CFD计算流体动力学入门教程选择
- 格式:doc
- 大小:379.96 KB
- 文档页数:32
fluent教程Fluent是一款由Ansys开发的计算流体动力学(CFD)软件,广泛应用于工程领域,特别是在流体力学仿真方面。
本教程将介绍一些Fluent的基本操作,帮助初学者快速上手。
1. 启动Fluent首先,双击打开Fluent的图形用户界面(GUI)。
在启动页面上,选择“模拟”(Simulate)选项。
2. 创建几何模型在Fluent中,可以通过导入 CAD 几何模型或使用自带的几何建模工具来创建模型。
选择合适的方法,创建一个几何模型。
3. 定义网格在进入Fluent之前,必须生成一个网格。
选择合适的网格工具,如Ansys Meshing,并生成网格。
确保网格足够精细,以便准确地模拟流体力学现象。
4. 导入网格在Fluent的启动页面上,选择“导入”(Import)选项,并将所生成的网格文件导入到Fluent中。
5. 定义物理模型在Fluent中,需要定义所模拟流体的物理属性以及边界条件。
选择“物理模型”(Physics Models)选项,并根据实际情况设置不同的物理参数。
6. 设置边界条件在模型中,根据实际情况设置边界条件,如入口速度、出口压力等。
选择“边界条件”(Boundary Conditions)选项,并给出相应的数值或设置。
7. 定义求解器选项在Fluent中,可以选择不同的求解器来解决流体力学问题。
根据实际情况,在“求解器控制”(Solver Control)选项中选择一个合适的求解器,并设置相应的参数。
8. 运行仿真设置完所有的模型参数后,点击“计算”(Compute)选项,开始运行仿真。
等待仿真过程完成。
9. 后处理结果完成仿真后,可以进行结果的后处理,如流线图、压力分布图等。
选择“后处理”(Post-processing)选项,并根据需要选择相应的结果显示方式。
10. 分析结果在后处理过程中,可以进行结果的分析。
比较不同参数的变化,探索流体流动的特点等。
以上是使用Fluent进行流体力学仿真的基本流程。
CFD 基 础(流体力学)#.第1章 CFD 基 础计算流体动力学(computational fluid dynamics ,CFD)是流体力学的一个分支,它通过计算机模拟获得某种流体在特定条件下的有关信息,实现了用计算机代替试验装置完成“计算试验”,为工程技术人员提供了实际工况模拟仿真的操作平台,已广泛应用于航空航天、热能动力、土木水利、汽车工程、铁道、船舶工业、化学工程、流体机械、环境工程等 领域。
本章介绍CFD 一些重要的基础知识,帮助读者熟悉CFD 的基本理论和基本概念,为计算时设置边界条件、对计算结果进行分析与整理提供参考。
1.1 流体力学的基本概念1.1.1 流体的连续介质模型流体质点(fluid particle):几何尺寸同流动空间相比是极小量,又含有大量分子的微 元体。
连续介质(continuum/continuous medium):质点连续地充满所占空间的流体或固体。
连续介质模型(continuum/continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u (t ,x ,y ,z )。
1.1.2 流体的性质1. 惯性惯性(fluid inertia)指流体不受外力作用时,保持其原有运动状态的属性。
惯性与质量有关,质量越大,惯性就越大。
单位体积流体的质量称为密度(density),以r 表示,单位为kg/m 3。
对于均质流体,设其体积为V ,质量为m ,则其密度为mVρ= (1-1)对于非均质流体,密度随点而异。
若取包含某点在内的体积V ∆,其中质量m ∆,则该点密度需要用极限方式表示,即0limV mVρ∆→∆=∆ (1-2) 2. 压缩性作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。
压缩性(compressibility)可用体积压缩率k 来量度d /d /d d V V k p p ρρ=-= (1-3)式中:p 为外部压强。
一篇文章入门计算流体动力学CFD--(下)推荐一本书《我所理解的流体力学》,这本书包含了流体力学的公式理论推导,基本原理以及很多流体的有趣现象,图文并茂,兼顾专业和科普,是介绍流体力学不可多得的好书。
就在今年2020年4月26号,武汉多位车主反映,武汉鹦鹉洲长江大桥桥体出现可感知的上下晃动现象,该桥管养单位武汉市城投集团公司回应称,此次桥梁异常振动系特定风况引起,振幅在设计允许范围内;桥梁结构运行正常,安全有保障。
在“一篇文章入门多物理场有限元”一文中介绍过美国塔科马大桥早年被风吹垮塌的事故,之后的悬索桥都考虑到了强风对桥梁的影响,进行了CFD相关仿真,所以桥的质量本身是没有问题的,但是因为牺牲了刚度,导致振动位移过大带来的行车安全隐患也不容忽视,想想坐车上下颠簸达一米的时候,真是在坐过山车的感觉。
计算流体力学CFD属于流体力学的一部分,是用数值计算方法求解流体力学问题。
在“一篇文章入门计算流体动力学CFD上”中介绍了计算流体的一些基本概念,本文再进行一些扩展。
按照流体不同的特点,可以进行分类:1. 理想流体和粘性流体粘性(Viscocity)是流体内部发成相对运动而引起的内部相互作用2. 牛顿流体与非牛顿流体按照内摩擦剪应力与速度变化率的关系不同,粘性流体又分为牛顿流体和非牛顿流体;3. 可压缩流体和不可压缩流体例如空气可压缩,水不可压缩4. 定常和非定常流动许多流体机械在启动或者关机时候可以看做非定常流动,而正常运转时可以看做定常流动5. 层流和湍流可以通过雷诺系数来确定----------------------------有限体积法的离散格式:在使用有限体积法建立离散方程时,很重要的一步是将控制体积界面上的物理量以及导数通过节点物理量插值求出,引入插值方式的目的即使为了建立离散方程,常用的离散方式有:中心差分格式,一阶迎风格式,混合格式,指数格式,乘风格式,二阶迎风格式,QUICK格式,压力修正法SIMPLE不simpleSIMPLE算法是流体中经常使用的离散算法,全名为压力耦合方程组的半隐式方法(Semi-ImplicitMethod forPressureLinkedEquations),是CFD中一种被广泛使用的求解流场的数值方法,于1972年由苏哈斯·帕坦卡与布莱恩·斯波尔丁提出。
计算流体力学教案一、课程介绍1.1 课程背景计算流体力学(Computational Fluid Dynamics,CFD)是运用数值分析和算法解决和分析流体力学问题的一个分支。
本课程旨在让学生了解并掌握计算流体力学的基本原理、方法和应用。
1.2 课程目标通过本课程的学习,学生将能够:(1)理解流体力学的基本概念和原理;(2)掌握CFD的基本数值方法和算法;(3)应用CFD软件进行流体力学的数值分析和解决实际问题。
二、教学内容2.1 流体力学基础(1)流体力学的定义和发展;(2)流体力学的分支;(3)流体力学的基本方程。
2.2 数值方法基础(1)数值方法的分类;(2)数值方法的原理;(3)数值方法的稳定性分析。
2.3 网格技术(1)网格方法;(2)网格质量评价;(3)网格独立性研究。
2.4 流动问题的离散化(1)流动问题的离散化方法;(2)离散化方程的求解方法;(3)离散化方程的数值求解技术。
2.5 流场可视化(1)流场可视化的方法;(2)流场可视化的技术;(3)流场可视化的应用。
三、教学方法3.1 课堂讲授通过讲解流体力学的基本概念、原理和数值方法,使学生掌握CFD的基本理论。
3.2 软件操作实践通过操作CFD软件,使学生了解并掌握网格、流动问题离散化、求解和流场可视化的实际操作。
3.3 案例分析通过分析实际案例,使学生了解并掌握CFD在工程中的应用。
四、教学评估4.1 平时成绩包括课堂表现、作业完成情况等,占总成绩的30%。
4.2 期中考试包括理论知识和软件操作,占总成绩的30%。
4.3 期末考试包括理论知识,占总成绩的40%。
五、教学资源5.1 教材《计算流体力学导论》(Introduction to Computational Fluid Dynamics)。
5.2 软件CFD软件,如OpenFOAM、FLUENT等。
5.3 网络资源相关在线课程、论文、教程等。
六、网格技术(续)6.1 结构网格结构网格的定义和特点常见的结构网格算法结构网格在CFD中的应用案例6.2 非结构网格非结构网格的定义和特点常见的非结构网格算法非结构网格在CFD中的应用案例6.3 混合网格混合网格的定义和特点混合网格算法的基本原理混合网格在CFD中的应用案例七、流动问题的离散化(续)7.1 守恒定律的离散化质量守恒定律的离散化动量守恒定律的离散化能量守恒定律的离散化7.2 离散化方程的求解线性方程组的求解方法非线性方程组的求解方法代数方程组的求解方法7.3 离散化方程的数值求解技术(续)时间步进方法空间离散化技术稳定性和收敛性分析八、流场可视化(续)8.1 流场可视化的方法(续)着色法纹理映射法粒子追踪法8.2 流场可视化的技术(续)数据处理技术三维重构技术动画制作技术8.3 流场可视化的应用(续)航空航天领域的应用汽车工业领域的应用生物医学领域的应用九、案例分析(续)9.1 案例分析的方法案例选择的原则案例分析的步骤9.2 流体动力学案例分析不可压缩流体的流动案例可压缩流体的流动案例复杂几何形状的流动案例9.3 热流体力学案例分析热传导问题案例热对流问题案例热辐射问题案例十、课程总结与展望10.1 课程总结本课程的主要内容和知识点回顾学生在本课程中学到的技能和知识10.2 课程作业与项目课程作业的布置与评价课程项目的选择与实施10.3 未来学习方向CFD在科学研究中的应用CFD在工业中的应用趋势CFD领域的最新研究动态十一、流体机械特性分析11.1 流体的粘性粘性的定义和测量牛顿流体和非牛顿流体的特性粘性流体的流动案例分析11.2 流体的弹性弹性流体的定义和特性弹性流体流动的数值模拟方法弹性流体流动案例分析11.3 流体的湍流特性湍流的定义和特性湍流流动的数值模拟方法湍流流动案例分析十二、多相流动分析12.1 多相流动的定义和分类单相流动和多相流动的定义连续相、分散相和界面流动的特点多相流动的数值模拟方法12.2 多相流动的数值模拟方法欧拉-欧拉模型欧拉-拉格朗日模型离散相模型12.3 多相流动案例分析油气水三相流动案例颗粒物在空气中的扩散案例喷雾燃烧过程的数值模拟案例十三、化学反应流体力学13.1 化学反应流体力学的定义和特点化学反应和流体运动的相互作用化学反应流体力学的应用领域化学反应流体力学的数值模拟方法13.2 化学反应流动的数值模拟方法反应速率模型化学反应平衡和化学平衡计算化学反应流体流动的数值模拟算法13.3 化学反应流体流动案例分析燃烧过程中的化学反应流动案例化工过程中的化学反应流动案例环境污染治理过程中的化学反应流动案例十四、计算流体力学的软件应用14.1 CFD软件的基本操作CFD软件的用户界面和操作流程CFD软件的网格和边界条件设置CFD软件的求解器和结果分析工具14.2 CFD软件的高级应用参数研究and 优化并行计算和云计算应用复杂几何形状和多物理场耦合问题的模拟14.3 CFD软件案例分析利用CFD软件分析风力发电机翼的气流分布利用CFD软件分析汽车发动机的冷却效果利用CFD软件分析建筑物的热环境十五、课程项目与实验15.1 课程项目的选择与实施项目选题的原则和步骤项目实施的计划和管理项目成果的评估和反馈15.2 实验设计与实验操作实验设计的原则和方法实验操作的步骤和安全注意事项实验数据的采集和分析报告的结构和内容要求报告的提交和评审流程重点和难点解析本文教案主要介绍了计算流体力学(CFD)的基本原理、方法与应用,内容涵盖了流体力学基础、数值方法基础、网格技术、流动问题的离散化、流场可视化、案例分析、多相流动分析、化学反应流体力学、计算流体力学的软件应用以及课程项目与实验等方面。
计算流体动力学分析-CFD软件原理与应用课程设计背景在现代工程设计与制造中,计算流体动力学(CFD)已经成为一种不可或缺的技术手段。
通过CFD软件,可以对流体在各种复杂模型中的运动行为进行模拟,进而评估不同设计方案的可行性和优化效果。
因此,掌握CFD软件原理及其应用,对于提高工程师的分析能力和解决实际问题具有重要的意义。
目的本课程设计的主要目的是:•探究CFD软件的原理和基本方法;•让学生掌握CFD软件的基本使用方法;•培养学生的分析和解决实际问题的能力;•提高学生对现代工程设计与制造技术的认识。
内容第一部分 CFD软件基础本部分主要介绍CFD软件的基础概念和原理。
1.1 什么是CFD?CFD是计算流体动力学(Computational Fluid Dynamics)的缩写,指的是应用数值方法来模拟流体运动的技术。
1.2 CFD的主要应用领域CFD广泛应用于航空航天、汽车工程、能源、环境工程、化工等领域。
1.3 CFD的基本方法CFD的基本方法包括离散化方法、求解方法和后处理方法等。
1.4 CFD软件的常用功能CFD软件的常用功能包括建模、网格生成、求解、模拟结果可视化等。
第二部分 CFD软件实践本部分主要介绍Ansys Fluent CFD软件的基本使用方法,通过几个实例进行演示。
2.1 Ansys Fluent的基本概念和操作界面介绍Ansys Fluent的基本概念和主要操作界面,包括设置求解器、建立求解域、模型输入等。
2.2 翼型流场的模拟通过对翼型流场的模拟,演示如何进行网格生成和求解,以及如何对结果进行可视化和分析。
2.3 冷却水循环系统的模拟通过对冷却水循环系统的模拟,演示Ansys Fluent在实际工程设计中的应用,以及如何通过CFD技术优化设备性能。
第三部分课程总结和展望本部分主要总结本课程的学习成果,并展望CFD技术在未来的应用前景。
教学方法及考核方式本课程采用理论授课和实验操作相结合的教学方法。
ansys cfd入门指南计算流体力学基础与应用1. 引言计算流体力学(Computational Fluid Dynamics,简称CFD)是一种利用数值方法解决流动问题的工程学科。
它通过数值模拟和计算来研究流体在各种条件下的运动和相互作用。
而ANSYS CFD则是CFD领域中一种常用的软件工具,它提供了广泛的功能和强大的计算能力,使工程师能够更好地理解和优化流体问题。
2. 概述ANSYS CFDANSYS CFD是由ANSYS公司开发的一套用于CFD分析的软件。
它采用了计算网格和数值方法,通过将流体领域离散为有限数量的小块,利用数值求解方法来模拟流体的运动。
ANSYS CFD具有较高的准确性和可靠性,可以用于解决各种复杂的流体力学问题。
3. CFD基础知识为了更好地理解ANSYS CFD的工作原理,我们需要了解一些CFD的基础知识。
我们需要了解流体力学的基本方程:质量守恒方程、动量守恒方程和能量守恒方程。
这些方程描述了流体在不同条件下的运动和相互作用。
4. ANSYS CFD的功能ANSYS CFD提供了丰富的功能,可以满足不同应用场景的需求。
它支持不同类型的流体,包括压缩性流体和非压缩性流体。
它支持不同的边界条件和初始条件,以模拟各种实际情况。
ANSYS CFD还提供了不同的数值方法和求解器,以提高计算效率和准确性。
5. ANSYS CFD的应用领域ANSYS CFD可以应用于各种领域的流体问题研究和优化。
它可以用于飞行器的气动设计和优化,以提高飞行性能和燃油效率。
它也可以用于汽车工程中的空气动力学分析,以改善汽车的操控性和燃油经济性。
ANSYS CFD还可以应用于能源领域的风力发电和涡轮机械的设计与分析。
6. ANSYS CFD的优势和局限性虽然ANSYS CFD具有强大的功能和广泛的应用领域,但它也存在一些局限性。
ANSYS CFD需要较高的计算资源和时间,对计算机的性能要求较高。
ANSYS CFD在某些复杂流动问题中可能存在数值稳定性和收敛性的挑战。
Fluent学习推荐书目虽然网络上的资料和帖子很多,但多数有些还都是限于个人经验而显得不太正规,现在把目前我觉得适合入门又值得继续深入学习的优秀教材和资料推荐出来,供大家参考。
1.计算流体动力学分析-CFD软件原理与应用王福军编著清华大学出版社2004.9这本书适合对Fluent有了一定的了解,但是又很云山雾罩的那种感觉的人,见到这本贴心为读者编写的书会觉得万分亲切,相见恨晚。
该书对CFD的各种离散格式,求解算法,湍流模型,边界条件,网格生成原理几个方面做了深入浅出的介绍和比较,会让人在那些高深的理论面前找回点自信,原来CFD理论也不是不可理喻的嘛!最令人舒服的是后面对Fluent基本用法的介绍,细致到了绝大多数通用界面的设置,细致到每个参数的意义和取值。
多说了,别犹豫赶紧出手吧,中关村或者当当网都有卖,卓越没货很久了,毕竟04年出版的又没有后续修订,不是新书了。
2.FLUENT流体工程仿真计算实例与应用韩占忠编北京理工大学出版社2004.6目前市面上卖的专门讲述Fluent使用的书籍不多,另一本是清华大学出版的《Fluent技术基础与应用实例》,我不知道在销量方面韩占忠的教材是不是占据着绝对优势,但凡比较过二者的师兄和同学都会推荐韩的教材!该书开门见山,废话不多说,手把手的讲解计算实例,用眼见为实的计算结果来打动读者的心。
该书选取的实例比较典型,对不同领域的想要入门的新手是个很有价值的参考。
但仅仅是个参考,每个人关心的问题都不同,同一专业的同一问题也会有五花八门的情况。
由于疏忽和软件版本不同,不保证该书的所有结果都能实现。
我在对Fluent一知半解的情况下做了该书第二章前五节的例子,对Gambit的网格画法有了点底,但还是没有自信独立建模计算,所以到第六节的例子立马卡住了。
也就是自己尝试解决第六个例子开始,跟师兄请教,上网搜索,自己摸索,到最后得到一两个确定的结论,才可以说入了点门。
来这个插曲是想说,照着做可以找找对Fluent的感觉,混个脸熟先,只有鼓起勇气自己独立解决新的问题,自己画网格,建立模型,愿意为了一个不明白的参数设置和小问题,花几个小时琢磨解决,才可以逐步建立更进一步的自信,加深对它的感情~~在这个过程中,你会发现对Gambit的操作熟练程度在潜移默化的提高。
气体动力学1.理想气体运动的基本方程组理想气体:无粘性、无导热性雷诺数:度量粘性效应的相对大小的量纲一的数R e=ρVLμ=惯性力粘性力●要确定理想气体的流场,一般需要知道六个参数:速度V的三个分量,压力p,密度ρ和温度T。
因此理想气体动力学要建立六个独立的基本方程,连同初边值条件,以构成定解问题。
●基本方程所依据的是三个方面的物理定律,即运动学方面的质量守恒定律,动力学方面的牛顿定律和热力学方面的第一、第二定律以及气体热状态方程。
●建立基本方程时首先面临着这么一个问题:怎样选取流体物质形态的模型作为研究对象。
有两种流体模型可供选择。
一种是随体观点的模型,它认定某个有确定质量的流体团,称为封闭系统,其特点是:(1) 系统的体积τ(t)和界面积σ(t)随流体运动而随时变化;(2) 在系统的界面上,只有能量交换,没有质量交换。
一种是当地观点的模型,它在流体空间认定一个固定的控制面所包围的区域,称为开口系统,其特点是:(1) 系统的体积τ和界面积σ是固定不变的;(2) 在系统的界面上,既有能量交换,也有质量交换。
对于上述两种流体模型,即封闭系统和开口系统,还有两种数学表达形式。
一种是选取有限质量(体积)的系统,写成积分形式的基本方程。
另一种是选取微元质量(体积)的系统,写成微分形式的基本方程。
微分形式的方程适用于连续流程,便于探讨流场各处的参数分布规律。
积分形式的方程便于从总体上研究问题,而且可以用来求解系统中有间断面存在的情况。
综上所述,理想气体运动的基本方程组的要点可归为:六个方程、三个方面、两种观点、两种形式。
1.1 连续性方程质量守恒方程(当地观点、微分形式)微元体的质量平衡式:微元体内质量的增加率=进入微元体的质量净流率微元体内质量的增加率:ððt (ρδxδyδz)=ðρðtδxδyδz进入微元体的质量流率的净变化率:通过微元体每一个表面的质量流率等于密度、速度分量和面积的乘积。
ansys cfd 入门指南计算流体力学基础及应用【ansys cfd 入门指南计算流体力学基础及应用】1. 介绍计算流体力学(CFD)是一种利用计算机对流体流动和传热过程进行数值模拟和分析的技术。
在工程、航空航天、汽车、船舶、能源等领域中有着广泛的应用。
本文将详细介绍ansys cfd入门指南,帮助大家了解流体力学的基础知识和ansys cfd的应用。
2. 流体力学基础流体力学是研究流体运动的科学,它包括流体的基本性质、流体运动的基本规律和流体力学方程等内容。
在ansys cfd入门指南中,我们首先要了解流体的基本性质,如密度、粘度和压力等概念;其次是流体流动的基本规律,如连续性方程、动量方程和能量方程;最后是流体力学方程,如纳维-斯托克斯方程和能量方程的数学形式。
3. ansys cfd简介ansys cfd是一款强大的计算流体力学软件,它能够对流体流动、传热和传质等问题进行数值模拟和分析。
ansys cfd具有友好的用户界面和丰富的后处理功能,可以满足工程实际应用的需求。
在ansys cfd入门指南中,我们将学习如何使用ansys cfd进行流体力学仿真分析,包括建模、网格划分、求解和后处理等步骤。
4. ansys cfd的应用ansys cfd在工程领域有着广泛的应用,如风力发电机组的气动设计、汽车发动机的冷却系统优化、船舶的流体力学性能分析等。
在ansys cfd入门指南中,我们将结合实际案例,介绍如何使用ansys cfd解决实际工程问题,包括模型建立、边界条件设置、求解过程和结果分析等内容。
5. 个人观点和总结我认为ansys cfd入门指南对于学习流体力学和应用ansys cfd的人来说是非常有价值的。
通过系统学习流体力学的基础知识和ansys cfd 的使用方法,可以更好地理解流体力学的原理和应用。
ansys cfd作为一款先进的计算流体力学软件,可以为工程领域的问题提供可靠的数值模拟和分析方法,为工程设计和优化提供有力的支持。