火灾爆炸分析与计算
- 格式:ppt
- 大小:9.76 MB
- 文档页数:89
事故后果模拟分析方法1 简述火灾、爆炸、中毒是常见的重大事故,经常造成严重的人员伤亡和巨大的财产损失,影响社会安定。
这里重点介绍有关火灾、爆炸和中毒事故(热辐射、爆炸波、中毒)后果分析,在分析过程中运用了数学模型。
通常一个复杂的问题或现象用数学模型来描述,往往是在一个系列的假设前提下按理想的情况建立的,有些模型经过小型试验的验证,有的则可能与实际情况有较大出入,但对辨识危险性来说是可参考的。
2 泄漏由于设备损坏或操作失误引起泄漏,大量易燃、易爆、有毒有害物质的释放,将会导致火灾、爆炸、中毒等重大事故发生。
因此,事故后果分析由泄漏分析开始。
2.1 泄漏情况分析1)泄漏的主要设备根据各种设备泄漏情况分析,可将工厂(特别是化工厂)中易发生泄漏的设备归纳为以下10类:管道、挠性连接器、过滤器、阀门、压力容器或反应器、泵、压缩机、储罐、加压或冷冻气体容器及火炬燃烧装置或放散管等。
(1)管道。
它包括管道、法兰和接头,其典型泄漏情况和裂口尺寸分别取管径的20%~100%、20%和20%~100%。
(2)挠性连接器。
它包括软管、波纹管和铰接器,其典型泄漏情况和裂口尺寸为:①连接器本体破裂泄漏,裂口尺寸取管径的20%~100%;②接头处的泄漏,裂口尺寸取管径的20%;③连接装置损坏泄漏,裂口尺寸取管径的100%。
(3)过滤器。
它由过滤器本体、管道、滤网等组成,其典型泄漏情况和裂口尺寸分别取管径的20%~100%和20%。
(4)阀。
其典型泄漏情况和裂口尺寸为:①阀壳体泄漏,裂口尺寸取管径的20%~100%;②阀盖泄漏,裂口尺寸取管径的20%;③阀杆损坏泄漏,裂口尺寸取管径的20%。
(10)火炬燃烧器或放散管。
它们包括燃烧装置、放散管、多通接头、气体洗涤器和分离罐等,泄漏主要发生在简体和多通接头部位。
裂口尺寸取管径的20%~100%。
2)造成泄漏的原因从人-机系统来考虑造成各种泄漏事故的原因主要有4类。
(1)设计失误。
爆炸评价模型及伤害半径计算1、蒸气云爆炸(VCE )模型分析计算(1)蒸气云爆炸(VCE )模型当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。
用TNT 当量法来预测其爆炸严重度。
其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。
其公式如下:W TNT =式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=1.8;A ——蒸气云的TNT 当量系数,取值范围为0.02%~14.9%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ;Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。
(2)水煤气储罐蒸气云爆炸(VCE )分析计算由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。
若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81吨,则其TNT 当量计算为:取地面爆炸系数:β=1.8; 蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=2.81×1000=2810(kg );水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193kJ/kg):取Qf=616970kJ/kg;TNT的爆热,取QTNT=4500kJ/kg。
将以上数据代入公式,得W TNT死亡半径R1=13.6(W TNT/1000)=13.6×27.740.37=13.6×3.42=46.5(m)重伤半径R2,由下列方程式求解:△P2=0.137Z2-3+0.119 Z2-2+0.269 Z2-1-0.019 Z2=R2/(E/P0)1/3△P2=△P S/P0式中:△PS——引起人员重伤冲击波峰值,取44000Pa;P——环境压力(101300Pa);E——爆炸总能量(J),E=WTNT ×QTNT。
道化学火灾爆炸危险指数法1、功能火灾、爆炸危险指数评价方法1964年由美国道化学公司研究开发,目前已是第七版。
该方法以已往的事故统计资料及物质的潜在能量和现行安全措施为依据,定量的对工艺装置及所含物料的实际潜在火灾、爆炸的反应危险性进行分析评价。
通过对工艺装置及所含物料的潜在火灾、爆炸和反应性危险性的逐步推算,客观地量化潜在的火灾、爆炸和反应性事故的预期损失,确定可能引发事故发生或事故扩大的装置,再根据所采取的安全技术措施对降低潜在危险的程度,对计算结果加以修正,得出火灾、爆炸危险度的分级结果。
2、评价程序道化学火灾、爆炸危险指数评价的一般程序是,选取工艺单元→确定物质系数→计算工艺单元危险系数→确定火灾、爆炸指数→计算暴露面积→计算补偿系数→修正火灾、爆炸指数→判定危险程度等级,具体见附图2-1。
3、工艺单元危险度初步评价该阶段所得出的评价结果,表示的是不考虑任何预防措施时,工艺单元所固有的危险性。
火灾、爆炸危险指数的计算:F&EI=F3× MF式中:F1――一般工艺危险系数; F2――特殊工艺危险系数;F3――工艺单元危险度系数;MF――物质系数。
4、工艺单元危险度最终评价该阶段是在初步评价的基础上,通过变更工艺、采取减少事故频率和潜在事故规模的安全对策措施和各种预防手段来修正、降低工艺单元的危险性。
安全预防措施分工艺控制、物质隔离、防火措施三个方面。
补偿后的火灾、爆炸危险指数(F&EI)’按下式计算:(F&EI)’=F&EI ×C,其中C=C1× C2× C3式中:C ――安全措施总补偿系数; C1--工艺控制补偿系数;C 2――物质隔离补偿系数; C3――防火措施补偿系数。
附图2-1 道化学火灾、爆炸危险指数评价程序5、危险等级的确定附表3-4 危险等级分级表本评价方法的最终目的是得到可靠的评价结论,并根据评价结论提出相应的补偿措施;一般来说,只有工程中所有单元的补偿火灾、爆炸危险度均小于“Ⅳ”级,工程装置才可以通过安全设计,从而达到安全生产的基本要求。
火灾、爆炸事故后果模拟计算在化工生产中,火灾、爆炸和中毒事故不但影响生产的正常运行,而且对人员有较大的身体危害,导致人员的伤亡。
本文运用地面火灾、蒸气云爆炸和中毒的三种数学模型,对年产2万吨顺酐装置的原料库来进行分析,分析各种事故对人员可能造成的危害,借以帮助企业在生产中采取相应的措施。
事故后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量描述一个可能发生的重大事故对工厂、对厂内人员、厂外居民甚至对环境造成危害的严重程度。
一、苯储罐泄漏池火灾后果分析苯系易燃液体,在苯贮罐区苯泄漏后遇到点火源就会被点燃而着火燃烧。
由于贮罐区设有防火堤,苯泄漏后积聚在防火堤之内,它被点燃后的燃烧方式为池火。
模拟有关数据参数如下。
苯储罐区有两台800m3、两台500m3的苯储罐,苯储罐单罐直径10.5m,每两台罐为一组,贮罐区防火堤尺寸为33×16 m,模拟液池半径为18.3m;苯储罐单台最大贮存量600t,泄漏量为15%时,足以在防火堤内形成液池;周围环境温度设为25℃;(1)燃烧速度当液池中的可燃液体的沸点高于周围环境温度时,液体表面上单位面积的燃烧速度dm/dt为:………(公式F5-1)0.001H cdm/dt =C P(T b-T0)+H式中dm/dt~单位表面积的燃烧速度,kg/m2.sH c~液体燃烧热,J/kg。
苯H c=41792344J/kg。
C P~液体的定压比热容,J/kg.K。
苯C P=1729 J/kg.K。
T b~液体的沸点,K b=353.1K。
T0~环境温度,环境温度为25℃,K。
= 298K。
H~液体的气化热,J/kg。
苯H=428325J/kg。
(25℃)计算:dm/dt=0.001×41792344/﹝1729(353.1-298)+428325﹞=0.0798 kg/m2.s(2)火焰高度模拟液池为园池,半径为18.3m,其火焰高度可按下式计算:dm/dth=84r﹝﹞0.61………(公式F5-2)ρ0(2gr)1/2式中h~火焰高度,m;r~液池半径,m;取r=18.3mρ0~周围空气密度,kg/m3;取ρ0=1.185kg/m3(25℃)g~重力加速度,9.8m/s2;dm/dt~单位表面积的燃烧速度,己知0.0798kg/m2.s计算:h=84×18.3×{0.0798/[1.185×(2×9.8×18.3)1/2]}0.61=49.3m(3)热辐射通量当液池燃烧时放出的总热辐射通量为:Q=(兀r2+2兀rh)dm/dt·η·H c/﹝72(dm/dt)0.6+1﹞…(公式F5-3)Q~总热辐射通量,W;η~效率因子,可取0.13~0.35。
爆炸评价模型及伤害半径计算1、蒸气云爆炸(VCE )模型分析计算(1)蒸气云爆炸(VCE )模型当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。
用TNT 当量法来预测其爆炸严重度。
其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。
其公式如下:W TNT =式中W TNT ——蒸气云的TNT 当量,kg ;β——地面爆炸系数,取β=;A ——蒸气云的TNT 当量系数,取值范围为%~%;W f ——蒸气云中燃料的总质量:kg ;Q f ——燃料的燃烧热,kJ/kg ;Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。
(2)水煤气储罐蒸气云爆炸(VCE)分析计算由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。
若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE),设其贮量为70%时,则为吨,则其TNT当量计算为:取地面爆炸系数:β=;蒸气云爆炸TNT当量系数,A=4%;蒸气云爆炸燃烧时燃烧掉的总质量,Wf=×1000=2810(kg);水煤气的爆热,以CO 30%、H2 43%计(氢为1427700kJ/kg,一氧化碳为10193 kJ/kg):取Q f=616970kJ/kg;TNT的爆热,取Q TNT=4500kJ/kg。
将以上数据代入公式,得W TNT死亡半径R1=(W TNT/1000)=×重伤半径R2,由下列方程式求解:△P2=+ Z2-2+Z2=R2/(E/P0)1/3△P2=△P S/P0式中:△P S——引起人员重伤冲击波峰值,取44000Pa; P0——环境压力(101300Pa);E——爆炸总能量(J),E=W TNT×Q TNT。
爆炸评价模型及伤害半径计算1、蒸气云爆炸(VCE )模型分析计算(1)蒸气云爆炸(VCE )模型当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。
用TNT 当量法来预测其爆炸严重度。
其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。
其公式如下:W TNT式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=;A ——蒸气云的TNT 当量系数,取值范围为%~%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ;Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。
(2)水煤气储罐蒸气云爆炸(VCE )分析计算由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。
若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为吨,则其TNT 当量计算为:取地面爆炸系数:β=;蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=×1000=2810(kg );水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193kJ/kg):取Q f=616970kJ/kg;TNT的爆热,取Q TNT=4500kJ/kg。
将以上数据代入公式,得W TNT ==27739(kg)死亡半径R1=(W TNT/1000)=×重伤半径R2,由下列方程式求解:△P2=+ Z2-2+Z2=R2/(E/P0)1/3△P2=△P S/P0式中:△P S——引起人员重伤冲击波峰值,取44000Pa;P0——环境压力(101300Pa);E——爆炸总能量(J),E=W TNT×Q TNT。
爆炸评价模型及伤害半径计算1、蒸气云爆炸(VCE )模型分析计算(1)蒸气云爆炸(VCE )模型当爆炸性气体储存在贮槽内,一旦泄漏,遇到延迟点火则可能发生蒸气云爆炸,如果遇不到火源,则将扩散并消失掉。
用TNT 当量法来预测其爆炸严重度。
其原理是这样的:假定一定百分比的蒸气云参与了爆炸,对形成冲击波有实际贡献,并以TNT 当量来表示蒸气云爆炸的威力。
其公式如下:W TNT =式中W TNT ——蒸气云的TNT 当量,kg ; β——地面爆炸系数,取β=1.8;A ——蒸气云的TNT 当量系数,取值范围为0.02%~14.9%; W f ——蒸气云中燃料的总质量:kg ; Q f ——燃料的燃烧热,kJ/kg ;Q TNT ——TNT 的爆热,QTNT=4120~4690kJ/kg 。
(2)水煤气储罐蒸气云爆炸(VCE )分析计算由于合成氨生产装置使用的原料水煤气为一氧化碳与氢气混合物,具有低闪点、低沸点、爆炸极限较宽、点火能量低等特点,一旦泄漏,极具蒸气云爆炸概率。
若水煤气储罐因泄漏遇明火发生蒸气云爆炸(VCE ),设其贮量为70%时,则为2.81吨,则其TNT 当量计算为:取地面爆炸系数:β=1.8; 蒸气云爆炸TNT 当量系数,A=4%; 蒸气云爆炸燃烧时燃烧掉的总质量, Wf=2.81×1000=2810(kg );水煤气的爆热,以CO 30%、H 2 43%计(氢为1427700kJ/kg,一氧化碳为10193kJ/kg ):取Q f =616970kJ/kg ;TNT 的爆热,取Q TNT =4500kJ/kg 。
将以上数据代入公式,得W TNT 死亡半径R 1=13.6(W TNT /1000)=13.6×27.740.37 =13.6×3.42=46.5(m)重伤半径R 2,由下列方程式求解:△P 2=0.137Z 2-3+0.119 Z 2-2+0.269 Z 2-1-0.019 Z 2=R 2/(E/P 0)1/3 △P 2=△P S /P 0式中:△P S ——引起人员重伤冲击波峰值,取44000Pa ; P 0——环境压力(101300Pa ); E ——爆炸总能量(J ),E=W TNT ×Q TNT 。
附件4定量分析危险、有害程度的过程附件4.1固有危险程度定量分析1、具有爆炸性的化学品的质量及相当于梯恩梯(TNT)的摩尔量附表4.7.1 相关数据1、爆炸空间物质量计算W f=VLmρ式中:V-爆炸空间的体积大小m3,Lm-最易爆炸浓度ρ-可燃气体的密度1)二硫化碳IS90车间的晾晒厂房24*15*8=2880m3二硫化碳的密度为3.17kg/m3最易发生爆炸的总量W f=VLmρ=2880*7.5%*3.17=685kg上限发生爆炸的总量W f=VLmρ=2880*44%*3.17=4020kg2)氨制冷车间厂房20*15*8=2400m3氨的密度为0.71kg/m3最易发生爆炸的总量W f=VLmρ=2400*17%*0.71=290kg上限发生爆炸的总量W f=VLmρ=2400*25%*0.71=426kg3)硫磺粉尘IS60车间的粉碎厂房24*15*8=2880m3硫磺的最易爆炸浓度为70g/m3=0.07kg/m3W f=VLm=2880*0.07=202kg硫磺的发生爆炸的上限浓度为1400g/m3=1.4kg/m3W f=VLm=2880*1.4=4032kg2、TNT当量计算蒸汽云爆炸的TNT当量计算公式:W TNT=AW f Q f/Q TNT式中 A-蒸汽云的TNT当量系数,取4%;W TNT-蒸汽云的TNT当量,Kg;W f-蒸汽云中燃料总质量,Kg;Q f-燃料的燃烧热,MJ/Kg;Q TNT-TNT的爆热, Q TNT=4520 kJ/kg;1)二硫化碳蒸汽云爆炸的TNT当量计算:W TNT1=AW f Q f/Q TNT=0.04×685×1000/76.14×1030.8/4520=82.1kgW TNT2=AW f Q f/Q TNT=0.04×4020×1000/76.14×1030.8/4520=482kg2)硫磺粉尘蒸汽云爆炸的TNT当量计算:W TNT1=AW f Q f/Q TNT=0.04×202×1000/32.06×297/4520=16.6KgW TNT2=AW f Q f/Q TNT=0.04×4032×1000/32.06×297/4520=331Kg3)氨蒸汽云爆炸的TNT当量计算:W TNT1=AW f Q f/Q TNT=0.04×290×1000/17.07×361.25/4520=54.3KgW TNT2=AW f Q f/Q TNT=0.04×426×1000/17.07×361.25/4520=80Kg3、具有可燃性的化学品的质量及燃烧后放出的热量1)二硫化碳燃烧后放出的热量⑴生产车间二硫化碳的Q1=1030.8×15000×1000/76.14=20.3×107J⑵储罐区二硫化碳的Q2=1030.8×30000×1000/76.14=40.6×107J2)硫磺燃烧后放出的热量⑴10t硫磺燃烧Q1=297×10000×1000/32.06=9.26×107J⑵15t硫磺燃烧Q2=297×15000×1000/32.06=13.89×107J⑶300t硫磺燃烧Q3=297×3000000×1000/32.06=2778×107J⑷500t硫磺燃烧Q4=297×5000000×1000/32.06=4630×107J3)全部氨燃烧Q=361.25×1800×1000/17.07=3.81×107J附件4.2爆炸事故影响的范围1、爆炸事故的条件引发爆炸的条件是:爆炸品(内含还原剂和氧化剂)或可燃物(可燃气、蒸气或粉尘)与空气混合物达到爆炸极限范围并由起爆能源同时存在引发爆炸。
火灾、爆炸事故后果模拟计算在化工生产中,火灾、爆炸和中毒事故不但影响生产的正常运行,而且对人员有较大的身体危害,导致人员的伤亡。
本文运用地面火灾、蒸气云爆炸和中毒的三种数学模型,对年产2万吨顺酐装置的原料库来进行分析,分析各种事故对人员可能造成的危害,借以帮助企业在生产中采取相应的措施。
事故后果分析是危险源危险性分析的一个主要组成部分,其目的在于定量描述一个可能发生的重大事故对工厂、对厂内人员、厂外居民甚至对环境造成危害的严重程度。
一、苯储罐泄漏池火灾后果分析苯系易燃液体,在苯贮罐区苯泄漏后遇到点火源就会被点燃而着火燃烧。
由于贮罐区设有防火堤,苯泄漏后积聚在防火堤之内,它被点燃后的燃烧方式为池火。
模拟有关数据参数如下。
苯储罐区有两台800m3、两台500m3的苯储罐,苯储罐单罐直径10.5m,每两台罐为一组,贮罐区防火堤尺寸为33×16 m,模拟液池半径为18.3m;苯储罐单台最大贮存量600t,泄漏量为15%时,足以在防火堤内形成液池;周围环境温度设为25℃;(1)燃烧速度当液池中的可燃液体的沸点高于周围环境温度时,液体表面上单位面积的燃烧速度dm/dt为:………(公式F5-1)0.001H cdm/dt =C P(T b-T0)+H式中dm/dt~单位表面积的燃烧速度,kg/m2.sH c~液体燃烧热,J/kg。
苯H c=41792344J/kg。
C P~液体的定压比热容,J/kg.K。
苯C P=1729 J/kg.K。
T b~液体的沸点,K b=353.1K。
T0~环境温度,环境温度为25℃,K。
= 298K。
H~液体的气化热,J/kg。
苯H=428325J/kg。
(25℃)计算:dm/dt=0.001×41792344/﹝1729(353.1-298)+428325﹞=0.0798 kg/m2.s(2)火焰高度模拟液池为园池,半径为18.3m,其火焰高度可按下式计算:dm/dth=84r﹝﹞0.61………(公式F5-2)ρ0(2gr)1/2式中h~火焰高度,m;r~液池半径,m;取r=18.3mρ0~周围空气密度,kg/m3;取ρ0=1.185kg/m3(25℃)g~重力加速度,9.8m/s2;dm/dt~单位表面积的燃烧速度,己知0.0798kg/m2.s计算:h=84×18.3×{0.0798/[1.185×(2×9.8×18.3)1/2]}0.61=49.3m(3)热辐射通量当液池燃烧时放出的总热辐射通量为:Q=(兀r2+2兀rh)dm/dt·η·H c/﹝72(dm/dt)0.6+1﹞…(公式F5-3)Q~总热辐射通量,W;η~效率因子,可取0.13~0.35。
dow 火灾爆炸指数评价法中计算暴露半径的公式根据您的要求,我将为您撰写一篇有关"DOW火灾爆炸指数评价法中计算暴露半径的公式"的文章。
1. 什么是DOW火灾爆炸指数评价法DOW火灾爆炸指数评价法是一种用于评估和控制火灾爆炸风险的方法。
它是根据火灾和爆炸基础理论和实验研究,结合一系列物料特性参数,综合计算得出的一个表征火灾爆炸风险的指数。
该评价法被广泛应用于工业领域,有助于设计安全的工作场所和设备。
2. 计算暴露半径的公式在DOW火灾爆炸指数评价法中,暴露半径是评估爆炸风险的一个重要参数。
暴露半径就是指在这个范围内,人员和设备可能遭受到火灾爆炸侵害的距离。
计算暴露半径可以使用以下公式:暴露半径(米)= k × ∛(Qs/P)其中,k是一个修正系数,Qs是火灾爆炸源的放出速度(千克/秒),P是环境条件下的初始压力(帕斯卡)。
3. 公式解读与参数影响在上述公式中,修正系数k的数值由具体情况决定,主要受以下因素影响:3.1 爆炸物料的性质: 不同物料的燃烧特性和爆炸能力不同,因此修正系数k在一定程度上会随着物料的变化而变化。
3.2 环境条件: 环境温度、湿度和气压等环境条件会对爆炸行为产生影响,进而影响修正系数k的取值。
3.3 爆炸源放出速度: 爆炸源的放出速度是计算暴露半径的重要参数之一。
放出速度越大,暴露半径就越大。
3.4 初始压力: 初始压力是指爆炸源在环境条件下的初始压力值。
初始压力越大,暴露半径也越大。
综合上述因素,使用DOW火灾爆炸指数评价法计算暴露半径时,需要准确确定物料的特性参数,并结合环境条件和爆炸源的放出速度及初始压力等参数的取值,计算出修正系数k的数值,然后应用公式进行计算。
4. 个人观点和理解DOW火灾爆炸指数评价法是一种可靠且有效的风险评估方法。
它不仅可以帮助企业识别和控制火灾爆炸风险,还可以指导设计安全的工作场所和设备。
通过计算暴露半径的公式,我们可以更好地认识到火灾爆炸对人员和设备的危害范围,从而制定相应的应急措施和防护措施,最大限度地降低损失和风险。
蒸汽云爆炸、池⽕灾计算⽅法附件4定量分析危险、有害程度的过程附件4.1固有危险程度定量分析1、具有爆炸性的化学品的质量及相当于梯恩梯(TNT)的摩尔量附表4.7.1 相关数据1、爆炸空间物质量计算W f=VLmρ式中:V-爆炸空间的体积⼤⼩m3,Lm-最易爆炸浓度ρ-可燃⽓体的密度1)⼆硫化碳IS90车间的晾晒⼚房24*15*8=2880m3⼆硫化碳的密度为3.17kg/m3最易发⽣爆炸的总量W f=VLmρ=2880*7.5%*3.17=685kg上限发⽣爆炸的总量W f=VLmρ=2880*44%*3.17=4020kg2)氨制冷车间⼚房20*15*8=2400m3氨的密度为0.71kg/m3最易发⽣爆炸的总量W f=VLmρ=2400*17%*0.71=290kg上限发⽣爆炸的总量W f=VLmρ=2400*25%*0.71=426kg3)硫磺粉尘IS60车间的粉碎⼚房24*15*8=2880m3硫磺的最易爆炸浓度为70g/m3=0.07kg/m3W f=VLm=2880*0.07=202kg硫磺的发⽣爆炸的上限浓度为1400g/m3=1.4kg/m3W f=VLm=2880*1.4=4032kg2、TNT当量计算蒸汽云爆炸的TNT当量计算公式:W TNT=AW f Q f/Q TNT式中 A-蒸汽云的TNT当量系数,取4%;W TNT-蒸汽云的TNT当量,Kg;W f-蒸汽云中燃料总质量,Kg;Q f-燃料的燃烧热,MJ/Kg;Q TNT-TNT的爆热, Q TNT=4520 kJ/kg;1)⼆硫化碳蒸汽云爆炸的TNT当量计算:W TNT1=AW f Q f/Q TNT=0.04×685×1000/76.14×1030.8/4520=82.1kgW TNT2=AW f Q f/Q TNT=0.04×4020×1000/76.14×1030.8/4520=482kg2)硫磺粉尘蒸汽云爆炸的TNT当量计算:W TNT1=AW f Q f/Q TNT=0.04×202×1000/32.06×297/4520=16.6KgW TNT2=AW f Q f/Q TNT=0.04×4032×1000/32.06×297/4520=331Kg3)氨蒸汽云爆炸的TNT当量计算:W TNT1=AW f Q f/Q TNT=0.04×290×1000/17.07×361.25/4520=54.3KgW TNT2=AW f Q f/Q TNT=0.04×426×1000/17.07×361.25/4520=80Kg3、具有可燃性的化学品的质量及燃烧后放出的热量1)⼆硫化碳燃烧后放出的热量⑴⽣产车间⼆硫化碳的Q1=1030.8×15000×1000/76.14=20.3×107J⑵储罐区⼆硫化碳的Q2=1030.8×30000×1000/76.14=40.6×107J2)硫磺燃烧后放出的热量⑴10t硫磺燃烧Q1=297×10000×1000/32.06=9.26×107J⑵15t硫磺燃烧Q2=297×15000×1000/32.06=13.89×107J⑶300t硫磺燃烧Q3=297×3000000×1000/32.06=2778×107J⑷500t硫磺燃烧Q4=297×5000000×1000/32.06=4630×107J3)全部氨燃烧Q=361.25×1800×1000/17.07=3.81×107J附件4.2爆炸事故影响的范围1、爆炸事故的条件引发爆炸的条件是:爆炸品(内含还原剂和氧化剂)或可燃物(可燃⽓、蒸⽓或粉尘)与空⽓混合物达到爆炸极限范围并由起爆能源同时存在引发爆炸。