受弯构件斜截面
- 格式:pdf
- 大小:755.20 KB
- 文档页数:53
钢筋混凝土受弯构件是建筑结构中常见的一种构件类型,其在受外力作用下会产生不同的破坏形态。
为了确保建筑结构的安全和稳定,必须对钢筋混凝土受弯构件的破坏形态进行深入了解,并采取相应的防止措施。
本文将针对钢筋混凝土受弯构件的斜截面破坏形态,详细介绍三种常见的破坏形态及相应的防止措施。
一、压杆破坏形态及防止措施1.1 压杆破坏形态压杆破坏是指在受弯构件受力情况下,混凝土出现压碎破坏,通常表现为压浆区压碎破坏、混凝土冲切破坏或者沿对角受压区拉出裂缝。
1.2 防止措施为了防止压杆破坏形态的出现,可以采取以下措施:- 增加受压区混凝土的合理尺寸和横截面尺寸,提高受压区的抗压能力;- 采用足够的箍筋对受压区进行约束,增加混凝土的受压承载能力;- 适当增加受拉区的受压构件,增加抗压构件的抗压承载能力。
二、拉杆破坏形态及防止措施2.1 拉杆破坏形态拉杆破坏是指在受弯构件受力情况下,受拉钢筋或者混凝土出现拉伸破坏,通常表现为受拉钢筋屈服、拉断或者混凝土拉裂。
2.2 防止措施为了防止拉杆破坏形态的出现,可以采取以下措施:- 增加受拉区钢筋的截面积和数量,提高受拉钢筋的抗拉承载能力;- 采用足够的箍筋对受拉区进行约束,增加混凝土的受拉承载能力;- 采用高强度的混凝土,增加受拉区混凝土的抗拉承载能力。
三、双杆破坏形态及防止措施3.1 双杆破坏形态双杆破坏是指受弯构件同时出现压杆破坏和拉杆破坏,通常表现为受压区和受拉区同时出现破坏,可能造成构件的整体破坏。
3.2 防止措施为了防止双杆破坏形态的出现,可以采取以下措施:- 综合考虑受压区和受拉区的抗压和抗拉能力,合理设计构件尺寸和配筋;- 采用合适的受拉钢筋和箍筋,提高受拉区的抗拉承载能力;- 强化构件的延性,降低构件发生双杆破坏的可能性。
总结钢筋混凝土受弯构件的斜截面破坏形态主要包括压杆破坏、拉杆破坏和双杆破坏。
为了有效防止这些破坏形态的出现,需要在设计和施工过程中充分考虑受压区和受拉区的受力特点,合理设计构件尺寸和配筋,采用适当的材料和技术措施,确保构件在受力情况下具有良好的抗压和抗拉性能。
简述受弯构件斜截面承载力计算步骤受弯构件是建筑物结构中常见的构件,如梁、柱、框架等。
在设计和评估过程中,需要计算其斜截面承载力,以确定其结构安全性和可行性。
下面将简述受弯构件斜截面承载力计算的步骤。
第一步:斜截面的分段首先,需要将斜截面分为若干个分段,以便于计算。
一般情况下,会将受力构件分为两段:其中一段为纵向力作用下的受力部分,另一段为剩余部分。
因为斜截面会导致截面上出现剪力和弯矩,所以需要分段计算。
第二步:计算斜截面剩余部分的斜截面承载力对于斜截面剩余部分,其承载力可以通过材料本身的特性进行计算,例如钢材的强度。
需要根据剩余部分的截面面积和材料强度计算其承载力。
第三步:计算斜截面受力部分的受力情况对于斜截面受力部分,需要计算出其所受的剪力和弯矩。
在计算过程中,需要考虑受力构件的长度、截面形状、截面面积和受力方式等因素。
其中,弯矩是影响受力构件承载能力的主要因素。
第四步:计算斜截面受力部分的承载能力通过计算斜截面受力部分所受的剪力和弯矩,可以确定其承载能力。
其中,剪力会影响受力构件的变形,而弯矩则直接影响构件的破坏。
需要根据受力构件的材料强度、截面形状和所受荷载计算其承载能力。
第五步:比较分析两部分承载能力最后,需要将斜截面剩余部分的承载能力和受力部分的承载能力作比较分析,确定总的承载能力。
如果受力部分的承载能力大于斜截面剩余部分的承载能力,则说明受弯构件的斜截面是安全的;反之,则需要进行修补或更改设计方案。
总之,受弯构件斜截面承载力计算是一个复杂的过程,需要考虑多个因素,并进行多次计算和比较分析。
只有在综合考虑各种因素后,才能确定其承载能力和结构安全性。
第 1 页/共 2 页第四章 受弯构件斜截面承载力计算1、钢筋混凝土受弯构件沿斜截面破坏的形态有几种?各在什么情况下发生? 答:(1)斜拉破坏:在荷载作用下,梁的剪跨段产生由梁底竖向裂缝沿主压应力轨迹线向上延伸发展而成的斜裂缝。
其中有一条主要斜裂缝很快形成,并疾驰舒展至荷载垫板边缘而使梁体混凝土裂通,梁被撕裂成两部分而丧失承载力,同时,沿纵向钢筋往往陪同产生水平撕裂裂缝。
这种破坏发生骤然,破坏荷载等于或者略高于主要斜裂缝浮上时的荷载,破换面比较整洁,无混凝土压碎现象。
发生条件:在剪跨比比较大时。
(m >3)(2)斜压破坏:当剪跨比较小时,(m <1),首先是荷载作用点和支座之间浮上一条斜裂缝,然后浮上若干条大体相平行的斜裂缝,梁腹被分割成若干个倾斜的小柱体。
随着荷载增大,梁腹发生类似混凝土棱柱体被压坏的情况,破环时斜裂缝多而密,但没有主裂缝,所以称为斜压破坏。
(3)剪压破坏:随着荷载的增大,梁的剪弯区段内陆续浮上几条斜裂缝,其中一条发展成为临界斜裂缝。
临界斜裂缝浮上后,梁承受的荷载还能继续增强,而斜裂缝舒展至荷载垫板下,直到斜裂缝顶端(剪压区)的混凝土在正应力x σ,剪应力τ及荷载引起的竖向局部压应力y σ的共同作用下被压酥而破坏。
破坏处可见到无数平行的斜向断裂缝和混凝土碎渣。
发生条件:多见于剪跨比13≤≤m 的情况中。
2、名词解释:广义剪跨比、狭义剪跨比、理论充足利用点、理论不需要点、 弯矩包络图、抵御弯矩图 答:广义剪跨比:剪跨比是一个无量纲常数,用0Vh m M =来表示,此处M 和V 分离为剪弯区段中某个竖直截面的弯矩和剪力,0h 为截面有效高度,普通把m 的这个表达式称为“广义剪跨比”。
狭义剪跨比:例如图中CC ‵截面的剪跨比00h a h V m c c =M =,其中a 为扩散力作用点至简支梁最近的支座之间的距离,称为“剪跨”。
偶尔称0h a m =为“狭义剪跨比”。
抵御弯矩图:它又称材料图,就是沿梁长各个正截面按实际配置的总受拉钢筋面积能产生的抵御弯矩图,即表示各正截面所具有的抗弯承载力。
简述钢筋混凝土受弯构件斜截面的三种破坏形态及防止措施。
钢筋混凝土受弯构件斜截面的三种破坏形态如下:
1.少筋破坏:是指当配置在构件受拉区的纵向受力钢筋数量较少,其面积不足以
承受设计剪力时,梁在斜裂缝出现后即发生脆性破坏。
这种破坏突然发生,力矩很大,没有预兆,破坏很危险。
2.适筋破坏:是指当配置在构件受拉区的纵向受力钢筋数量适中,其面积足以承
受设计剪力,梁在剪切破坏前能出现明显的斜裂缝。
这种破坏有明显的预兆,属于延性破坏类型。
3.超筋破坏:是指当配置在构件受拉区的纵向受力钢筋数量较多,其面积不能承
受设计剪力时,梁在斜裂缝出现后,承载能力基本没有变化,但继续加载,受压区混凝土被压碎,整个梁被破坏。
这种破坏也是突然发生,没有明显预兆,属于脆性破坏类型。
为了防止这三种破坏形态的发生,可以采取以下措施:
1.保证梁的剪切承载能力满足要求,即配置足够数量的纵向受力钢筋。
2.保证梁的剪切承载能力满足要求,即合理选择纵向受力钢筋的直径和数量。
3.保证梁的剪切承载能力满足要求,即控制梁的截面尺寸和混凝土强度等级。
以上内容仅供参考,如需更全面准确的信息,可咨询土木工程结构专业人士。
受弯构件斜截面破坏形式
受弯构件的斜截面破坏形态有哪几种?分别如何防止其发生?
⑴受弯构件斜截面受剪破坏有斜压、剪压和斜拉三种破坏形式。
⑵各自的破坏特点是:
①斜压破坏的破坏特点是:梁的腹部出现若干条大体相互平行的斜裂缝,随着荷载的增加,梁腹部混凝土被斜裂缝分割成几个倾斜的受压柱体,在箍筋应力尚未达到屈服强度之前,斜压柱体混凝土已达极限强度而被压碎。
②斜拉破坏的破坏特点是:斜裂缝一旦出现,箍筋应力立即屈服,不能够限制斜裂缝的发展,立即形成临界斜裂缝,使梁沿斜向被拉裂为两部分而突然破坏。
③剪压破坏的破坏特点是:斜裂缝产生后,原来由混凝土承受的拉力转由与斜裂缝相交的箍筋承受,由箍筋限制和延缓了斜裂缝的开展,使荷载仍能有较大的增长,直至与临界斜裂缝相交的箍筋应力达到屈服强度,已不能再控制斜裂缝山西建筑职业技术学院的开展,从而导致斜截面末端剪压区不断缩小,剪压区混凝土在正应力和剪应力共同作用下达到极限状态而破坏。
⑶《规范》通过限制截面(即最大配箍率)来防止发生斜压破坏;通过控制箍筋的最小配筋率来防止发生斜拉破坏。
而剪压破坏,则通过受剪承载力的计算配置箍筋来避免。
斜截面的三种破坏形态为:斜压破坏、斜拉破坏、剪压破坏。
斜压破坏:可以通过最小截面尺寸的限制防止其发生。
斜拉破坏:可以通过最小配箍率的限制防止其发生。
剪压破坏:为了防止剪压破坏的发生,可通过斜截面承载力计算配置适量的箍筋。
受弯构件斜截面发生剪压破坏的条
件
受弯构件斜截面发生剪压破坏的条件是指当斜截面结构在受力作用下,会出现剪压破坏现象。
这种破坏现象常常发生在受弯构件的斜截面上,因此称之为“受弯构件斜截面发生剪压破坏”。
受弯构件斜截面发生剪压破坏的根本原因在于构件斜截面受到的外力的大小和方向,如果斜截面受到的外力过大或者外力的方向与斜截面的轴线不一致,就会出现剪压破坏现象。
受弯构件斜截面发生剪压破坏的条件主要有以下三个:
一是斜截面受力的大小。
斜截面受力的大小越大,剪压破坏的可能性就越大,因此,在设计时,应尽量减小斜截面受力的大小,避免出现剪压破坏的现象。
二是斜截面受力的方向。
斜截面受力的方向如果与斜截面的轴线不一致,就容易造成斜截面的剪切变形,从而引起剪压破坏。
因此,在设计时,应保证斜截面受力的方向和斜截面的轴线一致。
三是斜截面的结构特性。
斜截面的结构特性将直接影响其受力强度,如果斜截面的结构特性不佳,就容易造成斜截面的剪切变形,从而引起剪压破坏。
因此,在设计时,应尽量改善斜截面的结构特性,使之具备较好的受力强度。
总之,受弯构件斜截面发生剪压破坏的条件是斜截面受力的大小、方向以及斜截面的结构特性不佳。
因此,在设计时,应注意控制这三个方面的因素,以避免出现剪压破坏的现象。
受弯构件斜截面承载力计算公式是依据斜截面构件是指构件角度轴线和主轴线之间形成的夹角,这种构件在很多场合下都有着广泛的使用,但是在受力分析中,很多结构设计中都会涉及到斜截面构件的受力分析。
因此,计算斜截面构件的承载力非常重要,在这里我们将介绍受弯构件斜截面承载力计算公式。
一般来讲,受弯构件斜截面承载力的计算,要考虑力学要求,假设受弯构件的斜截面的宽度为w,厚度为h,内轴线半径为r,外轴线半径为R,轴向反力作用下,轴向应力计算公式为σ=F/A,A为断面截面积,其计算公式为:A = (R- r)h +wr。
根据Gao&Yang(2005)的研究,斜截面受弯构件的承载力由以下公式计算:F=FoC%Fo=∫-1/r~1/Rf(x)dx其中:Fo=πWh(R-r)/2f(x)= (R2-r2-2x2)/2(R2-x2)(r2-x2)以上是受弯构件斜截面承载力计算公式。
取极限值后,可以得到有限的载荷力值,其计算结果取决于斜截面构件的尺寸以及各个参数的值。
本文简要介绍了受弯构件斜截面承载力计算的方法,进行计算前有必要确定各个参数值,只有这样才能得到合理的结果,从而更好地为结构设计提供支持。
受弯构件斜截面承载力计算是一项复杂而又艰巨的工作,需要综合多个方面的因素进行参数分析,全面考虑结构的构造、受力情况和材料性能等因素,以确定计算结果的合理性。
一般情况下,斜截面构件的受弯设计不仅仅考虑此受力分析,还要考虑其他因素,比如尺寸变形等。
此外,多次实际应用表明,为了确保斜截面构件的安全性能,应当在斜截面构件承载力分析时考虑相关变形影响及材料疲劳寿命。
尤其是对于极端条件下的受力分析,更应当加以考虑,以提高受弯构件斜截面承载力的计算精度。
总之,受弯构件斜截面承载力的计算是一项重要的工作,必须仔细分析,全面考虑各个因素,以达到计算精度较高的要求,确保结构的安全可靠性。
经过以上的介绍,受弯构件斜截面承载力计算公式已经有了一定的了解,熟悉这种计算方法可以更好地满足结构设计的需求,为可靠和安全的结构设计提供必要的理论支撑和技术保障。
受弯构件斜截面破坏的三种形态
受弯构件斜截面破坏是指在抗弯设计中,由于构件斜截面受到外力的作用而发生破坏的情况。
一般来说,受弯构件的斜截面破坏分为三种形态:剪切破坏、弯曲破坏和屈服破坏。
一、剪切破坏
剪切破坏是指在构件斜截面上产生一个或多个薄层,随着加载的继续增大,这些薄层可能会破裂,使构件斜截面破坏。
剪切破坏一般会出现在立方体截面的构件上,如钢筋混凝土梁、柱等,由于构件的斜截面向不同方向受到外力的作用,使得构件斜截面上的应力状态发生失衡,产生破坏。
二、弯曲破坏
弯曲破坏是指在构件斜截面上产生一个弯曲的破坏区域,这一破坏形态常见于受拉弯扭转作用的构件,如钢筋混凝土梁、圆钢柱等。
其原理是由于构件斜截面受到外力的作用,使得构件斜截面上的应力状态发生失衡,导致斜截面出现弯曲的破坏形态。
三、屈服破坏
屈服破坏是指在构件斜截面上产生一个屈服弯曲的破坏区域,这一破坏形态常见于受拉弯扭转作用的构件,如钢筋混凝土梁、圆钢柱等。
这一破坏形态的产生,是由于构件斜截面受到外力的作用,使得构件斜截面上的拉应力大于材料的屈服强度,导致斜截面出现屈服弯曲的破坏形态。
总之,构件斜截面破坏的三种形态分别是剪切破坏、弯曲破坏和屈服破坏,它们都是由于构件斜截面受到外力的作用,使得构件斜截面上的应力状态发生失衡,从而导致构件斜截面出现各种破坏形态。
因此,在抗弯设计时,必须注意构件斜截面的破坏形态,以确保构件在正常使用情况下不会发生破坏。
15. 受弯构件斜截面承载力计算内容概要本章主要讲述钢筋混凝土受弯构件斜截面破坏形态,斜截面设计方法及纵筋的弯起、截断、锚固等构造措施。
25. 受弯构件斜截面承载力计算主要内容5.1 概述5.2 受弯构件斜截面的受力特性5.3 受弯构件斜截面设计方法5.4 保证斜截面受弯承载力的构造措施5.5本章小结35. 受弯构件斜截面承载力计算学习要求①了解斜截面破坏的主要形态及影响斜截面抗剪的主要因素;②掌握无腹筋梁和有腹筋梁的斜截面设计方法;③掌握材料图的作法和钢筋的弯起和截断位置;④熟悉受力钢筋的锚固要求和箍筋的构造要求。
45.1 概述①截面破坏形式工程中常见的梁、柱、剪力墙等构件,其截面除作用弯矩(梁)或弯矩和轴力(柱、和剪力墙)外,通常还有剪力。
因此,构件除了发生正截面破坏之外,斜截面破坏也是常见的一种破坏形式。
55.1 概述②截面配筋形式为保证构件的斜截面受剪承载力,构件应具有合适的截面尺寸和适宜的混凝土强度等级,并配置必要的箍筋,剪力较大时,还可增设弯起钢筋。
箍筋和弯起钢筋统称为腹筋或横向钢筋。
65.2 受弯构件斜截面受力特性①无腹筋简支梁的受剪性能A.斜裂缝形成前的应力状态a.分析方法将钢筋混凝土梁等效为均质线弹性梁,利用材料力学理论进行受力分析。
b.等效原则根据变形协调条件将钢筋的面积换算为混凝土的面积。
75.2 受弯构件斜截面受力特性①无腹筋简支梁的受剪性能A.斜裂缝形成前的应力状态b.等效原则s s s ct c ct E E σεσε=⎫⎬=⎭s s ct ctA A σσ=受拉钢筋面积换算成混凝土面积换算出的混凝土重心位置仍保持在原受拉钢筋形心高度处。
原截面换算截面s ctεε=s s ct E ctcEE σσασ==+ct E sA A α=⇒85.2 受弯构件斜截面受力特性①无腹筋简支梁的受剪性能A.斜裂缝形成前的应力状态c.回顾-平面应力状态下的主应力计算max 22min()22x yx y xy σσσσστσ+−⎧=±+⎨⎩21arctan 2xy x y τασσ⎛⎞=−⎜⎟⎜⎟−⎝⎠xyσx τyxτxyσyα主应力大小主应力方向平面应力状态σmax 在剪应力相对的象限内,且偏向于σx 及σy 大的一侧。
影响受弯构件斜截面抗剪能力的主要因素
1.受拉钢筋的布置:受拉钢筋的布置对受弯构件的斜截面抗剪能力有
重要影响。
合理布置受拉钢筋可以提高受弯构件的剪切强度。
布置受拉钢
筋可以有效地避免构件中的混凝土在受力过程中出现脱落。
2.混凝土强度:混凝土的强度是影响受弯构件斜截面抗剪能力的重要
因素。
混凝土的强度越高,其抗剪能力也会相应提高。
3.受弯构件几何形状:受弯构件的几何形状对其斜截面抗剪能力有着
重要影响。
例如,在梁的受拉侧和受压侧设置跨中钢筋或增设加劲筋等可
以提高其斜截面抗剪能力。
4.受剪跨比:受剪跨比是指受弯构件跨度与构件高度的比值。
受剪跨
比较大时,斜截面抗剪能力较弱;反之,受剪跨比较小时,斜截面抗剪能
力较强。
5.剪跨比:剪跨比是指受弯构件中剪力跨度与构件高度的比值。
剪跨
比较大时,斜截面抗剪能力较弱;反之,剪跨比较小时,斜截面抗剪能力
较强。
6.横剪钢筋的配置:合理配置横剪钢筋可以提高受弯构件的抗剪能力。
通过增加横剪钢筋的数量和间距,可以有效地提高斜截面的抗剪能力。
7.断面尺寸:断面尺寸是影响受弯构件抗剪能力的重要因素。
相同材
料的构件,断面尺寸越大,抗剪能力也会相应提高。
总之,受拉钢筋的布置、混凝土强度、几何形状、受剪跨比、剪跨比、横剪钢筋配置和断面尺寸是影响受弯构件斜截面抗剪能力的主要因素。
在
设计和施工过程中,应综合考虑这些因素,以保证受弯构件的抗剪能力满足设计要求。