2两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,一元一次不等式例3将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?设笼有x个,那么鸡就有(4x+1)只,根据若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只,可列出不等式求解.解:设笼有x个.4x+1>5(x?2) 4x+1<5(x?2)+3 ,解得:8<x<11 x=9时,4×9+1=37x=10时,4×10+1=41(舍去).故笼有9个,鸡有37只一元二次不等式例4用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?解:设有x辆汽车,则货物有(4x+20)吨,根据题意,有不等式组:4x+20﹤8x (1)4x+20﹥8(x-1) (2)解不等式(1)得:x﹥5解不等式(2)得:x﹤7所以,不等式组的解为 5﹤x﹤7因为x为整数,所以 x=6答:有6辆汽车。
二元一次方程分式方程应用题---不等式类利润最大问题一、解答题(共18题;共175分)1.某文具店经销甲、乙两种不同的笔记本,已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,小玲同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时文具店获利最大?2.茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了、两种不同的茶具.若购进种茶具1套和种茶具2套,需要250元;若购进种茶具3套和种茶具4套则需要600元.(1)、两种茶具每套进价分别为多少元?(2)由于茶具畅销,老板决定再次购进、两种茶具共80套,茶具工厂对两种类型的茶具进行了价格调整,种茶具的进价比第一次购进时提高了,种茶具的进价按第一次购进时进价的八折;如果茶具店老板此次用于购进、两种茶具的总费用不超过6240元,则最多可购进种茶具多少套?(3)若销售一套种茶具,可获利30元,销售一套种茶具可获利20元,在(2)的条件下,如何进货可使再次购进的茶具获得最大的利润?最大的利润是多少?3.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?4.深圳某居民小区计划对小区内的绿化进行升级改造,计划种植A,B两种观赏盆栽植物700盆.其中A种盆栽每盆16元,B种盆栽每盆20元.相关资料表明:A,B两种盆栽的成活率分别为93%和98%.(1)若购买这两种盆栽共用11600元,则A,B两种盆栽各购买了多少盆?(2)要使这批盆栽的成活率不低于95%,则A种盆栽最多可购买多少盆?(3)在(2)的条件下,应如何选购A,B两种盆栽,使购买盆栽的费用最低,此时最低费用为多少?5.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?6.某学校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.7.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?8.深圳市某校对初三综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100 分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80 分时,该生综合评价为A 等.(1)小明同学的测试成绩和平时成绩两项得分之和为185 分,而综合评价得分为91 分,则小明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70 分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?9.某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元;购进A种机器人3个和B种机器人2个共需14万元.请解答下列问题:(1)求A,B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种种机器人的总个数不少于28个,且该公司购买的A、B两种种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?10.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?11.某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价进价)×销售量)(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?12.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?13.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.14.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?15.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?16.甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?17.惠好商场用24000元购进某种玩具进行销售,由于深受顾客喜爱,很快脱销,惠好商场又用50000元购进这种玩具,所购数量是第一次购进数量的2倍,但每套进价比第一次多了10元.(Ⅰ)惠好商场第一次购进这种玩具多少套?(Ⅱ)惠好商场以每套300元的价格销售这种玩具,当第二次购进的玩具售出时,出现了滞销,商场决定降价促销,若要使第二次购进的玩具销售利润率不低于12%,剩余的玩具每套售价至少要多少元?18.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.答案解析部分一、解答题1.【答案】(1)解:设甲种笔记本的进价为m元,乙种笔记本的进价为n元..由题意得,解得,答:甲种笔记本的进价是6元/本,乙种笔记本的进价是4元/本.(2)解:设购入甲种笔记本x本,则购入乙种笔记本(60﹣x)本,根据题意得6x+4(60﹣x)≤296,解得n≤28,设利润为y元,则y=2x+(60﹣x),即y=x+60,∵k=1>0,∴y随x的增大而增大,∴当x=28时文具店获利最大.答:购入甲种笔记本最多28本,此时获利最大.【解析】【分析】(1)设甲种笔记本的进价为m元,乙种笔记本的进价为n元.根据王同学买4本甲种笔记本和3本乙种笔记本共用了47元,列出方程组即可解决问题;(2)设购入甲种笔记本x本,根据购入这两种笔记本共60本,花费不超过296元,列出不等式求出x的取值范围;设利润为y元,根据题意得出y与x的函数关系式,再根据一次函数的性质解答即可.2.【答案】(1)解:设种茶具每套进价为元,种茶具每套进价为元,解之得:.∴种茶具每套进价为100元,种茶具每套进价为75元.(2)解:设再次购进种茶具套,则购进种茶具套,,,,,∴最多可购进种茶具30套.(3)解:设总利润为元,则.∵,随的增大而增大,又∵,∴当时最大(元),∴当购进种茶具30套时,种茶具的数量:(套),∴再次购进种茶具30套,种茶具50套可使利润最大,最大利润为1900元.【解析】【分析】(1)设种茶具每套进价为元,种茶具每套进价为元,根据题目中的等量关系列出方程进而求解即可.(2)设再次购进种茶具套,则购进种茶具套,此次用于购进、两种茶具的总费用不超过6240元,列出不等式,即可求解.(3)设总利润为元,则.根据一次函数的性质即可求解.3.【答案】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤ ,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【解析】【分析】(1)根据两种情况下购买的总价列出二元一次方程组并求解;(2)设出A种奖品购买a件,则B种奖品购买(100﹣a)件。
二元一次方程●知识点1:基本定义二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
一般地,使二元一次方程两边的值相等的两个未知数的值叫做二元一次方程的解,二元一次方程有解。
二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。
解只有一组。
练习:●知识点2:二元一次方程组的解法思路:未知数由多变少,将二元一次方程组转化成元一次方程。
代入消元法把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
练习:加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
基本步骤:练习: 解方程组⎩⎨⎧-=-=+5352y x y x ⎩⎨⎧=+-=+3162443y x y x ⎪⎩⎪⎨⎧=+-=+1312423y x y x综合练习:知识点3:列方程解应用题题型1:生产中的配套问题1服装厂生产某种款式的秋装一批,已知2米的某种布料可做上衣的衣身3个或衣袖5只.现计划用132米这种布料生产这批秋装(不考虑布料的耗损),应分别用多少米布料才能使做的衣身和衣袖配套?题型2:行程问题2甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行,1小时20分后相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?(画行程图)3一轮船从甲地到乙地顺流航行需4小时,从乙地到甲地逆流航行需6小时,那么一个木筏由甲地漂流到乙地需多长时间?题型3:商品问题4在“十一”旅游黄金周期间,某超市打折促销.已知甲商品7.5折销售,乙商品8折销售.买20件甲商品与10件乙商品,打折后比打折前少花460元.打折后买10件甲商品与10件乙商品共用1090元.求甲乙两种商品打折前得价格各是多少?题型4:增长问题5某所中学现有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校在校生将增加10%,这所学校现在的初中在校生和高中在校生人数分别是多少?题型5:工程问题6某城市为了缓解缺水状况,实施了一项饮水工程,就是把200千米以外的的一条大河的水引到城市中来,把这个工程交给了甲乙两个施工队,工期50天甲乙两队合作了30天后,乙队因另有任务需要离开10天,于是甲队加快速度,每天多修了0.6千米,10天后乙队回来,为了保证工期,甲队速度不变,乙队也比原来多修0.4千米,结果如期完成.问甲乙两队原计划每天各修多少千米?综合练习:一元一次不等式组●知识点1:不等式的基本性质基本性质1:不等式的两边都加上或减去同一个数(或式子),不等式仍然成立,不等号方向不变 基本性质2:不等式的两边都乘以或除以同一个正数,不等式仍然成立,不等号方向不变基本性质3:不等式的两边都乘以或除以同一个负数,不等号方向改变互逆性:若a<b, 则b>a 传递性:若a<b, b<c,则a<c●解一元一次不等式组练习:●知识点2:一元一次不等式组的整数解例题:练习:●知识点3:一元一次不等式的应用一般步骤:○1审:审题,分析题中已知什么、求什么,明确各数量之间的关系○2找:找出能够表示应用题全部③设:设未知数(一般求什么,就设什么为x④列:根据这个不等关系列出需要的代数式,从而列出不等式(组)含义的一个不等关系⑤解:解所列出的不等式(组)○6答:检验所求解是否符合题意,写出答案(包括单位),写出未知数的值或范围例题:练习:。
1 某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同.若购买2个足球和3个篮球共需340元;购买4个排球和5个篮球共需600元.(1)求购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过6000元,求这所中学最多可以购买多少个篮球? 答案:解(1)设购买一个足球需要x 元,购买一个篮球需要y 元 根据题意,得2334045600x y x y +=⎧⎨+=⎩解这个方程组得:5080x y =⎧⎨=⎩答:购买一个足球需要50元,购买一个篮球需要80元(2)设该中学购买篮球m 个根据题意,得8050(100)6000m m +-≤ 解这个一元一次不等式得:1333m ≤m 是整数33m ∴≤(或m 的最大整数解是33)答:这所中学最多可以购买33个篮球。
2.近年来,雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注,某学校计划在教室内安装空气净化装置,需购进A 、B 两种设备,已知:购买1台A 种设备和2台B 种设备需要3.5万元;购买2台A 种设备和1台B 种设备需要2.5万元. (1)求每台A 种、B 种设备各多少万元?(2)根据学校实际,需购进A 种和B 种设备共30台,总费用不超过30万元,请你通过计 解:(1)设每台A 种、B 种设备各x 万元、y 万元,根据题意得出:,解得:,答:每台A 种、B 种设备各0.5万元、1.5万元;(2)设购买A 种设备z 台,根据题意得出: 0.5z+1.5(30﹣z )≤30, 解得:z≥15,答:至少购买A 种设备15台.3.暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?4某校九年级有三个班,其中九年一班和九年二班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九年一班的满分率为70%,九年二班的满分率为80%. (1)求九年一班和九年二班各有多少名学生.(2)该校九年三班有45名学生,若九年级体育成绩的总满分率超过75%,求九年三班至少有多少名学生体育成绩是满分.5.学校准备购进一批篮球和足球,买1个篮球和2个足球共需170元,买2个篮球和1个足球共需190元.(1)求一个篮球和一个足球的售价各是多少元?(2)学校欲购进篮球和足球共100个,且足球数量不多于篮球数量的2倍,求出最多购买足球多少个?6.某校在开展“校园献爱心”活动中,准备向南部山区学校捐赠男女两种款式的书包。
二元一次方程组与一元一次不等式经典应用题2007年绵阳中考绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.1王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案2若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少最少运费是多少解:1设安排甲种货车x 辆,则安排乙种货车8-x 辆,依题意,得⎩⎨⎧≥-+≥-+12)8(220)8(24x x x x 解此不等式组, 即 2≤x ≤4. ∵ x 是正整数,∴ x 可取的值为2,3,4. 因此安排甲、乙两种货车有三种方案: 方案一,甲种货车2辆,乙种货车6辆 方案二,甲种货车3辆,乙种货车5辆 方案三,甲种货车4辆,乙种货车4辆2方案一所需运费 204062402300=⨯+⨯元;方案二所需运费 210052043300=⨯+⨯元; 方案三所需运费 216042404300=⨯+⨯元. 所以王灿应选择方案一运费最少,最少运费是2040元.2007年济南某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.1设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案;2如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.解:1由租用甲种汽车x 辆,则租用乙种汽车(8)x -辆由题意得:4030(8)2901020(8)100x x x x +-⎧⎨+-⎩≥≥解得:56x ≤≤即共有2种租车方案:第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2第一种租车方案的费用为520003180015400⨯+⨯=元; 第二种租车方案的费用为620002180015600⨯+⨯=元 ∴第一种租车方案更省费用.2007资阳年陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元. ” 王老师算了一下,说:“你肯定搞错了. ”⑴ 王老师为什么说他搞错了试用方程的知识给予解释;⑵ 陈老师连忙拿出购物发票,发现的他还买了一个笔记本. 但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元(1) 设单价为元的课外书为x 本,得:812(105)1500418x x +-=- (2) 解之得:44.5x =不符合题意 (3) 所以王老师肯定搞错了.⑵ 设单价为元的课外书为y 本,解法一:设笔记本的单价为a 元,依题意得: 812(105)1500418y y a +-=-- . 解之得:178+a =4y ,∵ a 、y 都是整数,且178+a 应被4整除,∴ a 为偶数, 又∵a 为小于10元的整数,∴ a 可能为2、4、6、8 .当a =2时,4x =180,x =45,符合题意;当a =4时,4x =182,x =,不符合题意; 当a =6时,4x =184,x =46,符合题意;当a =8时,4x =186,x =,不符合题意 . ∴ 笔记本的单价可能2元或6元 . ······················································ 8分 解法2:设笔记本的单价为b 元,依题意得: 解得:475.44<<x ∴ x 应为45本或46本 . 当x =45本时,b =1500-8×45+12105-45+418=2, 当x =46本时,b =1500-8×46+12105-46+418=6, 2012四川泸州,6分某商店准备购进甲、乙两种商品;已知甲种商品每件进价15元,售价20元;乙种商品每件进价35元,售价45元;(1)若该商品同时购进甲、乙两种商品共100件,恰好用去2700元,求购进的甲、乙两种商品各多少件(2)若该商品准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润为多少 利润 = 售价 - 进价解:1设购进甲种商品x 件,购进乙种商品y 件,根据题意⎩⎨⎧=+=+.27003515,100y x y x 解这个方程组得,⎩⎨⎧==.60,40y x答:商店购进甲种商品40件,则购进乙种商品60件;2设商店购进甲种商品x 件,则购进乙种商品x -100件,根据题意,得 ()()⎩⎨⎧≥-+≤-+.890100105,31001003515x x x x 解之得20≤x ≤22方案一,甲种商品20件,乙种商品80件方案二,甲种商品21件,乙种商品79件 方案三,甲种商品22件,乙种商品78件 方案一所得利润9008010205=⨯+⨯元; 方案二所得利润8957910215=⨯+⨯元 方案三所得利润8907810225=⨯+⨯元. 所以应选择方案一利润最大, 为2040元;2014宜宾在我市举行的中学生安全知识竞赛中共有20道题.每一题答对得5分,答错或不答都扣3分.1小李考了60分,那么小李答对了多少道题解:1设小李答对了x 道题.依题意得 5x ﹣320﹣x=60. 解得x=15.答:小李答对了16道题.2设小王答对了y 道题,依题意得:,解得:≤y ≤,即∵y 是正整数, ∴y=17或18,答:小王答对了17道题或18道题.2009年河南某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共l5台类别 电视机冰 箱洗衣机进价元/台 2000 2400 1600 售价元/台2100250017001电视机数量的一半,商场有哪几种进货方案2国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在1的条件下. 如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元 设购进电视机、冰箱各x 台,则洗衣机为15-2x 台依题意得:⎪⎩⎪⎨⎧≤-++≤-32400)215(16002400200021215x x x xx 解这个不等式组,得6≤x ≤7∵x 为正整数,∴x =6或7 方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台 2方案1需补贴:6×2100+6×2500+1×1700×13%=4251元; 方案2需补贴:7×2100+7×2500+1×1700×13%=4407元; ∴国家的财政收入最多需补贴农民4407元.2011年达州我市化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解 1设装运A 种物资的车辆数为x ,装运B 种物资的车辆数为y .求y 与x 的函数关系式; 2如果装运A 种物资的车辆数不少于5辆,装运B 种物资的车辆数不少于4辆, 那么车辆的安排有几种方案并写出每种安排方案;3在2的条件下,若要求总运费最少,应采用哪种安排方案请求出最少总运费. 解:1根据题意,得:∴x y 220-=……………………2分 2根据题意,得:⎩⎨⎧≥-≥42205x x 解之得:85≤≤x ∵x 取正整数,∴=x 5,6,7,8……………………4分 ∴共有4种方案,即……………………5分3设总运费为M 元,则M=)20220(2008)220(3201024012-+-⨯+-⨯+⨯x x x x 即:M=640001920+-x∵M 是x 的一次函数,且M 随x 增大而减小,∴当x =8时,M 最小,最少为48640元……………………7分2011年广元某童装店到厂家选购A 、B 两种服装.若购进A 种服装12件、B 种服装8件,需要资金1880元;若购进A 种服装9件、B 种服装10件,需要资金1810元. 1求A 、B 两种服装的进价分别为多少元2销售一件A 服装可获利18元,销售一件B 服装可获利30元.根据市场需求,服装店决定:购进A 种服装的数量要比购进B 种服装的数量的2倍还多4件,且A 种服装购进数量不超过28件,并使这批服装全部销售完毕后的总获利不少于699元.设购进B 种服装x 件,那么请问该服装店有几种满足条件的进货方案哪种方案获利最多解:1设A 种型号服装每件x 元,B 种型号服装每件y 元. 依题意可得⎩⎨⎧=+=+18808121810109y x y x 解得⎩⎨⎧==10090y x ,答:A 种型号服装每件90元,B 种型号服装每件100元.2①设购进B 种服装x 件,则购进A 种服装的数量是2x+4, ∴y=30x+2x+4×18, =66x+72;②设B 型服装购进m 件,则A 型服装购进()42+m 件,根据题意得⎩⎨⎧≤+≥++284269930)42(18m m m ,解不等式得12219≤≤m ,因为m 这是正整数,所以m=10,11,12,则2m+4=24,26,28 有三种进货方案:方案一:B 型服装购进10件,A 型服装购进24件; 方案二:B 型服装购进11件,A 型服装购进26件; 方案三:B 型服装购进12件,A 型服装购进28件.方案一所得利润90024301018=⨯+⨯元; 方案二所得利润97826301118=⨯+⨯元 方案三所得利润105628301218=⨯+⨯元. 所以应选择方案一利润最大, 为1056元;2011雅安某部门为了给员工普及电脑知识,决定购买A 、B 两种电脑,A 型电脑单价为4800元,B 型电脑单价为3200元,若用不超过160000元去购买A 、B 型电脑共36台,要求购买A 型电脑多于25台,有哪几种购买方案解:设购买A 种电脑x 台,则购买B 种电脑36﹣x 台,由题意得:⎩⎨⎧≤-+25160000)36(32004800>x x x ,解得:25<x≤28, ∵x 必须求整数, ∴x=26,27,28,∴购买B 种电脑:10,9,8, 可以有3种购买方案,①购买A 种电脑26,台,则购买B 种电脑10台, ②购买A 种电脑27台,则购买B 种电脑9台, ③购买A 种电脑28台,则购买B 种电脑8台.2012哈尔滨同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球每个足球的价格相同,每个篮球的价格相同,若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元. 1购买一个足球、一个篮球各需多少元2根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球解:设购买一个足球需要x 元,购买一个篮球需要y 元, 根据题意得,解得,∴购买一个足球需要50元,购买一个篮球需要80元. 解:设购买n 个足球,则购买96﹣n 个篮球. 50n+8096﹣n ≤5720, n ≥65∵n 为整数,∴n 最少是66 96﹣66=30个.∴这所学校最多可以购买30个篮球.2014攀枝花为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表: 租金单位:元/台时 挖掘土石方量单位:m 3/台时 甲型挖掘机 100 60 乙型挖掘机 120 801若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台2如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有几种不同的租用方案 解:1设甲、乙两种型号的挖掘机各需x 台、y 台.依题意得:,解得.答:甲、乙两种型号的挖掘机各需5台、3台; 2设租用m 辆甲型挖掘机,n 辆乙型挖掘机. 依题意得:60m+80n=540,化简得:3m+4n=27. ∴m=9﹣n, ∴方程的解为,.当m=5,n=3时,支付租金:100×5+120×3=860元>850元,超出限额; 当m=1,n=6时,支付租金:100×1+120×6=820元,符合要求.答:有一种租车方案,即租用1辆甲型挖掘机和3辆乙型挖掘机.2012四川广安某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.1求购买1块电子白板和一台笔记本电脑各需多少元2根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案3上面的哪种购买方案最省钱按最省钱方案购买需要多少钱解:1设购买1块电子白板需要x 元,一台笔记本电脑需要y 元,由题意得:x=3y+30004x+5y=80000⎧⎨⎩,解得:x=15000y=4000⎧⎨⎩; 答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元; 2设购买购买电子白板a 块,则购买笔记本电脑396﹣a 台,由题意得:()396a 3a270000015000a+4000396a -≤⎧⎪≤⎨-⎪⎩,解得:599a 10111≤≤; ∵a 为整数,∴a =99,100,101,则电脑依次买:297,296,295; ∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块; 方案三:购买笔记本电脑297台,则购买电子白板99块;2012年河南某中学计划购买A 型和B 型课桌凳共200套,经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,,且购4套A 型和6套B 型课桌凳共需1820元;1求购买一套A 型课桌凳和一套B 型课桌凳各需多少元 解析1设A 型每套x 元,B 型每套40x +元 ∴45(40)1820x x ++= ∴180,40220x x =+=即购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元;2学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳的23,求该校本次购买A 型和B 型课桌凳共有几种方案哪种方案的总费用最低2设A 型课桌凳a 套,则购买B 型课桌凳200a -套 解得7880a ≤≤∵a 为整数,所以a =78,79,80 所以共有3种方案;2011眉山在眉山市开展城乡综合治理的活动中,需要将A 、B 、C 三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D 、E 两地进行处理.已知运往D 地的数量比运往E 地的数量的2倍少10立方米. 1求运往两地的数量各是多少立方米2若A 地运往D 地a 立方米a 为整数,B 地运往D 地30立方米,C 地运往D 地的数量小于A 地运往D 地的2倍.其余全部运往E 地,且C 地运往E 地不超过12立方米,则A 、C 两地运往D 、E 两地哪几种方案,x+2x ﹣10=140, 解得:x=50, ∴2x ﹣10=90,答:共运往D 地90立方米,运往E 地50立方米; 2由题意可得, {90﹣(a +30)<2a 50﹣[90﹣(a +30)]≤12,解得:20<a≤22, ∵a 是整数, ∴a=21或22,∴有如下两种方案:第一种:A 地运往D 地21立方米,运往E 地29立方米;C 地运往D 地39立方米,运往E 地11立方米;第二种:A 地运往D 地22立方米,运往E 地28立方米; C 地运往D 地38立方米,运往E 地12立方米; 3第一种方案共需费用: 22×21+20×29+39×20+11×21=2053元, 第二种方案共需费用: 22×22+28×20+38×20+12×21=2056元, 所以,第一种方案的总费用最少.2014德阳为落实国家“三农”政策,某地政府组织40辆汽车装运A 、B 、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题: 农产品种类 A B C 每辆汽车的装载量吨 4 5 61如果装运C 种农产品需13辆汽车,那么装运A 、B 两种农产品各需多少辆汽车2如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种写出每种装运方案. 解:1设装运A 、B 两种农产品各需x 、y 辆汽车.则,解得.答:装运A 、B 两种农产品各需13、14辆汽车;2设装运A 、B 两种农产品各需x 、y 辆汽车.则 4x+5y+640﹣x ﹣y=200, 解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤ 因为x 是正整数,所以x 的值可为11,12,13,14;共4个值,因而有四种安排方案. 方案一:11车装运A,18车装运B,11车装运C 方案二:12车装运A,16车装运B,12车装运C . 方案三:13车装运A,14车装运B,13车装运C . 方案四:14车装运A,12车装运B,14车装运C .2011内江某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元. 1每台电脑机箱、液晶显示器的进价各是多少元2该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案哪种方案获利最大最大利润是多少解:1设每台电脑机箱、液晶显示器的进价各是x,y 元, 根据题意得:⎩⎨⎧=+=+4120527000810y x y x ,解得:⎩⎨⎧==80060y x ,答:每台电脑机箱、液晶显示器的进价各是60元,800元;2设该经销商购进电脑机箱m 台,购进液晶显示器50﹣m 台, 根据题意得:⎩⎨⎧≥-+≤-+4100)50(1601022240)50(80060m m m m ,解得:24≤m≤26,因为m 要为整数,所以m 可以取24、25、26, 从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台, ②电脑箱:25台,液晶显示器:25台; ③电脑箱:26台,液晶显示器:24台. ∴方案一的利润:24×10+26×160=4400, 方案二的利润:25×10+25×160=4250, 方案三的利润:26×10+24×160=4100, ∴方案一的利润最大为4400元.2013自贡某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.1求该校的大小寝室每间各住多少人2预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案 解答:解:1设该校的大寝室每间住x 人,小寝室每间住y 人,由题意得: , 解得:,答:该校的大寝室每间住8人,小寝室每间住6人; 2设大寝室a 间,则小寝室80﹣a 间,由题意得:,解得:80≥a ≥75,①a=75时,80﹣75=5, ②a=76时,80﹣a=4, ③a=77时,80﹣a=3, ④a=78时,80﹣a=2, ⑤a=79时,80﹣a=1, ⑥a=80时,80﹣a=0.故共有6种安排住宿的方案.2012浙江温州12分温州享有“中国笔都”之称,其产品畅销全球,某制笔企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示;设安排x 件产品运往A 地; 1当n 200=时, ①根据信息填表:A 地B 地C 地 合计 产品件数件200运费元30x②若运往B 地的件数不多于运往C 地的件数,总运费不超过4000元,则有哪几种运输方案 2若总运费为5800元,求n 的最小值; 答案解:1①根据信息填表A 地B 地C 地 合计 产品件数件200运费元30x②由题意,得 2003x 2x160056x 4000-≤⎧⎨+≤⎩ ,解得40≤x ≤6427;∵x 为整数,∴x =40或41或42; ∴有三种方案,分别是iA 地40件,B 地80件,C 地80件;iiA 地41件,B 地77件,C 地82件; iiiA 地42件,B 地74件,C 地84件;2由题意,得30x +8n -3x +50x =5800,整理,得n =725-7x .∵n -3x ≥0,∴x ≤;又∵x ≥0,∴0≤x ≤且x 为整数;∵n 随x 的增大而减少,∴当x =72时,n 有最小值为221;2007年南充某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:类 别 电视机 洗衣机 进价元/台 1800 1500 售价元/台20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金160 600元. 1请你帮助商店算一算有多少种进货方案不考虑除进价之外的其它费用2哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多并求出最多利润.利润=售价-进价9. 解:1设商店购进电视机x 台,则购进洗衣机100-x 台,根据题意,得⎪⎩⎪⎨⎧≤-+≥160600)100(15001800)-100(21x x x x解不等式组,得 1333≤x ≤3135.即购进电视机最少34台,最多35台,商店有2种进货方案.方案一,电视机34台,洗衣机66台:利润为134006610034200=⨯+⨯元 方案二,电视机35台,洗衣机65台:利润为135006510035200=⨯+⨯元 商店为了获得最大利润应选方案二,最大利润为13500元;2008年南充某乒乓球训练馆准备购买10副某种品牌的乒乓球拍,每副球拍配(3)x x ≥个乒乓球,已知A B ,两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元,现两家超市正在促销,A 超市所有商品均打九折按原价的90%付费销售,而B 超市买1副乒乓球拍送3个乒乓球,若仅考虑购买球拍和乒乓球的费用,请解答下列问题:1如果只在某一家超市购买所需球拍和乒乓球,那么去A 超市还是B 超市买更合算 2当12x =时,请设计最省钱的购买方案.解:1去A 超市购买所需费用0.9(201010)A y x =⨯+ 即9180A y x =+去B 超市购买所需费用201010(3)B y x =⨯+- 即10170B y x =+当A B y y <时,即918010170x x +<+ 当A B y y =时,即918010170x x +=+ 当A B y y >时,即918010170x x +>+综上所述:当10x >时,去A 超市购买更合算;当10x =时,去A 超市或B 超市购买一样;当310x <≤时,去B 超市购买更合算.2当12x =时,即购买10副球拍应配120个乒乓球 若只去A 超市购买的费用为: 9180912180288x +=⨯+=元若在B 超市购买10副球拍,去A 超市购买余下的乒乓球的费用为:2000.9(123)10281+-⨯=元∴最佳方案为:只在B 超市购买10副球拍,同时获得送30个乒乓球,然后去A 超市按九折购买90个乒乓球.2009年南充某电信公司给顾客提供了两种手机上网计费方式: 方式A 以每分钟元的价格按上网时间计费;方式B 除收月基费20元外,再以每分钟元的价格按上网时间计费.假设顾客甲一个月手机上网的时间共有x 分钟,上网费用为y 元.1分别写出顾客甲按A 、B 两种方式计费的上网费y 元与上网时间x 分钟之间的函数关系式,并在图7的坐标系中作出这两个函数的图象; 2如何选择计费方式能使甲上网费更合算 方式A :0.1(0)y x x =≥, 方式B :0.0620(0)y x x =+≥,两个函数的图象如图所示.2012南充学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元. 1求大、小车每辆的租车费各是多少元2若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案. 解:1设大车每辆的租车费是x 元、小车每辆的租车费是y 元. 可得方程组,解得.答:大车每辆的租车费是400元、小车每辆的租车费是300元.240名师生都有座位,租车总辆数≥6;每辆车上至少要有一名教师,租车总辆数≤6,故租车总数为6辆,设大车辆数是x 辆,则租小车6-x 辆,得解得∴4≤x ≤5. ∵x 是正整数, ∴x =4或5,于是有两种租车方案:方案1:大车4辆,小车2辆,总租车费用2 200元; 方案2:大车5辆,小车1辆,总租车费用2 300元, 可见最省钱的是方案1.。
. (•湖州)为进一步建设秀美、宜居地生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树地价格之比为::,甲种树每棵元,现计划用元资金,购买这三种树共棵.()求乙、丙两种树每棵各多少元?文档收集自网络,仅用于个人学习()若购买甲种树地棵树是乙种树地倍,恰好用完计划资金,求这三种树各能购买多少棵?()若又增加了元地购树款,在购买总棵树不变地前提下,求丙种树最多可以购买多少棵?文档收集自网络,仅用于个人学习.某商店第一次用元购进铅笔若干支,第二次又用元购进该款铅笔,但这次每支地进价是第一次进价地倍,购进数量比第一次少了支.文档收集自网络,仅用于个人学习()求第一次每支铅笔地进价是多少元?()若要求这两次购进地铅笔按同一价格全部销售完毕后获利不低于元,问每支售价至少是多少元?.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水及提示计费价格表地部分信息:文档收集自网络,仅用于个人学习(说明:①每户产生地污水量等于该户自来水用水量;②水费自来水费用污水处理费用)已知小王家年月份用水吨,交水费元;月份用水吨,交水费元.()求、地值;()随着夏天地到来,用水量将增加.为了节省开支,小王计划把月份地水费控制在不超过家庭月收入地.若小王家地月收入为元,则小王家月份最多能用水多少吨?文档收集自网络,仅用于个人学习计划购置一批电子白板和一批笔记本电脑,经投标,购买块电子白板比买台笔记本电脑多元,购买块电子白板和台笔记本电脑共需元.()求购买块电子白板和一台笔记本电脑各需多少元?文档收集自网络,仅用于个人学习()根据该校实际情况,需购买电子白板和笔记本电脑地总数为,要求购买地总费用不超过元,该校最多能购买多少台电脑?文档收集自网络,仅用于个人学习.为了解决农民工子女就近入学问题,我市第一小学计划年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买地课桌凳与办公桌椅地数量比为,购买电脑地资金不超过元.已知一套办公桌椅比一套课桌凳贵元,用元恰好可以买到套课桌凳和套办公桌椅.(课桌凳和办公桌椅均成套购进)文档收集自网络,仅用于个人学习()一套课桌凳和一套办公桌椅地价格分别为多少元?()最多能买多少办公桌和课桌凳..为奖励在文艺汇演中表现突出地同学,班主任派生活委员小亮到文具店为获奖同学购买奖品.小亮发现,如果买个笔记本和支钢笔,则需要元;如果买个笔记本和支钢笔,则需要元.文档收集自网络,仅用于个人学习()求购买每个笔记本和每支钢笔各多少元?()班主任给小亮地班费是元,需要奖励地同学是名(每人奖励一件奖品),若购买地钢笔数不少于笔记本数,小亮最多能买多少个笔记本?文档收集自网络,仅用于个人学习班级姓名.为了抓住梵净山文化艺术节地商机,某商店决定购进、两种艺术节纪念品.若购进种纪念品件,种纪念品件,需要元;若购进种纪念品件,种纪念品件,需要元.文档收集自网络,仅用于个人学习()求购进、两种纪念品每件各需多少元?()若该商店决定购进这两种纪念品共件,考虑市场需求和资金周转,用于购买这件纪念品地资金不少于元,,那么该商店至少能购进多少件种纪念品?文档收集自网络,仅用于个人学习. 我市某校为了创建书香校园,去年购进一批图书.经了解,科普书地单价比文学书地单价多元,用元购进地科普书与用元购进地文学书本数相等.今年文学书和科普书地单价和去年相比保持不变,该校打算用元再购进一批文学书和科普书,问购进文学书本后至多还能购进多少本科普书?文档收集自网络,仅用于个人学习.商城经销甲、乙两种商品,甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.()若商城同时购进甲、乙两种商品共件恰好用去元,求能购进甲、乙两种商品各多少件?按上述优惠条件,若小王第一天只购买甲种商品一次性付款元,第二天只购买乙种商品打折后一次性付款元,那么这两天他在商城购买甲、乙两种商品一共多少件?文档收集自网络,仅用于个人学习.一批货物要运往某地,货主准备租用汽车运输公司地甲、乙两种货车,已知过去租用这两种货现租用该公司地辆甲种货车与辆乙种货车一次刚好运完这批货物,如果按每吨付运费元计算,问:货主应付运费多少元.文档收集自网络,仅用于个人学习.某商场用元购进甲、乙两种商品,销售完后共获利元.其中甲种商品每件进价元,售价元;乙种商品每件进价元,售价元.文档收集自网络,仅用于个人学习()该商场购进甲、乙两种商品各多少件?()商场第二次以原进价购进甲、乙两种商品.购进乙种商品地件数不变,而购进甲种商品地件数是第一次地倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于元,乙种商品最低售价为每件多少元?文档收集自网络,仅用于个人学习. 同庆中学为丰富学生地校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球地价格相同,每个篮球地价格相同),若购买个足球和个篮球共需元.购买个足球和个篮球共需元.文档收集自网络,仅用于个人学习()购买一个足球、一个篮球各需多少元?()根据同庆中学地实际情况,需从军跃体育用品商店一次性购买足球和篮球共个.要求购买足球和篮球地总费用不超过元,这所中学最多可以购买多少个篮球?文档收集自网络,仅用于个人学习。
12、二元一次方程组及不等式的解法1.不等式260x ->的解集在数轴上表示正确的是( )2,已知方程()()026281||2=++--+m n y n x m 是二元一次方程,则m+n 的值( )A.1B. 2C.-3D.33,在等式y=kx+b 中,当x=1时,y=2;当x=2时,y=5,则k,b 的值为( )A .⎩⎨⎧-=-=13b kB .⎩⎨⎧=-=31b kC .⎩⎨⎧-==13b kD .⎩⎨⎧-=-=31b k 4,若方程1-=+y x ,42=-y x 和7=-my x 有公共解,则m 的取值为( )A.4B.3C.2D.15.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ). A.m >-1.25 B.m <-1.25 C.m >1.25 D.m <1.256,要配制15%的硝酸溶液240千克,需用8%和50%的硝酸溶液的克数分别为( )A. 40,200B.80,160C.160,80D.200,407,两位同学在解方程组时,甲同学由2,78.ax by cx y +=⎧⎨-=⎩正确的解出3,2;x y =⎧⎨=-⎩乙同学因把c写错了而解得2,2.x y =-⎧⎨=⎩那么a 、b 、c 的正解的值应为( ) A.1,5,4-===c b a B.0,5,4=-=-=c b aC.2,5,4-===c b aD.2,5,4=-=-=c b a8.不等号填空:若a <b <0 ,则5a - 5b -;a 1 b 1;12-a 12-b . 9.当0<<a x 时,2x 与ax 的大小关系是_______________.10.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 11,从方程组⎩⎨⎧+=-=121a y a x 中可以得到y 与x 的关系式为_______. 12,当x =0、1、-1时,二次三项式ax 2+bx+c 的值分别为5、6、10,则a =___,b ___,c =___.13.若11|1|-=--x x ,则x 的取值范围是 14,某校现有学生804人,与去年相比:男生增加10%,女生减少10%,学生总数增加0.5%,则现有男、女学生的人数分别为___.A .B .C .D .15,用适当方法解方程组:⑴231,498.s t s t +=-⎧⎨-=⎩ ⑵()()()()3144,5135.x y y x -=-⎧⎪⎨-=+⎪⎩⑶11,233210.x y x y +⎧-=⎪⎨⎪+=⎩ (4)530,43,2 1.x y z y z x z --=⎧⎪+=⎨⎪-=⎩16.解不等式(1)1)1(22 ---x x . (2)134155-+x x(3)312-x ≤643-x (4)341221x x +≤--.17,当a 为何值时,方程组⎩⎨⎧=-=+02,162y x ay x 有正整数解?并求出正整数解.18,某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润可涨至7500元。
2013—2014学年七年级数学(下)周末辅导资料(12) 理想文化教育培训中心 学生姓名________ 得分_______一、方程组应用题:1、某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,下面所列的方程组正确的是( ).A .⎩⎨⎧=+=+y x y x 2134B .⎩⎨⎧+==+1234y x y xC .⎩⎨⎧+==+1234y x y xD .⎩⎨⎧+==+12342y x y x 2、为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( )A .⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB .⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y x y x C .⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D .⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 3、成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是( )4、为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x 元,每副乒乓球拍为y 元,列二元一次方程组得( )A .()x+y=5010x+y =320⎧⎪⎨⎪⎩B .x+y=506x+10y=320⎧⎨⎩C .x+y=506x+y=320⎧⎨⎩D .x+y=5010x+6y=320⎧⎨⎩5、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.6、某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?7、一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?二、不等式的性质:(一)知识点梳理:1、不等式:用不等号表示不相等关系的式子,叫做不等式。
二元一次方程(组)与一元一次不等式(组)的应用【相遇追及问题】1.甲乙两地相距160km,一辆汽车和一辆拖拉机同时两地相向而行.1小时20分钟后相遇;相遇后.拖拉机继续前行.汽车在相遇处停留1小时后调转车头按原路返回.汽车再次出发1小时后追上了拖拉机.这时.汽车拖拉机各自走了多少千米?2.甲、乙二人同时绕400m的环形跑道行走.如果他们同时从同一起点背向而行.2分30秒后首次相遇;如果他们同时由同一地点同向而行.甲12分30秒后超过乙一圈.甲、乙两人每分钟各走多少米?3.甲、乙二人相距6km.二人同向而行.甲3小时可追上乙;相向而行.1小时相遇。
二人的平均速度各是多少?4.A、B两地间的路程为360千米.甲车从A地出发开往B地.每小时72千米.甲车出发25分钟后.乙车从B地出发开往A地.每小时行驶48千米.乙车出发多少小时后两车相遇?14.甲、乙二人在上午8时.自A、B两地同时相向而行.上午10时相距36km.?二人继续前行.到12时又相距36km.已知甲每小时比乙多走2km.求A.B两地的距离.15.某铁桥长1000米.有一列火车从桥上通过.测得火车开始上桥到完全过桥用1分钟.整列火车完全在桥上时间为40秒.求火车的速度和车长各是多少?16.一个两位数.十位数字与个位数字之和为8.若十位数字与个位数字对调后.所得新两位数比原两位数小36.求原两位数.17.张先生是集邮爱好者.他带一定数量的钱到邮市上去购买邮票.发现两种较为喜欢的纪念邮票.面值分别为10元和6元。
(1)经盘算发现所带的钱全部用来买面值为10远的邮票.钱数正好不多不少。
若全部钱数用来购买面值为6元的邮票可以多买6张.但余下4元.你知道张先生带了多少钱?(2)若张先生所带的钱全部购进这两种邮票.有多少种购买方案?(3)经估测.这两种邮票都会升值.其中面值为10元的可以上涨100%.面值为6元的邮票会上涨150%.张先生决定把集邮当成一种投资.准备2000元全部投入.请设计最大盈利购邮方案.并作说明。
1)篮球联赛中,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分,那么这个队胜、负场数分别是多少?2)加工某种产品需经两道工序,第一道工序每人每天可完成900件,第二道工序每人每天可完成1200件,现在7位工人参加这两个工序,应怎样安排人力,才能使每天第一,第二道工序所完成的件数相等?3)有48只队520名运动员参加篮球、排球比赛,其中每支篮球队10人,每支排球队有12人,每名运动员只能参加一项比赛。
篮球队、排球队各有多少支参赛?4)张翔从学校出发骑自行车去县城,中途因道路施工步行一段路,1.5h后到达县城。
他骑车的平均速度是15km/h,步行的平均速度是5km/h,路程全长20km,他骑车与步行各用多少时间?5)某种消毒液大瓶装500g和小瓶装250g两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大,小瓶两种产品各多少瓶?6)2台大收割机和5台小收割机同时工作2h共收割小麦3.6公顷,3台大收割机和2台小收割机同时工作5小时共收割8公顷,1台大收割机和1台小收割机每小时各收割小麦多少公顷?7)一条船顺流航行,每小时行20km;逆流航行,每小时行16km,求轮船在静水中的速度与水的流速。
8)运输360t化肥,装载6节火车车厢和15辆汽车;运输440t 化肥,装载8节火车车厢和10辆汽车,每节火车车厢与每辆汽车平均各装多少吨化肥?9)养牛场原有30头大牛和15头小牛,1天约用饲料675kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg,求每头大牛和每头小牛一天所需饲料约多少kg?10)甲,乙两种作物单位面积产量的比是1:2,现要把一块长200m,宽100m的长方形土地,分为两块小长方形土地,分别中值这种两种作物,怎样划分这块土地,使甲乙两种作物的总产量的比是3:4?111)长青化工厂与A:B两地有公路,铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
二元一次方程(组)与一元一次不等式(组)的应用【相遇追及问题】
1.甲乙两地相距160km,一辆汽车和一辆拖拉机同时两地相向而行,1小时20分钟后相遇;
相遇后,拖拉机继续前行,汽车在相遇处停留1小时后调转车头按原路返回,汽车再次出发1小时后追上了拖拉机,这时,汽车拖拉机各自走了多少千米
2.甲、乙二人同时绕400m的环形跑道行走,如果他们同时从同一起点背向而行,2分30秒
后首次相遇;如果他们同时由同一地点同向而行,甲12分30秒后超过乙一圈,甲、乙两人每分钟各走多少米
3.甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。
二人
的平均速度各是多少
;
4.A、B两地间的路程为360千米,甲车从A地出发开往B地,每小时72千米,甲车出发25
分钟后,乙车从B地出发开往A地,每小时行驶48千米,乙车出发多少小时后两车相遇
14.甲、乙二人在上午8时,自A、B两地同时相向而行,上午10时相距36km,•二人继续前行,到12时又相距36km,已知甲每小时比乙多走2km,求A,B两地的距离.
]
15.某铁桥长1000米,有一列火车从桥上通过,测得火车开始上桥到完全过桥用1分钟,
整列火车完全在桥上时间为40秒,求火车的速度和车长各是多少
/
16.一个两位数,十位数字与个位数字之和为8,若十位数字与个位数字对调后,所得新两
位数比原两位数小36,求原两位数,
17.张先生是集邮爱好者,他带一定数量的钱到邮市上去购买邮票,发现两种较为喜欢的纪
念邮票,面值分别为10元和6元。
(1)经盘算发现所带的钱全部用来买面值为10远的邮票,钱数正好不多不少。
若全部钱数用来购买面值为6元的邮票可以多买6张,但余下4元,你知道张先生带了多少钱(2)若张先生所带的钱全部购进这两种邮票,有多少种购买方案
(3)经估测,这两种邮票都会升值,其中面值为10元的可以上涨100%,面值为6元的邮票会上涨150%,张先生决定把集邮当成一种投资,准备2000元全部投入,请设计最大盈利购邮方案,并作说明。
%
【不等式相关】
5.四川5·12大地震中,一批灾民要住进“过渡安置”房,如果每个房间住3人,则多8
人,如果每个房间住5人,则有一个房间不足5人,问这次为灾民安置的有多少个房间这批灾民有多少人
6.某班上数学课的时候,准备分组讨论.如果每组7人,则余下3人,如果每组8人,则又
不足5人.问全班有多少人要分成几组
~
7.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小
朋友分8个苹果,则有—个小朋友分不到8个苹果.求这一箱苹果的个数与小朋友的人数.
【方案设计】
,两种产品50 8.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A B
件,已知生产一件A产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料 5kg,可获利350元.
(1) 问工厂有哪几种生产方案
(2) 选择哪种方案可获利最大,最大利润是多少
#
9.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的
进货量的一半.电视机与洗衣机的进价和售价如下表:
…
计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多并求出最多利润.(利润=售价-进价)
—
10.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、
乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应
选择哪种方案,使运输费最少最少运费是多少
(
11.某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价万元;每件乙种商品进价8
万元,售价10万元,且它们的进价和售价始终不变。
现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元。
(1)该公司有哪几种进货方案
(2)该公司采用哪种进货方案可获最大利润最大利润是多少请直接写出获得最大利润的进货方案。
12.校食堂买饭,看到A、B两窗口前面排队的人一样多(设为a人,a > 8),就站到A窗口
队伍的后面. 过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人.
(1)此时,若小杰继续在A窗口排队,则他到达窗口所花的时间是多少(用含a的代数式表示)
《
(2)此时,若小杰迅速从A窗口队伍转移到B窗口队伍后面重新排队,且到达B窗口所花的时间比继续在A窗口排队到达A窗口所花的时间少,求a的取值范围(不考虑其他因素).
A
B
【数字问题】
13.有甲、乙两个数,甲数在20和30之间,乙数在10和20之间,甲、乙两数之比为4:3,
分别将甲、乙两数的个位数字与十位数字交换位置,所得的两个数之和为123,求甲、乙两数。
,
中考试炼
14.在暑假期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独
租用60座的客车,可少租一辆,并且余30个座位.
(1)求外出旅游的学生人数是多少单租45座客车需多少辆
(2)已知45座客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都能有座,决定同时租用两种客车.使得租车总数可比单租45座客车少一辆,问45座客车和60座客车分别租多少辆才能使得租金最少
&
15.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80
吨,需要全部运往四川重灾地区的D、E两县。
根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。
(1)求这批赈灾物资运往D、E两县的数量各是多少
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B 地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。
其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。
则A、B两地的赈灾物资运往D、E两县的方案有几种请你写出具体的运送方案;
16.学校为初一寄宿学生安排宿舍,若每间4人,则有20人无法安排,若每间8人,则有一间不空也不满,求宿舍间数和寄宿学生人数。
$
17体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11 815元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题:
(1)该采购员最多可购进篮球多少只
(2)若该商场把这100只球全部以零售价售出,为使商场获得的利润不低于2580元,则采购员至少要购篮球多少只,该商场最多可盈利多少元
~
18.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地有几种方案
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少最少运费是多少
|
19.为了保护环境,某企业决定购买10台污水处理设备。
现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
经预算,该企业购买设备的资金不高于105万元.
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,叵每台设备的使用年限为10年,污水厂处理污水为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元(注:企业处理污水的费用包括购买设备的资金和消耗费)
20.我市为绿化城区,计划购买甲、乙两种树苗共计500课,甲种树苗每棵50元,乙种树苗每
棵80元,调查统计得:甲、乙两种树苗的成活率分别为90%,95%。
(1)如果购买量种树苗共用28000元,那么甲、乙两种树苗各买了多少棵
(2)若购买前述不得超过34000元,应如何选购树苗
(3)要使树苗的成活率不低于92%,其购买费用最低,应如何选购树苗最低费用为多少
21.某市平均每天产生垃圾700吨,由甲乙两个垃圾处理厂处理。
已知甲厂每小时可处理垃圾
55吨,费用550元;乙厂每小时可处理垃圾45吨,费用495元。
(1)甲乙两厂同时处理该城市的垃圾,每天需几小时完成
(2)如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少需要多少小时。