第11讲简单的幻方及其他数阵图
- 格式:doc
- 大小:158.00 KB
- 文档页数:10
专题十一数阵图第一讲三阶幻方【母题详解】把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数的和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。
也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。
同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。
解:经试验,有下面八种不同填法:图11-1-1上面的八个图,都可以通过一个图的旋转和翻转得到。
例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。
又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。
所以,这八个图本质上是相同的,可以看作是一种填法。
金钥匙:一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方,相等的和我们称为幻和。
通过观察可以发现,在三阶幻方中,幻和正好是中间数的3倍。
【举一反三】变式一:用11,13,15,17,19,21,23,25,27编制成一个三阶幻方。
【解】给出的九个数形成一个等差数列, 1~9也是一个等差数列。
数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
《仁华学校奥林匹克数学课本(小学四年级)》
上册
第1讲速算与巧算(三)
第2讲速算与巧算(四)
第3讲定义新运算
第4讲等差数列及其应用
第5讲倒推法的妙用
第6讲行程问题(一)
第7讲几何中的计数问题(一)
第8讲几何中的计数问题(二)
第9讲图形的剪拼(一)
第10讲图形的剪拼(二)
第11讲格点与面积
第12讲数阵图
第13讲填横式(一)
第14讲填横式(二)
第15讲数学竞赛试题选讲
下册
第1讲乘法原理
第2讲加法原理
第3讲排列
第4讲组合
第5讲排列组合
第6讲排列组合的综合应用
第7讲行程问题
第8讲数学游戏
第9讲有趣的数阵图(一)
第10讲有趣的数阵图(二)
第11讲简单的幻方及其他数阵图
第12讲数字综合题选讲
第13讲三角形的等积变形
第14讲简单的统筹规划问题第15讲数学竞赛试题选讲。
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
幻方1.概念简析:幻方:是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3×3的数阵称作三阶幻方,4×4的数阵称作四阶幻方,5×5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样.2.构造幻方常用的方法:(1)适用于所有奇数阶幻方的填法—罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.(2)仅适用于三阶幻方—九宫格口诀.口诀是:九宫者,二四为肩,六八为足,左七右三,戴九履一,五居中央。
(3)适用于所有偶数阶幻方的填法—对称交换的方法1.将数依次填入方格中,对角线满足要求。
2.调整行,对角线数不动,对称行的其它数对调;调整列,对角线数不动,对称列的其它数对调。
3.三阶幻方的性质:1.幻和相等,幻和等于9个数的和除以3.2.中间数必位于幻方中心,中间数等于幻和除以3.3.黄金三角: 黄金三角顶点的数为两腰之和除以2.视频描述把0、2、4、6、8、10、12、14、16这9个数填在下面图中的方格内,使每行、每列和每条对角线上的三个数的和都相等。
1.1.请用11、13、15、17、19、21、23、25、27编制一个三阶幻方。
注:此题答案默认为0,正确答案见解析!2.2.把7—15这九个数构成一个三阶幻方。
注:此题答案默认为0,正确答案见解析!3.3.请用1、4、7、10、13、16、19、22、25编制一个三阶幻方。
注:此题答案默认为0,正确答案见解析!视频描述将下面左边方格中的9个数填入右边方格中,使每一行、每一列、每条对角线中的三个数相加的和都相等。
1.1.将图中的数重新排列,使横行、竖行、对角线上的三个数的和都相等。
注:此题答案默认为0,正确答案见解析!2.2.把3、4、5、8、9、10、13、14、15编成一个三阶幻方,并求出幻和是多少?3.3.将图中的数重新排列,使横行、竖行、对角线上的三个数的和都相等。
幻方与数阵图【知识要点】 一、幻方在一个由若干个排列整齐的数组成的正方形中,图中任意一横行、一纵行及对角线的几个数之和都相等,具有这种性质的图表,称为“幻方”。
我国古代称为“河图”、“洛书”,又叫“纵横图”。
三阶幻方的性质:1.中心位置上的数等于幻和除以3;2.角上得数等于和它不相邻的两条边上的数的平均数;3.中心数两头的数之和等于中心数的2倍。
二、数阵图数阵图问题千变万化,这一类问题要求数阵中填入了一些数以后,能保证数阵中特定关系线(或关系区域)上的数的和相等,解决这类问题可以按以下步骤解决问题:第一步:从整体考虑,将要求满足相等的几个数字和全部相加,一般为n ×s 的形式。
第二步:从个体考虑,分别计算每一个位置数字相加的次数,将比较特殊的(多加或少加几次)位置数字用未知数表示,全部相加,一般为题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数的形式。
第三步:格局整体与个体的关系,列出等式即n ×s=题目所给全部数字和×一般位置数字相加次数±特殊位置数字和×多加或少加次数。
第四步:根据数论植树即整除性确定特殊位置数的取值即相对应的S 值。
第四步:根据确定的特殊位置数字及S 值进行数字分组及尝试。
【典型例题】 一、幻方例1:如下图,将1—9填入3×3的方格表中,使得每行每列以及两条对角线上的三个数字之和都相等,你一共可以得到多少种填法?分析:首先,我们思考要填出一个三阶幻方,什么量的求出是最重要的?立刻我们就知道,那个所谓的“幻和”,即每行、每列、每条对角线三个数的和是最重要的量。
它是多少呢?如果我们按照行(按照列也一样)把幻方中的九个数加起来,那么它们的总和不就是3倍的“幻和”吗?而另一方面,我们也知道,由于1到9这九个数字都只各用了一次,所以3倍的的“幻和”第1题就等于1+2+3+4+5+6+7+8+9=45。
数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。
它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。
那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。
右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。
上面两个图就是数阵图。
准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。
要排出这样巧妙的数阵图,可不是一件容易的事情。
我们还是先从几个简单的例子开始。
例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。
例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。
例3把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。
例4将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。
例5将 10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。
例1~5都具有中心数是重叠数,并且每边的数字之和都相等的性质,这样的数阵图称为辐射型。
例4的图中有三条边,每边有三个数,称为辐射型3—3图;例5有五条边每边有三个数,称为辐射型5—3图。
一般地,有m条边,每边有n个数的形如下图的图形称为辐射型m-n图。
辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即m-1。
对于辐射型数阵图,有已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数。
由此得到:(1)若已知每条直线上各数之和,则重叠数等于(直线上各数之和×直线条数-已知各数之和)÷重叠次数。
第十一讲简单的幻方及其他数阵图有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的填数字问题.宋朝的杨辉将幻方命名为“纵横图.”并探索出一些解答幻方问题的方法.随着历史的进展,许多人对幻方做了进一步的研究,创造了许多绚丽多彩的幻方.据传说在夏禹时代,洛水中出现过一只神龟,背上有图有文,后人称它为“洛书”.洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要求填上1~9这九个数,使每行、每列、及二条对角线上各自三数之和均相等,这样的3×3的数阵阵列称为三阶幻方.一般地说,在n×n(n行n列)的方格里,既不重复又不遗漏地填上n2个连续的自然数(一般从1开始,也可不从1开始)每个数占一格,并使排在任一行、任一列和两条对角线上的n个自然数的和都相等,这样的数表叫做n阶幻方.这个和叫做幻和,n叫做阶.杨辉在《续古摘奇算法》中,总结洛书幻方构造方法时写到:“九子排列,上、下对易,左右相更,四维挺出.”现用下图对这四句话进行解释.九子排列上、下对易左右相更四维挺出怎样构造幻方呢?一般方法是先求幻和,再求中间位置的数,最后根据奇、偶情况试填其他方格内的数.下面我们就来介绍一些简单的幻方.例1 将1~9这九个数,填入下左图中的方格中,使每行、每列、两条对角线上三个数字的和都相等.分析为了便于叙述,先用字母表示图中要填写的数字.如上右图所示.解答这个题目,可以分三步解决:①先求出每行、每列三个数的和是多少?②再求中间位置的数是多少?此题是求E=?③最后试填其他方格里的数.∵A+B+C+D+E+F+G+H+I=1+2+3+4+5+6+7+8+9=45.∴A+B+C=D+E+F=G+H+I=15.∴B+E+H=A+E+I=C+E+G=15.∴A+B+C+D+E+F+G+H+I+3E=(A+E+I)(B+E+H)+(C+E+G)+(D+E+F)=15X4.45+3E=603E=15E=5.这样,正中央格中的数一定是5.由于在同一条直线的三个数之和是15,因此若某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同.因此,四个角上的数A、C、G、I必为偶数.(否则,若A为奇数,则I为奇数.此时若B为奇数,则其余所有格亦为奇数;若B为偶数,则其余所有格亦为偶数.无论哪种情形,都与1至9中有5个奇数,4个偶数这一事实矛盾.)因此,B、D、F、H为奇数.我们不妨认为A=2(否则,可把3×3方格绕中心块旋转即能做到这一点).此时I=8.此时有两种选择:C=4或G=4.因而,G=6或C=6.其他格的数随之而定.因此,如果把经过中心块旋转而能完全重合的两种填数法视作一种的话,一共只有两种不同的填数法:A=2,C=4或A=Z,G=4(2,4被确定位置后,其他数的位置随之而定).解:按照上面的分析,我们可以得到两个解(还有另外6个可以由这两个解经过绕中心块旋转而得到,请大家自己完成).例2 在右图中的A、B、C、D处填上适当的数,使右图成为一个三阶幻方.分析与解答①从1行和3列得:A+12+D=D+20+11A+12=20+11A=19.②观察对角线上的三个数的总和,实际上它即为每行、每列的三个数的和.对角线上的三个数的和:A+15+11=19+15+11=45.③B=45-(16+19)=10.④D=45-(20+11)=14.⑤C=45-(16+11)=18.∴ A=19、B=10、C=18、D=14.例3 将右图中的数重新排列,使得横行、竖行、对角线上的三个数的和都相等.分析已知题目中只给了3个数,22、30、38,而每个数都有3个.很显然,横行、竖行、对角线上的三个数的和是:22+30+38=90.以A、B、C记这三个数.如果使得每行、每列(先不要求对角线)都各有一个A、B、C(容易知道,要满足题目要求,必须做到这一点),那么各行、各列的和都为A+B+C=90.而这只有如下图所示的两种类型的排列方式.其中第一图中由于A+A+A=90,因此必须A=30;第二图中C+C+C=90,所以C=30.其余各行、各列以及另一对角线上的三数之和都为A+B+C=90.在第一图中B,C可在22、38中任取;第二图中A、B可在22、38中任取.因此共有4种不同的重新排列法.解:由分析可知,右图所示为4种不同的重新排列方法中的一种.例4将1、2、3、4、5、6、7、8、9这九个数字,分别填入3×3阵列中的九个方格,使第二行组成的三位数是第一行组成的三位数的2倍,第三行组成的三位数是第一行组成的三位数的3倍.分析这一例题比前三个例题要复杂些,但如果我们充分利用题目的要求和1至9这九个数的特性(五奇四偶),那么也能缩小每格中所应填的数的范围,直至完全确定每格中应填的数.为了方便起见,把九个格中的数字用A至I这九个英文字母代替.这样,例如C=2,则F=4,I=6.因而其余六格应个加式:前两行之和等于第三行.这对于我们用奇偶性去分析加式成立的可能性是有用的.由于个位上的加法没有进位,因此十位上的三个数字不能都为奇数(否则将出现奇数+奇数=奇数的矛盾等式),即8一定是其中的一个十位数字,显然B≠8(否则E=6,与I=6矛盾).又H≠8(否则,B≤8/3,只有B=1.而当B=1时,H至多为5).因此E=8,这样,B=9,H=7.最后,由于A<D<G必有A=1,D=3,G=5.由于192×2=384,192×3=576,所以所填的数满足题目要求.又如,C=4,则F=8,1=2.个位上的加式向十位进1,因此十位上的三个数字都是奇数,因此6是一个百位数字.显然A≠6.如果D=6,则必有A=3,G=9.而B、E、H是1、5、7这三个数,要满足B+E+1=H,只能B=1,E=5,H=7或B=5,E=1,H=7.由于314×2≠658,354×2≠618,所以此时不满足题目要求.如果G=6,显然A<3,此时只有A=1,但当A=1时,G<(1+1)×3=6.因而当C=4时,不可能有满足题目要求的填法.其他的情形可以类似地加以讨论,分别给出肯定的或否定的结论.解:由分析,下左图是一种符合要求的填法.由于作为一个加法算式(上两行的和等于第三行),上图只是在十位上的加式向百位进了1,其他两个数位上都没有进位,因此把它的个位移到百位的位置上加式仍然成立,所以上右图也是一种符合要求的填法.还有两种符合要求的填法,希望同学们利用分析中的方法把它们找出来.例5在九宫图中,第一行第三列的位置上填5,第二行第一列位置上填6,如下左图.请你在其他方格中填上适当的数,使方阵横、纵、斜三个方向的三个数之和均为27.分析为了叙述方便,我们将其余方格用字母表示,如上右图所示.根据题意可知:A+B+5=27 (1)5+C+E=27 (2)5+D+G=27 (3)6+C+D=27 (4)A+6+E=27 (5)A+C+G=27 (6)B+C+F=27 (7)E+F+G=27 (8)由(2)+(4)+(6)-(3)-(5)得知:3C=27 C=9.将C=9代入(4),D=12代入(2),则E=13.将D=12代入(3),则G=10.将E=13代入(5),则A=8.将A=8代入(1),则B=14.将B=14、C=9代入(7),则F=4.解:由分析可知,中心方格必须填数字9,其他方格中也只有一种填法.见右图.例6 请编出一个三阶幻方,使其幻和为24.分析①根据题意,要求其三阶幻方的幻和为24,所以中心数为24÷3=8.②既然8是中心数,那么与8在一条直线的各个组的其余两数的和为16,想一想哪两个数相加为16呢?1+15=16 2+14=26 3+13=164+12=16 5+11=16 6+10=167+9=16③按上述条件进行估算后填出,然后再进行调整即可得正确的答案.九个数字分别填在右图的圆内,使每一横行、每一竖行、两对角线中三个数的和都相等.分析解答这类问题,要想办法化难为易,从中找到解答的方法.①由于分数求和较繁,如果找到上述九个分数分母的最小公倍,将分数扩大后转成整数,问题就易于解决.[2,3,4,6,12]=12,将九个分数分别扩大12倍,得到6、4、3、2、8、9、1、5、7.而3×3的幻方是熟知的.如右图所示:②将上图的每个数除以12就是所求.解:例8如下图的3×3的阵列中填入了l~9的自然数,构成大家熟知的3阶幻方.现在另有一个3×3的阵列,请选择9个不同自然数填人9个方格中,使得其中最大者为20,最小者大于5,且要求横加、竖加、对角线方式相加的3个数之和都相等.分析①观察原表中的各数是从1~9不同的九个自然数,其中最大的数是9,最小的数是1,且横加、竖加、对角线方式相加结果相等.②根据题意,要求新制的幻方最大数为20,而9+11=20,因此,如果原表中的各数都增加11,就能符合新表中的条件了.解:例9将1~9这九个数字分别填入下图中两分图中的空格内(其中1和5已填好,使得前两行构成的两个三位数之和等于第三行构成的三位数,并且当每格看成单独一个数时相邻(上、下或左、右)的两格内的数的奇、偶性不同.分析由题设条件(即把3×3阵列看成三位数的加式以及奇偶性的分布)可知,上图(1)中个位上的加式必向十位上进1位(因为偶数+奇数≠偶数),而十位未向百位进位.因此,第三行第三列的奇数小于5,不等于1,必为3,进而第一列第一行和第三行的数分别为7和9.接着可把其余四格中的偶数相继确定.解:从对上图(1)的分析可得解如下图(1).对上图(2)进行类似的分析,可得解如下图(2).习题十一1.在下图两分图的空格中填入不大于15且互不相同的自然数(其中已填好一个数),使每一横行、竖列和对角线上的三数之和都等于30.2.将九个连续自然数填入3行3列的九个空格中,使每一横行及每一竖列的三个数之和都等于60.3.将从1开始的九个连续奇数填入3行3列的九个空格中,使每一横行、每一竖列及两条对角线上的三个数之和都相等.习题十一的解答在这里1.提示:首先找出中心数为10,然后设某一个空格数为x,根据横行、竖列、对角线的和都等于30,填上其余各数(含x)再由各数互不相同,且不大于15确定各数.2.提示:在三阶幻方的基础上每个数增加15即可.3.提示:与三阶幻方类似.。