得到的.当A=0或B=0时,上述公式仍然成立.
微练习
原点到直线x+2y-5=0的距离为(
B. 3
A.1
解析 d=
|-5|
12 +22
)
C.2
D. 5
= 5.
答案 D
微思考
点P(x0,y0)到x轴,y轴,直线y=a,x=b的距离分别是什么?
提示 到x轴的距离d=|y0|,到y轴的距离d=|x0|,到y=a的距离d=|y0-a|,到x=b的
(方法 2)∵直线 x=2 与 y 轴平行,
∴由图知 d=|-1-2|=3.
=3.
|-1×0+2-1|
(3)(方法 1)由点到直线的距离公式,得 d=
02 +12
=1.
(方法 2)∵直线 y-1=0 与 x 轴平行,
∴由图知 d=|2-1|=1.
反思感悟 点到直线的距离的求解方法
(1)求点到直线的距离时,只需把直线方程化为一般式,直接利用点到直线
方法总结
解此类题目有两种方法,一是利用数形结合的方法,过一定点与两定点距离
相等的点的直线有两条(三定点不共线),根据这两条直线的几何特征可求
出其直线方程.二是求此类问题的一般方法,它应用了点到直线的距离公式,
且x,y分别对应的系数一模一样的情况,如果两平行直线的方程中x,y的系数
对应不同,必须先等价化为系数对应相同才能套用公式.
微练习
两条平行线l1:3x-4y-1=0与l2:6x-8y-7=0间的距离为(
1
A.
2
3
B.
5
解析 l2 的方程可化为
d=
7
2
-1+
32 +(-4)2