基于DCT的JPEG图像编解码概述
- 格式:ppt
- 大小:4.92 MB
- 文档页数:26
jpeg 编码原理
JPEG编码的原理主要涉及到三个关键步骤:色彩空间的转换、离散余弦变
换(DCT)和量化。
以下是这些步骤的详细解释:
1. 色彩空间的转换:JPEG编码首先将图像从RGB色彩空间转换为YCbCr
色彩空间。
RGB色彩空间由红色、绿色和蓝色三个分量组成,而YCbCr色彩空间由亮度(Y)分量和两个色度(Cb和Cr)分量组成。
这种转换是基
于人眼对亮度的敏感度高于对色彩敏感度的特性,因此对亮度的变化比对色彩的变化更为敏感。
2. 离散余弦变换(DCT):转换后的图像数据会进行离散余弦变换,这是一种将图像数据从空间域转换到频域的过程。
DCT变换的目的是将图像中的
数据集中到少数的几个系数上,这样可以去除图像中的空间冗余,便于后续的压缩。
变换后的图像能量集中在左上角,其中低频部分集中于左上角,高频部分集中于右下角。
3. 量化:这一步是为了去除数据中的冗余,并且减少表示图像所需的数据量。
JPEG采用基于人眼视觉特性的量化方法,对DCT变换后的系数进行量化。
量化过程会减少数据的精度,但不会丢失原始图像的信息。
经过上述三个步骤后,JPEG编码通过使用熵编码进一步压缩数据,最后生
成JPEG格式的图像文件。
以上是JPEG编码的基本原理,通过理解这些原
理,有助于更好地理解JPEG压缩的优缺点,以及如何优化JPEG图像的压缩效果。
课程设计任务书学生姓名:王晓飞专业班级:通信1001班指导教师:魏洪涛工作单位:信息工程学院题目:通信工程应用技术综合训练与实习初始条件:MATLAB软件平台设计任务与要求:图像通信之前需要进行数据量压缩,编程实现JPEG图像压缩标准的主要环节,完成压缩和解压过程,计算压缩比。
要求:将彩色图像进行颜色空间转换、对不同的颜色分量进行不同的采样、对于3个分量进行8×8的DCT变换、对DCT系数矩阵按照JPEG推荐的量化表进行量化;对量化后的系数进行Z形扫描,最后进行熵编码,形成码流,计算比特数,和压缩比。
解压从量化后的DCT系数表开始逆向进行。
时间安排:指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (3)1概述 (5)1.1 图像压缩编码技术 (5)1.2 离散余弦变换(DCT) (5)1.3 MATLAB 及其图像处理工具箱 (6)2 基于DCT的图像压缩编码算法 (6)2.1 基于DCT的图像压缩编码算法的过程 (6)2.2 基于DCT的JPEG图像压缩编码步骤 (7)2.2.1 颜色空间的转换和采样 (7)2.2.2 二维离散余弦变换 (8)2.2.3 DCT系数的量化 (9)2.2.4 量化系数的编排 (10)2.2.5 DC系数的编码 (11)2.2.6 AC系数的编码 (11)2.2.7 组成位数据流 (12)3 基于DCT图像压缩的MATLAB实现 (13)4 matlab仿真结果 (14)5 心得体会 (15)参考文献 (17)附录 (18)摘要随着科学技术的发展,图像压缩技术越来越引起人们的关注,本论文研究了基于DCT 变换的JPEG图像压缩编码算法。
首先说明了图像压缩在现代通信中的必要性和可行性以及MATLAB图像处理工具箱的相关知识,然后重点介绍了JPEG压缩编码的具体过程和方法,详细介绍了编码中DCT变换、量化、熵编码和霍夫曼编码等模块的原理。
最后分析了图像经过不同压缩比时,图像质量的变化情况。
jpeg编码原理JPEG编码原理JPEG是一种常用的图像压缩格式,它可以将图像压缩至原始大小的1/10或更小,而且不会影响图像的质量。
JPEG编码原理是基于离散余弦变换(DCT)和量化技术。
1. 离散余弦变换(DCT)在JPEG编码中,图像被分成8x8个像素块,每个块都被视为一个矩阵。
通过对这些矩阵进行离散余弦变换(DCT),可以将每个块转换为一组频率系数。
离散余弦变换是一种将时域信号转换为频域信号的方法。
在JPEG中,每个块都被视为一个时域信号,并通过离散余弦变换将其转换为频域信号。
这些频率系数表示了该块中各种不同频率的分量。
2. 量化在经过DCT后,得到了每个块的频率系数。
但是由于人眼对于高频细节的感知能力较差,因此在JPEG编码中采用了量化技术来减少高频分量化就是将每个频率系数除以一个固定值,并四舍五入取整。
由于高频分量较大,因此它们被量化后会变得更小,从而减少了数据量。
3. 压缩在经过DCT和量化后,每个块都被转换为一组频率系数,并且高频分量已经被减少。
这些频率系数可以被进一步压缩,从而减少文件大小。
JPEG编码使用了霍夫曼编码技术来压缩这些频率系数。
霍夫曼编码是一种无损压缩技术,它可以将出现频率较高的符号用较短的编码表示,从而减少数据量。
4. 解压在解压JPEG图像时,首先需要将霍夫曼编码还原为频率系数。
然后对这些频率系数进行逆量化和逆离散余弦变换(IDCT),从而恢复原始图像。
逆量化是将每个频率系数乘以一个固定值,并四舍五入取整。
逆离散余弦变换是将每个块的频率系数转换回时域信号,从而恢复原始图像。
JPEG编码原理是基于离散余弦变换和量化技术的。
通过DCT将图像分解为一组频率系数,并采用量化技术减少高频分量,然后使用霍夫曼编码压缩这些频率系数。
在解压时,需要将霍夫曼编码还原为频率系数,并进行逆量化和逆离散余弦变换来恢复原始图像。
JPEG编码原理概述本⽂简要概述 JPEG 基本系统的编码流程。
编码需要经过 DCT、量化、Z 序列化、系数编码(DC 差分脉冲调制编码、DC 系数中间格式计算、AC 差分脉冲调制编码、AC 系数中间格式计算)、熵编码五个步骤,最后按指定格式进⾏封装,成为⼀张 JPEG 图⽚。
图⽚被分割为若⼲ 8×8 块后,每个块进⾏离散余弦变换(DCT),其⽬的是将图像块按频率分解,得到其频谱。
类似傅⾥叶变换,DCT 的⽬的是将图像分解为不同频率的基本分量的线性组合。
事实上,DCT 是 DFT 抹去虚(奇)部的特殊形式。
由于实偶函数的 DFT 仍然是实偶函数,我们将时域函数倍增延拓成偶函数,于是频域也成为实偶函数。
当然在存储时可以折半以消除冗余。
为何要求 DCT?对每⼀个图像块,如果⼀定要舍弃,我们会尽可能多保留其低频分量,⽽降低⾼频分量的分辨率。
同时,⾼频分量通常也的确是较少的,⽽直流分量,虽然数值⼤,但相邻块的直流分量差别较⼩。
因此我们对低频分量取较低的量化系数,⽽对⾼频分量取较⾼的量化系数。
所谓量化,就是将浮点(实现上可能只是以更⾼精度的整数表⽰形式存在)值 x 转化为阶跃的整数值 y 表⽰的过程,⽽ y=round(x/q) 中的 q 就是量化系数。
随后我们进⾏ Z 序列化,将⼆维矩阵按 Z 形拍扁成向量。
考虑到相邻块 DC 分量差异⼩,我们⾸先将 DC 分量与上⼀个块做差。
这个过程称为差分脉冲调制编码。
如今,向量中存在⼤量的 0,⽽绝对值⼩的数字出现的概率也远⼤于绝对值⼤者。
我们采⽤⾏程编码(RLE),将序列切成形如 0,0,…,0,x 的若⼲段,每段由 y(≥0) 个 0 和⼀个 x(>0) 组成,记作 (y,len(x),x),其中 len(x) 是 x 在反码⼆进制表⽰下的长度。
这种三元组表⽰形式称为中间格式。
(注:这⾥图上将 DC 分量也⼀把揉进去了,严格来说是分开的,RLE 只考虑 AC 分量)现在考虑 (y,l,x) 三元组的编码。
DCT 与JPEG 编码JPEG 是用于灰度图与真彩图的静态图像压缩的国际标准,JPEG 主要采用了以DCT (Discrete Cosine Transform ,离散余弦变换)为基础的有损压缩算法,在本章中会作较为详细的介绍。
JPEG 2000则是用于二值图、灰度图、伪彩图和真彩图的静态图像压缩的新标准,它采用的是性能更优秀的DWT (Discrete Wavelet Transform ,离散小波变换),将在下一章介绍。
因为视频的帧内编码就是静态图像编码,所以JPEG 和JPEG 2000的编码算法也用于MPEG 的视频编码标准中。
8.1 DCT与上一章所讲的几种熵编码不同,DCT (Discrete Cosine Transform 离散余弦变换)是一种变换型的源编码,使用十分广泛,也是JPEG 编码的一种基础算法。
DCT 将时间或空间数据变成频率数据,利用人的听觉和视觉对高频信号(的变化)不敏感和对不同频带数据的感知特征不一样等特点,可以对多媒体数据进行压缩。
8.1.1 余弦变换DCT 是计算(Fourier 级数的特例)余弦级数之系数的变换。
若函数f (x ) 以2 l 为周期,在[-l , l ]上绝对可积,则f (x )可展开成Fourier 级数:∑∞=⎪⎭⎫⎝⎛++=10sin cos 2)(n n n l x n b l x n a a x f ππ其中正弦变换余弦变换sin )(1 cos )(1⎰⎰--==l l n l l n dx lx n x f l b dx lx n x f l a ππ若f (x )为奇或偶函数,有 a n ≡0或b n ≡0,则f (x )可展开为正弦或余弦级数:∑∑∞=∞=+==101cos2)( sin )(n n n n l xn a a x f l x n b x f ππ或任给f (x ),x ∈[0, l ],总可以将其偶延拓到[-l , l ]:⎩⎨⎧-∈-∈=]0,[),(],0[ ),()(l x x f l x x f x f 然后再以2l 为周期进行周期延拓,使其成为以2l 为周期的偶函数。
jpeg编解码原理JPEG编解码原理JPEG是一种常用的图像压缩格式,它的编解码原理是基于离散余弦变换(Discrete Cosine Transform,DCT)和量化。
在JPEG编码过程中,图像首先被分割成8x8的小块,每个小块进行DCT变换,将空间域的数据转换为频域的数据。
这个过程可以看作是将图像分解为一系列频率成分,每个小块的DCT系数表示该频率成分的强度和位置。
接下来,对DCT系数进行量化。
量化是指将连续的数值变为离散的数值,以减少需要存储或传输的数据量。
量化过程中,需要使用一个量化矩阵,它是由JPEG标准规定的。
量化后的结果是一个系数矩阵,其中大部分系数都为0,只有少量的系数保留,这些系数通常是在高频区域,因为人眼对高频信息不太敏感。
量化后的系数矩阵被编码为比特流,这个过程称为熵编码。
熵编码使用的是一种自适应的算法,它可以根据数据的统计特征来选择不同的编码方式,以达到更好的压缩效果。
在JPEG解码过程中,先将比特流解码为系数矩阵,然后将系数矩阵进行反量化和反DCT变换,得到恢复后的图像。
解码过程中也需要使用相同的量化矩阵和熵编码算法来还原原始的系数矩阵。
总结一下,JPEG编解码原理可以分为以下几个步骤:1.将图像分割成8x8的小块;2.对每个小块进行DCT变换,得到系数矩阵;3.对系数矩阵进行量化,得到量化后的系数矩阵;4.将量化后的系数矩阵编码为比特流,使用熵编码算法;5.解码时,将比特流解码为系数矩阵;6.对系数矩阵进行反量化和反DCT变换,得到恢复后的图像。
JPEG编解码原理的核心是DCT和量化。
DCT可以将空间域的数据转换为频域的数据,量化可以将连续的数值变为离散的数值,以减少需要存储或传输的数据量。
这两个过程的相互作用,使得JPEG 可以在保持图像质量的前提下,大大减少图像的存储和传输开销。
169 最后要指出,余弦函数是偶函数,所以N 点的离散余弦变换隐含2N 点的周期性。
与隐含N 点周期性的傅里叶变换不同,余弦变换可以减少在图像分块边界处的间断,这是它在图像压缩中,特别是JPEG 标准中得到应用的重要原因之一。
离散余弦变换的基本函数与傅里叶变换的基本函数类似,都是定义在整个空间的,在计算任意一个变换域中点的变换时都需要用到所有原始数据点的信息,所以也常被认为具有全局的本质或被称为全局基本函数。
8.2.2 基于DCT 的编码图8.2.3所示是1个典型的基于离散余弦变换的编码系统的框图。
编码部分由4个操作模块构成:构造子图像、变换、量化和符号编码。
1幅N × N 图像先被分解成(N / n )2个尺寸为n × n 的子图像;对子图像变换的目的是解除每个子图像内部像素之间的相关性或将尽可能多的信息集中到尽可能少的变换系数上;量化步骤有选择性地消除或较粗糙地量化携带信息最少的系数,因为它们对重建的子图像的质量影响最小;最后的符号编码(常利用变长码)对量化了的系数进行编码。
解码部分由与编码部分相反排列的一系列逆操作模块构成。
由于量化是不可逆的,所以解码部分没有对应的模块。
图8.2.3 典型的离散余弦变换编码系统框图当上述任一个或全部步骤都可以根据图像局部内容调整时称为自适应变换编码。
如果所有步骤对所有子图像都一致固定,那么就称为非自适应变换编码。
下面对解码部分里四个步骤中的一些重要因素给予讨论(解码部分的对应模块也可参考)。
1.子图像尺寸在构造子图像时,如何选择子图像的尺寸是影响变换编码误差和计算复杂度的一个重要因素。
在多数情况下,需将图像分成尺寸满足以下两个条件的子图像:①相邻子图像之间的相关(冗余)减少到某个可以接受的水平(在编码误差和计算复杂度之间取得平衡);②子图像的长和宽都是2的整数次幂(可以简化对子图像变换的计算)。
例8.2.3 子图像尺寸的影响图8.2.4所示是反映子图像尺寸变化对不同变换编码重建误差影响的一个示意图。
dct变换及在jpeg编码中的具体应用-回复DCT(离散余弦变换)是一种数学变换,常用于信号处理、图像处理和数据压缩中。
在JPEG编码中,DCT的应用非常重要,它能够将图像信息压缩成更小的文件大小,同时保持较高的图像质量。
本文将详细介绍DCT 变换及其在JPEG编码中的具体应用。
一、什么是DCT变换?离散余弦变换(DCT)是一种数学变换,能将输入信号转换为一组频率分量。
与傅里叶变换相似,DCT也能将时间域信号转换为频域信号,但它的输出是实数而不是复数。
DCT变换的主要思想是将一个N维的输入信号分解为一组N个不同频率的余弦函数的线性组合。
这样的分解使得大部分信号能够用较少的系数来表示。
DCT的数学公式如下:X_k = \sum^{N-1}_{n=0}x_n \cdot\cos\left(\frac{(2n+1)k\pi}{2N}\right), \quad k=0,1,...,N-1其中,x_n是输入信号的采样值,N是采样点数,X_k是输出的DCT系数。
二、DCT在JPEG编码中的应用1. 颜色空间转换JPEG编码中的第一步是将RGB颜色空间转换为亮度-色度(YCbCr)颜色空间。
这主要是因为人眼对亮度的感知比色度更敏感。
YCbCr颜色空间将图像分为亮度(Y)和两个色度(Cb和Cr)分量,其中亮度分量负责传输图像的明暗信息,而色度分量负责传输颜色信息。
转换的过程中,通过DCT变换可以提取出亮度和色度分量的频域信息,减少了图像的冗余信息,从而减小了数据量。
2. 分块压缩JPEG编码将图像分为若干个8x8像素的小块,对每个小块进行独立的DCT变换。
这样做的原因是图像中的局部区域往往具有较强的相关性,8x8分块的做法可以充分利用这种相关性。
对每个8x8分块进行DCT变换后,通过量化将DCT系数进行舍入。
这样,高频分量的数值变得较小,可以被更多的抹除掉,进一步减小数据量。
低频分量可以保留较大的数值,以保证图像的主要特征。
jpeg 原理
JPEG是一种常见的图像压缩格式,其原理是基于离散余弦变
换(Discrete Cosine Transform,DCT)和量化技术。
JPEG压缩流程如下:
1. 分块:将图像划分为8×8的小块。
2. 颜色空间转换:对于彩色图像,将RGB颜色空间转换为亮
度和色度分量,即将彩色图像表示为YCbCr颜色空间。
3. 离散余弦变换(DCT):对每个8×8的小块进行DCT变换,将空间域的像素值转换为频域的系数。
DCT变换的目的是将
图像的大部分信息压缩到较低频率的系数中。
4. 量化:对DCT变换后的系数进行量化操作。
量化矩阵中的
每个元素都可以控制相应频率的系数的精度,使用较大的量化矩阵元素值可以得到更高的压缩比,但可能会引入更多的失真。
5. 哈夫曼编码:将量化后的系数重新排列为一维向量,并采用哈夫曼编码来对系数进行编码。
由于较低频率的系数出现的概率较高,因此可以通过使用可变长度编码来进一步提高压缩效率。
JPEG的解压缩流程与压缩相反:
1. 解码:对哈夫曼编码进行解码,得到量化后的系数向量。
2. 逆量化:将量化后的系数通过量化矩阵的逆操作进行还原。
3. 逆离散余弦变换(IDCT):对逆量化后的系数进行逆DCT 变换,将频域的系数还原为空间域的像素值。
4. 逆颜色空间转换:对于彩色图像,将亮度和色度分量转换回RGB颜色空间。
通过JPEG的压缩和解压缩过程,可以显著减小图像文件的大小,但同时也会引入一定的失真。
为了控制失真,JPEG提供了不同的压缩质量参数,用户可以根据需求选择适当的压缩质量来平衡文件大小和图像质量。
DCT 与JPEG 编码JPEG 是用于灰度图与真彩图的静态图像压缩的国际标准,JPEG 主要采用了以DCT (Discrete Cosine Transform ,离散余弦变换)为基础的有损压缩算法,在本章中会作较为详细的介绍。
JPEG 2000则是用于二值图、灰度图、伪彩图和真彩图的静态图像压缩的新标准,它采用的是性能更优秀的DWT (Discrete Wavelet Transform ,离散小波变换),将在下一章介绍。
因为视频的帧内编码就是静态图像编码,所以JPEG 和JPEG 2000的编码算法也用于MPEG 的视频编码标准中。
8.1 DCT与上一章所讲的几种熵编码不同,DCT (Discrete Cosine Transform 离散余弦变换)是一种变换型的源编码,使用十分广泛,也是JPEG 编码的一种基础算法。
DCT 将时间或空间数据变成频率数据,利用人的听觉和视觉对高频信号(的变化)不敏感和对不同频带数据的感知特征不一样等特点,可以对多媒体数据进行压缩。
8.1.1 余弦变换DCT 是计算(Fourier 级数的特例)余弦级数之系数的变换。
若函数f (x ) 以2 l 为周期,在[-l , l ]上绝对可积,则f (x )可展开成Fourier 级数:∑∞=⎪⎭⎫⎝⎛++=10sin cos 2)(n n n l x n b l x n a a x f ππ其中正弦变换余弦变换sin )(1 cos )(1⎰⎰--==l l n l l n dx lx n x f l b dx lx n x f l a ππ若f (x )为奇或偶函数,有 a n ≡0或b n ≡0,则f (x )可展开为正弦或余弦级数:∑∑∞=∞=+==101cos2)( sin )(n n n n l xn a a x f l x n b x f ππ或任给f (x ),x ∈[0, l ],总可以将其偶延拓到[-l , l ]:⎩⎨⎧-∈-∈=]0,[),(],0[ ),()(l x x f l x x f x f 然后再以2l 为周期进行周期延拓,使其成为以2l 为周期的偶函数。
JPEG图像压缩与编码解析
JPEG(Joint Photographic Experts Group)压缩格式,以其易于使用、压缩率高而著称,是应用最为广泛的一种图像压缩格式。
JPEG压缩
算法把图像分为内容和质量两个维度来进行压缩。
下面将详细论述JPEG
图像编码与解码的基本原理。
1.JPEG图像编码过程
(1)空间域转换
空间域转换是将原始图像由空间域变换成更加节省存储空间的频域。
JPEG压缩采用的是离散余弦变换(DCT)这种空间域转换方法,它可以把
图像表示成一系列正交基函数的线性组合,每一个函数表示的是对应的图
像量化值。
利用DCT将一幅图像分成8×8(也有可能是16×16)大小的块,每一个块由64(或者256)个相互独立的像素构成,被称为DCT子块。
(2)频段选择
JPEG图像压缩算法采用频段选择的原则,根据图像中的特征,把空
间域转换之后的低频分量即低频信息传��有损,而只把高频分量即高频
信息传递以达到保留重要信息的目的,在JPEG中,特征的保留按照“从
重要的到不重要的”的顺序进行。
(3)变换。
2.初步了解图像数据流的结构1)理论说明分析图像数据流的结构,笔者准备以一个从宏观到微观的顺序为读者详细剖析,即:数据流 最小编码单元 数据单元与颜色分量。
a) 在图片像素数据流中,信息可以被分为一段接一段的最小编码单元(Minimum Coded Unit,MCU)数据流。
所谓MCU,是图像中一个正方矩阵像素的数据。
矩阵的大小是这样确定的:查阅标记SOF0,可以得到图像不同颜色分量的采样因子,即Y、Cr、Cb三个分量各自的水平采样因子和垂直采样因子。
大多图片的采样因子为4:1:1或1:1:1。
其中,4:1:1即(2*2):(1*1):(1*1));1:1:1即(1*1):(1*1):(1*1)。
记三个分量中水平采样因子最大值为Hmax,垂直采样因子最大值为Vmax,那么单个MCU矩阵的宽就是Hmax*8像素,高就是Vmax*8像素。
如果,整幅图像的宽度和高度不是MCU宽度和高度的整数倍,那么编码时会用某些数值填充进去,保证解码过程中MCU的完整性(解码完成后,可直接忽视图像宽度和高度外的数据)。
在数据流中,MCU的排列方法是从左到右,从上到下。
b) 每个MCU又分为若干个数据单元。
数据单元的大小必定为8*8,所以每个MCU的数据单元个数为Hmax*Vmax。
另外JPEG的压缩方法与BMP文件有所不同,它不是把每个像素的颜色分量连续存储在一起的,而是把图片分成Y,Cr,Cb三张子图,然后分别压缩。
而三个颜色分量的采样密度(即采样因子)可能一样(例如1:1:1)也可能不一样(例如4:1:1)。
每个MCU内部,数据的顺序是Y、Cr、Cb。
如果一个颜色分量有多个数据单元,则顺序是从左到右,从上到下。
2)举例说明下面通过一幅32*35的图像,对上面两个问题列出两种采样因子的具体说明。
图1 整张完整的图像(4:1:1)图 2 将图像的MCU1放大图1及图3中灰色部分为实际图像大小(32px*35px);粗虚线表示各个MCU的分界;细虚线表示MCU内部数据单元的分界。
《电子线路设计与制作》报告目录1.绪论 (1)2.设计任务 (2)2.1 任务描述 (2)2.2 技术指标 (2)3.设计原理 (3)3.1 原理框图 (3)3.2 程序流程图 (4)3.3 离散余弦变换 (5)3.4 量化 (6)3.4 Z形游程编码 (7)4.运行结果及分析 (8)4.1 不同量化系数图像编解码效果比较 (8)4.2 不同文件类型图像编解码比较 (10)5.总结 (12)6.参考文献 (13)附录 (14)1.绪论MATLAB是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。
它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平[1]。
随着信息技术的发展,图像信息被广泛应用于多媒体通信和计算机系统中,但是图像数据的一个显著特点就是信息量大。
具有庞大的数据量,如果不经过压缩,不仅超出了计算机的存储和处理能力,而且在现有的通信信道的传输速率下,是无法完成大量多媒体信息实时传输的,因此,为了更有效的存储、处理和传输这些图像数据,必须对其进行压缩,因此有必要对图像压缩编码进行研究。
由于组成图像的各像素之间,无论是在水平方向还是在垂直方向上都存在着一定的相关性,因此只要应用某种图像压缩编码方法提取或者减少这种相关性, 就可以达到压缩数据的目的。
数字图像包含的冗余信息一般有以下几种:空问冗余、时间冗余、信息熵冗余、统计冗余、结构冗余、视觉冗余以及知识冗余等。
图像压缩算法就是要在保证图像一定的熏建质量的同时,尽可能多的去除这些冗余信息.以达到对图像压缩的目的。
随着科学技术的发展,图像压缩编码技术越来越引起人们的关注。
图像编码是将图像按照一定规则和标准进行压缩和存储的过程。
在许多应用领域,如图像传输、图像处理和图像存储中,图像编码发挥着重要的作用。
本文将对图像编码中的编码标准与规范进行解析。
一、JPEG标准JPEG(Joint Photographic Experts Group)是图像压缩的一种标准,它广泛应用于数字摄影、图像传输和图像存储中。
JPEG标准采用基于DCT(Discrete Cosine Transform)的编码方式,具有无损和有损压缩的能力。
在JPEG标准中,图像被分为若干个8x8大小的非重叠块,每个块通过DCT变换得到其频域系数。
然后,通过量化和熵编码来实现数据的压缩。
JPEG标准中定义了不同的量化表和熵编码表,用户可以根据不同的应用需求选择合适的表来进行编码。
二、HEVC标准HEVC(High Efficiency Video Coding)是一种高效的视频编码标准,它是标准的后继者。
HEVC标准主要应用于视频压缩和传输领域。
相比于之前的标准,HEVC能够在保持视频质量的同时实现更高的压缩比。
HEVC标准引入了许多新的技术,如更高效的帧间预测、更好的变换和量化方法、多种损失修复技术等。
这些技术的引入使得HEVC能够在保持较高图像质量的同时,减小数据的存储和传输成本,提升编解码性能。
三、AV1标准AV1是一种开放、免费的视频编码标准,由Alliance for Open Media(AOMedia)开发。
AV1标准旨在提供高效的视频编码解决方案,以应对不断增长的视频数据需求。
AV1标准采用了一系列新的编码技术,如更高效的运动估计和补偿、更好的变换和量化方法、自适应损失修复等。
此外,AV1还支持多种分辨率和色彩空间的编码,适用于各种不同的应用场景。
四、iOS图像编码规范在iOS开发中,苹果公司提供了一套图像编码规范,用于优化图像的压缩和显示效果。
这些规范包括基于设备屏幕尺寸的图像大小计算、图像采样和格式转换、图像渲染和显示等方面的内容。
JPEG图片压缩算法流程详解薛晓利JPEG是Joint Photographic Exports Group的英文缩写,中文称之为联合图像专家小组。
该小组隶属于ISO国际标准化组织,主要负责定制静态数字图像的编码方法,即所谓的JPEG 算法。
JPEG专家组开发了两种基本的压缩算法、两种熵编码方法、四种编码模式。
如下所示:压缩算法:(1)有损的离散余弦变换DCT(Discrete Cosine Transform)(2)无损的预测压缩技术;熵编码方法:(1)Huffman编码;(2)算术编码;编码模式:(1)基于DCT的顺序模式:编码、解码通过一次扫描完成;(2)基于DCT的渐进模式:编码、解码需要多次扫描完成,扫描效果由粗到精,逐级递增;(3)无损模式:基于DPCM,保证解码后完全精确恢复到原图像采样值;(4)层次模式:图像在多个空间分辨率中进行编码,可以根据需要只对低分辨率数据做解码,放弃高分辨率信息;在实际应用中,JPEG图像编码算法使用的大多是离散余弦变换、Huffman编码、顺序编码模式。
这样的方式,被人们称为JPEG的基本系统。
这里介绍的JPEG编码算法的流程,也是针对基本系统而言。
基本系统的JPEG压缩编码算法一共分为11个步骤:颜色模式转换、采样、分块、离散余弦变换(DCT)、Zigzag 扫描排序、量化、DC系数的差分脉冲调制编码、DC系数的中间格式计算、AC系数的游程长度编码、AC系数的中间格式计算、熵编码。
下面,将一一介绍这11个步骤的详细原理和计算过程。
(1)颜色模式转换JPEG采用的是YCrCb颜色空间,而BMP采用的是RGB颜色空间,要想对BMP图片进行压缩,首先需要进行颜色空间的转换。
YCrCb颜色空间中,Y代表亮度,Cr,Cb则代表色度和饱和度(也有人将Cb,Cr两者统称为色度),三者通常以Y,U,V来表示,即用U代表Cb,用V代表Cr。
RGB和YCrCb之间的转换关系如下所示:Y = 0.299R+0.587G+0.114BCb = -0.1687R-0.3313G+0.5B+128Cr = 0.5R=0.418G-0.0813B+128一般来说,C 值(包括Cb Cr) 应该是一个有符号的数字, 但这里通过加上128,使其变为8位的无符号整数,从而方便数据的存储和计算。
图象压缩图象压缩((JPEG )编码算法中的DCT 实现JPEG 中的二维DCT本文所讨论的压缩过程的关键是被称为离散余弦变换(Discrete Cosine Transform ,DCT )的数学变换。
Baseline System 中的DCT 要求输入数据是一个8×8的矩阵,且每个矩阵元素具有8bit 精度,分为从-128到127,故DCT 变换前,象素值先要减去128。
所谓8×8的二维DCT 是指将8×8的象素值矩阵变换成8×8系数矩阵。
8×8象素值矩阵是由输入图像分块得到的,若图像的高或宽不是8的整数倍,必须扩展其下边或右边到8的整数倍。
下面给出了式1二维DCT 的实用公式。
式2是反离散余弦变化(IDCT )公式。
式中表示的是8×8个象素值的矩阵进行计算的,产生出8×8频率系数的矩阵。
8×8的DCT 及IDCT 公式如下:用相当直接的代码段来表示for ( i = 0 ; i < 8 ; i + + )for ( j = 0 ;j < 8 : j + + ){temp = 0.0;for ( x = 0 ; x < 8 ; x ++ )for ( y = 0 ; y < 8 ; y ++ ){temp += Cosines [ x ] [ i ]*Cosines[ y ][ j ]*pixel[ x ][ y ];}temp * = sqrt ( 2 * 8 ) * Coefficient[ i ][ j ];DCT [ i ][ j ] = INT_ROUND (temp); // 取整运算 INT_ROUND}DCT 的实现测验DCT 算法时所表现出的首要的问题之一是计算DCT 中每个元素所需要的世界紧紧地依赖于矩阵的大小。
由于使用双层嵌套循环,所以计算量为:随着N 的增长,处理DCT 输出数组中每个元素所要的时间也将增长。