不等式的证明
- 格式:doc
- 大小:265.50 KB
- 文档页数:13
不等式的证明方法不等式是数学中一类重要的数学不等关系,它在各个领域中都有广泛的应用。
证明不等式的方法有很多,下面介绍几种常见的方法。
1.数学归纳法数学归纳法是一种常用的证明不等式的方法。
当不等式对于一些特定的n成立时,我们可以证明当n+1时,不等式也成立。
具体步骤如下:(1)首先验证当n=1时不等式成立;(2)假设当n=k时不等式成立,即不等式表达式为Pk(k),其中Pk(k)表示当n=k时不等式的表达式;(3)利用假设的条件,证明当n=k+1时不等式也成立,即证明Pk(k+1);(4)由(1)(2)步骤可知,不等式对于n=1成立,又由(3)步骤可知,当n=k+1时不等式也成立,综上可得,不等式对于所有的n成立。
2.数学推理数学推理是一种常用的证明不等式的方法,它主要是通过运用已知的数学定理、性质和等式进行逻辑推理,从而得出结论。
例如,可以利用已知的三角函数性质、代数运算等进行推理,通过一系列推导和等价变形得出需要证明的不等式。
3.代入法代入法是一种常用的证明不等式的方法,它主要是利用数值替换变量,通过对不等式成立条件的特殊取值进行代入,从而证明不等式成立。
例如,对于一个两个变量的不等式,可以分别取其中一个变量为0或1,然后对不等式进行推导和比较,得出结论。
4.反证法反证法是一种常用的证明不等式的方法,它通过假设所要证明的不等式不成立,然后从假设出发推导出与已知矛盾的结论,从而证明原不等式成立。
具体步骤如下:(1)假设不等式不成立,即存在一些条件使得不等式不成立,这个条件可以是一个数、一个式子等;(2)利用假设条件进行推导,推导出与已知矛盾的结论;(3)由于假设条件导致与已知矛盾,所以假设不成立,即原不等式成立。
5.AM-GM不等式(算术平均数-几何平均数不等式)AM-GM不等式是一种常用的证明不等式的方法。
它断言,若a1,a2,...,an是n个非负实数,则有(a1+a2+...+an)/n ≥√(a1*a2*...*an),等号成立的条件是a1=a2=...=an。
不等式是高等数学中的一个重要工具。
运用它可以对变量之间的大小关系进行估计,并且一些重要的不等式在现代数学的研究中发挥着重要作用。
这里首先介绍几个常用的不等式,然后再介绍证明不等式的一些方法。
几个重要的不等式 1.平均值不等式设12,,,n a a a 非负,令111()(0)nrr r kk M a a r n =⎛⎫=≠ ⎪⎝⎭∑(当r<0且至少有一0ka =时,令()0r M a =),111()()nkk A a M a a n ===∑,112()()111nn H a M a a a a -==++,11()nnk k G a a =⎛⎫= ⎪⎝⎭∏,称r M 是r 次幂平均值,A 是算数平均值,H 是调和平均值,G 是几何平均值,则有()()()H a G a A a ≤≤,等式成立的充要条件是12,na a a ===;一般的,如果s>0,t<0,则有()()()t s M a G a M a ≤≤,等式成立的充要条件是12,na a a ===。
2.赫尔德(Holder )不等式设()0,0,1,2,,,1,2,,j i j a a i n j m>>==,且11mjj a==∑,则1111111()()()()m mnnna a a a m m iiii i i i a a a a ===≤∑∑∑,等式成立的充要条件是(1)()(1)()11,1,2,,m i i nnm kki i a a i n aa=====∑∑。
3.柯西-许瓦兹(Cauchy-Schwarz )不等式设,,1,2,,i i a b i n =为实数,则112222111||n nni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑。
4.麦克夫斯基(Minkowsk)不等式 设()0,1,2,,,1,2,,,1j i a i n j m r >==>,则111(1)()(1)()111[()][()][()]nnnm r r m r r r r iiiii i i a aa a===++≤++∑∑∑,等式成立的充要条件是(1)()(1)()11()(),1,2,,()()rm ri i nnr m r kki i a a i n aa=====∑∑。
不等式常见的三种证明方法渠县中学 刘业毅一用基本不等式证明设c b a ,,都是正数。
求证:.c b a cab b ac a bc ++≥++ 证明:.22c bac a bc b ac a bc =•≥+ .22b cab a bc c ab a bc =•≥+ .22a cab b ac c ab b ac =•≥+ ).(2)(2c b a cab b ac a bc ++≥++ .c b a cab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。
思维训练:设c b a ,,都是正数。
求证:.222c b a c b a a c b ++≥++ 二 放缩法证明不等式已知,对于任意的n 为正整数,求证: 1+221+321+ +n 21<47 分析:通过变形将数列{n 21}放缩为可求数列。
解: n 21=n n •1<)1(1-n n =11-n —n1(n ≥2) ∴1+221+321+ +n 21<1+221+231⨯+341⨯+ +)1(1-n n =1+41+(21—31+31—41+ +11-n —n1) =45+21—n1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。
思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>cc +1三 构造函数法证明 证明不等式3ln 3121112ln <+++++<nn n (n 为正整数) 分析:显然要构造一个含n 的不等式,然后用叠加法证明。
我们构造一个函数,1)(',ln 1)(2xx x f x x x x f -=+-=可得这个函数在x=1时取得最小值0.及对x>0有不等式x x 11ln -≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则kk k ->+11ln ,即kk k k 1ln )1ln(11<-+<+,然后叠加不等式即可。
不等式证明方法不等式在数学中占有重要的地位,它是描述数之间大小关系的一种数学工具。
不等式证明方法是数学中的重要内容之一,本文将介绍不等式证明的几种常见方法,希望能够帮助读者更好地理解和掌握不等式的证明技巧。
一、数学归纳法。
数学归纳法是一种重要的数学证明方法,它通常用于证明某个命题对于一切自然数成立。
在不等式证明中,我们可以利用数学归纳法证明不等式的成立。
具体来说,我们首先证明不等式对于n=1时成立,然后假设不等式对于n=k时成立,再证明不等式对于n=k+1时也成立。
通过数学归纳法,我们可以比较简单地证明一些不等式的成立。
二、换元法。
换元法是不等式证明中常用的一种方法。
当我们遇到复杂的不等式时,可以通过适当的换元将不等式化简为更简单的形式,从而更容易进行证明。
换元法的关键在于选择合适的变量替换原不等式中的变量,使得不等式的结构更加清晰,证明过程更加简单明了。
三、分析法。
分析法是一种直接从不等式的定义出发,通过分析不等式的性质和特点来进行证明的方法。
在不等式证明中,我们可以通过分析不等式两边的大小关系,利用数学运算性质和数学规律,推导出不等式成立的条件,从而完成不等式的证明。
四、综合利用不等式性质。
不等式有许多性质,如传递性、对称性、反对称性等,我们可以通过综合利用这些性质来进行不等式的证明。
具体来说,我们可以利用不等式的传递性将复杂的不等式化简为简单的形式,再利用对称性和反对称性来推导不等式的成立条件,从而完成不等式的证明。
五、几何法。
在不等式证明中,几何法也是一种常用的证明方法。
通过几何图形的分析,我们可以直观地理解不等式的性质和特点,从而更容易进行证明。
在利用几何法进行不等式证明时,我们可以通过构造合适的几何图形,利用几何关系和几何性质来推导不等式的成立条件,完成不等式的证明。
六、数学推理法。
数学推理法是不等式证明中常用的一种方法,通过逻辑推理和数学推理来证明不等式的成立。
在利用数学推理法进行不等式证明时,我们可以通过分析不等式的性质和特点,运用数学推理规律和数学推理方法,推导出不等式成立的条件,完成不等式的证明。
不等式证明的几种方法1.直接证明法直接证明法是最常用的证明方法之一、该方法是通过运用数学定义、公理和已知条件,直接推导出要证明的不等式。
例如,要证明a+b≥2√ab,我们可以通过平方两边的方式将不等式变形为(a-b)^2≥0的形式,再通过数学运算的方式得出结论。
2.反证法反证法是常用的证明方法之一,尤其适用于不等式证明。
该方法是先假设要证明的不等式为假,然后通过推导得出与已知条件矛盾的结论,从而证明所假设的不等式为真。
例如,要证明3√ab≥2(a+b)不成立,我们可以先假设不等式成立,然后通过运算推导出与已知条件不符的结果。
由此可知,不等式不成立。
3.数学归纳法数学归纳法适用于一类特殊的不等式,即对于其中一自然数n,当n=1时不等式成立,且当n=k时不等式成立,则当n=k+1时不等式也成立。
通过反证法证明。
例如,要证明n^2<2^n,首先当n=1时,不等式成立。
假设当n=k时,不等式也成立,即k^2<2^k成立。
我们需要证明当n=k+1时,不等式也成立,即(k+1)^2<2^(k+1)成立。
通过反证法推导出与已知条件矛盾的结果,即可证明不等式成立。
4.几何法几何法可以通过将不等式转化为几何问题来证明。
例如,要证明a^2+b^2≥2ab,可以将不等式转化为平面上两点的距离的问题。
通过建立几何模型,可以直观地看出不等式成立的原因。
例如,可以将两个正方形的面积进行比较,或者使用勾股定理来解决问题。
5.代数方法代数方法是通过将不等式转化为代数方程或函数的性质来证明。
例如,要证明3a^2+3b^2+2c^2≥4ab+4bc+4ca,可以通过将不等式整理为一个二次函数的形式,然后通过对函数进行研究来得出结论。
以上是几种常见的不等式证明方法,其中每种方法都有其独特的适用范围和优势。
在实际应用中,根据具体的题目和情况选择合适的证明方法可以更高效地解决问题。
基本不等式的20种证明方法
基本不等式“基本”在哪里?你认为怎样得引入最能体现他的本质?
(1)做差证明
(2)分析法证明
(3)综合法证明
(4)排序不等式
根据排序不等式所说的逆序和小于等于顺序和,便能得到
化简得
(5)函数证明
我们对原函数求导,并令导数等于零。
求的最小值
得出
(5)指数证明
首先这里要用到两个梯形的面积公式。
一个是大家小学都学过的
易得
进而有
进一步有
指取对有
(6)琴生不等式证明
取 y=lnx
由琴生不等式得到
进而有
(7)无字证明(Charles D. Gallant)
(8)无字证明(Doris Schattschneider)
(9)无字证明(Roland H. Eddy)
(10)无字证明(Ayoub B. Ayoub)
(11)无字证明(Sidney H. Kung)
(12)无字证明(Michael K. Brozinsky)
(13)无字证明(Edwin Beckenbach & RichardBellman)
(14)无字证明
(15)无字证明(RBN)
(16)无字证明
进而有
(17)无字证明
进而有
(18)无字证明
有
(19)构造函数证明
由
得
(20)构造期望方差证明
由
得
另外还有向量法,复数法,积分法等,均值定理在数学内外有广泛得运用,不仅可以推广,还可以联系多个领域,一个简单结论证明的背后往往可展示引人人胜的各种思路!。
证明不等式的几种常用方法证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用.一、反证法如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理.反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的.用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A >B ,先假设A ≤B ,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A ≤B 不成立,而肯定A >B 成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效.例1 设a 、b 、c 、d 均为正数,求证:下列三个不等式:①a +b <c +d ;②(a +b)(c +d)<ab +cd ;③(a +b)cd <ab(c +d)中至少有一个不正确.反证法:假设不等式①、②、③都成立,因为a 、b 、c 、d 都是正数,所以不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④由不等式③得(a +b)cd <ab(c +d)≤(2b a )2·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d),综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31ab . 由不等式④,得(a +b)2<ab +cd <34ab ,即a 2+b 2<-32ab ,显然矛盾.∴不等式①、②、③中至少有一个不正确.例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c>0.证明:反证法由abc >0知a ≠0,假设a <0,则bc <0,又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0,从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾.∴假设不成立,从而a >0,同理可证b >0,c >0.例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2.证明:反证法假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8,∵p 3+q 3= 2,∴pq (p +q)>2.故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2),又p >0,q >0 p +q >0,∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.故假设p +q >2不成立,∴p +q ≤2.例4 已知)(x f = x 2+ax +b ,其中a 、b 是与x 无关的常数,求证:|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法一:假设|)1(f |<21,|)2(f |<21,|)3(f |<21, 由于)1(f = 1+a +b ,)2(f = 4+2a +b ,)3(f = 9+3a +b ,∴)1(f +)3(f -)2(f =2,但是,2 = |)1(f +)3(f -)2(f |≤|)1(f |+|)3(f |+2|)2(f |<21+21+2×21= 2, 即2<2,矛盾,∴假设不成立,∴|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 反证法二:假设|)1(f |<21,|)2(f |<21,|)3(f |<21,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<<.21|)3(|,21|)2(|,21|)1(|f f f ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧<++<-<++<-<++<-③b a ②b a ①b a .219321,214221,21121 ①+③得:-1<4a +2b +10<1,即-21<2a +b +5<21, ∴-23<2a +b +4<-21,④ 显然②与④矛盾,因此,假设是不成立的, 故|)1(f |,|)2(f |,|)3(f |中至少有一个数不小于21. 例4 设a ,b ,c 均为小于1的正数,求证:(1-a)b ,(1-b)c ,(1-c)a 不能同时大于41. 证明:反证法假设(1-a)b ,(1-b)c ,(1-c)a 同时大于41,即(1-a)b >41,(1-b)c >41,(1-c)a >41, 则由41<(1-a)b ≤(21b a +-)2⇒21b a +->21, 同理:21c b +->21,21a c +->21, 三个同向不等式两边分别相加,得23>23,矛盾,所以假设不成立, ∴原结论成立.例6 若0<a <2,0<b <2,0<c <2,求证:(2-a)b ,(2-b)c ,(2-c)a不能同时大于1.证明:反证法假设⎪⎩⎪⎨⎧>->->-.1)2(,1)2(,1)2(a c c b b a 那么2)2(b a +-≥b a )2(->1,① 同理2)2(c b +->1,② 2)2(a c +->1,③ ①+②+③,得3>3矛盾,即假设不成立,故(2-a)b ,(2-b)c ,(2-c)a 不能同时大于1.二、三角换元法对于条件不等式的证明问题,当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑用三角代换,将复杂的代数问题转化为三角问题.若变量字母x 的取值围与sin θ或cos θ的变化围相同,故可采用三角换元,把所要证的不等式转换为求三角函数的值域而获证.一般地,题设中有形如x 2+y 2≤r 2,22a x +22b y = 1或22a x -22b y = 1的条件可以分别引入三角代换⎩⎨⎧==θθsin cos r y r x (| r |≤1),⎩⎨⎧==θθsin cos b y a x 或⎩⎨⎧==θθtan sec b y a x ,其中θ的取值围取决于x ,y 的取值围,凡不能用重要不等式证明的问题时,一般可以优先考虑换元(代数换元或三角换元),然后利用函数的单调性最终把问题解决.在三角换元中,由于已知条件的限制作用,根据问题需要,可能对引入的角度有一定的限制,应特别引起注意,否则可能会出现错误的结果.例2 已知1≤x 2+y 2≤2,求证:21≤x 2-xy +y 2≤3. 证明:∵1≤x 2+y 2≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2≤2,0≤θ<π2.∴x 2-xy +y 2= r 2-r 2sin θ2= r 2(1-21sin θ2), ∵21≤1-21sin θ2≤23,∴21r 2≤r 2(1-21sin θ2)≤23r 2,而21r 2≥21,23r 2≤3, ∴ 21≤x 2-xy +y 2≤3. 例2 已知x 2-2xy +y 2≤2,求证:| x +y |≤10.证明:∵x 2-2xy +y 2= (x -y)2+y 2,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2.∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan21)|≤r 5≤10.例3 已知-1≤x ≤1,n ≥2且n ∈N ,求证:(1-x)n +(1+x)n ≤2n . 证明:∵-1≤x ≤1,设x = cos θ2 (0≤θ≤2π), 则1-x =1-cos θ2= 1-(1-2sin 2θ) = 2sin 2θ,1+x =1+cos θ2= 2cos 2θ,∴(1-x)n +(1+x)n = 2n sin n 2θ+2n cos n 2θ≤2n ( sin 2θ+cos 2θ) =2n ,故不等式(1-x)n +(1+x)n ≤2n 成立.例4 求证:-1≤21x --x ≤2.证明:∵1-x 2≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π. 则21x --x =θ2cos 1--cos θ= sin θ-cos θ=2sin(θ-4π), ∵-4π≤θ-4π≤43π, ∴-1≤2sin(θ-4π)≤2,即-1≤21x --x ≤2. 三、增量代换法 在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简.例7 已知a ,b ∈R ,且a +b = 1,求证:(a +2)2+(b +2)2≥225. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =21+t ,b=21-t , (t ∈R) 则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -25)2= 2t 2+225≥225. ∴(a +2)2+(b +2)2≥225. 例8 已知a 1+a 2+…+a n = 1,求证:21a +22a +…+2n a ≥n1. 证明:设a 1= t 1+n 1,a 2= t 2+n 1,…,a n = t n +n1,其中t 1+t 2+…+t n = 0,则21a +22a +…+2n a = (t 1+n 1)2+(t 2+n 1)2+…+(t n +n 1)2= n ·21n+2×n 1( t 1+t 2+…+t n )+…+21t +22t +…+2n t =n 1+21t +22t +…+2n t ≥n 1. 四、放缩法放缩法是在顺推法逻辑推理过程中,有时利用不等式的传递性,作适当的放大或缩小,证明不原不等式更强的不等式来代替原不等式的证明.这种证题方法的实质是非等价转化,而它的证题方法没有一定的准则和程序,需按题意适当..放缩,否则是达不到目的.利用放缩法证明不等式,要根据不等式两端的特征及已知条件,采取舍掉式中一些正项或负项,或者在分式中放大或缩小分子、分母、把和式中的某些项换以较大或较小的数,从而达到证明不等式的目的.此类证法要慎审地采取措施,进行恰当地放缩,任何不适宜的放缩(放的过大或过小)都会导致推证的失败.例5 设n 为自然数,求证:91+251+…+2)12(1+n <41. 证明:∵2)12(1+k =14412++k k <k k 4412+=41(k1-11+k ), ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. ∴91+251+…+2)12(1+n <41[(1-21)+(21-31)+…+(n 1-11+n ) =41(1-11+n )<41. 例5 已知a n =21⨯+32⨯+…+)1(+n n ,其中n 为自然数, 求证:21n(n +1)<a n <21(n +1)2. 证明:∵)1(+k k <21++k k =212+k 对任意自然数k 都成立, ∴a n =21⨯+32⨯+…+)1(+n n <23+25+27+…+212+n =21[3+5+7+…+(2n +1)] =21(n +2n)<21(n +2n +1) =21(n +1)2. 又)1(+k k >2k = k ,∴a n =21⨯+32⨯+…+)1(+n n >1+2+3+…+n =21n(n +1), ∴21n(n +1)<a n <21(n +1)2. 评析:根据要证不等式的结构特征,应用均值不等式“放大”a n 为一个等差数列的和,求和后再添加一个数1,直到“放大”到要证的右边;而左边是通过“缩小”a n 的方法去根号而转化为等差数列的和.放大或缩小的技巧很多,如添项、减项、分子、分母加或减一个数,或利用函数的单调性、有界性等等,但要注意放缩要适度.11.设a 、b 为不相等的两正数,且a 3-b 3= a 2-b 2,求证:1<a + b <34. 证明:由题意得a 2+ab +b 2= a + b ,于是(a +b)2= a 2+2ab +b 2>a 2+ab +b 2= a + b ,故a + b >1,又(a +b)2>4ab ,而(a +b)2= a 2+2ab +b 2= a +b +ab <a +b +4)(2b a +, 即43(a +b)2<a +b ,解得a + b <34. ∴1<a + b <34. 例12 已知a 、b 、c 、d 都是正数,求证:1<c b a b +++d c b c +++a d c d +++ba d a ++<2. 证明:∵d cb a b +++<c b a b ++<ba b +, d c b a c +++<d c b c ++<dc c +,d c b a d +++<a d c d ++<dc d +, d c b a a +++<b a d a ++<ba a +, 将上述四个同向不等式两边分别相加,得:1<c b a b +++d c b c +++a d c d +++ba d a ++<2.。
不等式的证明最新考纲 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法.知 识 梳 理1.基本不等式定理1:如果a ,b ∈R,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b 2≥a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥a =b =c 时,等号成立.2.不等式的证明方法(1)比较法①作差法(a ,b ∈R):a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b . ②作商法(a >0,b >0):a b >1⇔a >b ;a b <1⇔a <b ;a b=1⇔a =b .(2)综合法与分析法①综合法:从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.综合法又叫顺推证法或由因导果法.②分析法:从要证的结论出发,逐步寻求使它成立的充分条件,所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证法称为分析法,即“执果索因”的证明方法.[微点提醒]1.作差比较法的实质是把两个数或式子的大小判断问题转化为一个数(或式子)与0的大小关系.2.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)……”“即要证……”“就要证……”等分析到一个明显成立的结论,再说明所要证明的数学问题成立.3.利用基本不等式证明不等式或求最值时,要注意变形配凑常数.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.( )(3)分析法又叫逆推证法或执果索因法,是从待证结论出发,一步一步地寻求结论成立的必要条件,最后达到题设的已知条件或已被证明的事实.( )(4)使用反证法时,“反设”不能作为推理的条件应用.( )解析(1)作商比较法是商与1的大小比较.(3)分析法是从结论出发,寻找结论成立的充分条件.(4)应用反证法时,“反设”可以作为推理的条件应用.答案(1)×(2)√(3)×(4)×2.(选修4-5P23习题2.1T1改编)已知a≥b>0,M=2a3-b3,N=2ab2-a2b,则M,N的大小关系为________.解析2a3-b3-(2ab2-a2b)=2a(a2-b2)+b(a2-b2)=(a2-b2)(2a+b)=(a-b)(a+b)(2a+b).因为a≥b>0,所以a-b≥0,a+b>0,2a+b>0,从而(a-b)(a+b)(2a+b)≥0,故2a3-b3≥2ab2-a2b.答案M≥N3.(选修4-5P25T3改编)已知a,b,c∈(0,+∞),且a+b+c=1,则1a +1b+1c的最小值为________.解析把a+b+c=1代入1a +1b+1c得a+b+ca+a+b+cb+a+b+cc=3+⎝⎛⎭⎪⎫ba+ab+⎝ ⎛⎭⎪⎫c a +a c +⎝ ⎛⎭⎪⎫c b +b c ≥3+2+2+2=9, 当且仅当a =b =c =13时等号成立. 答案 94.(2019·聊城模拟)下列四个不等式:①log x 10+lg x ≥2(x >1);②|a -b |<|a |+|b |;③⎪⎪⎪⎪⎪⎪b a +a b ≥2(ab ≠0);④|x -1|+|x -2|≥1,其中恒成立的个数是( )A.1B.2C.3D.4解析 log x 10+lg x =1lg x+lg x ≥2(x >1),①正确; ab ≤0时,|a -b |=|a |+|b |,②不正确;因为ab ≠0,b a 与a b同号,所以⎪⎪⎪⎪⎪⎪b a +a b =⎪⎪⎪⎪⎪⎪b a +⎪⎪⎪⎪⎪⎪a b ≥2,③正确; 由|x -1|+|x -2|的几何意义知,|x -1|+|x -2|≥1恒成立,④也正确,综上①③④正确.答案 C5.(2017·全国Ⅱ卷)已知a >0,b >0,且a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)≤2+3(a+b)24(a+b)=2+3(a+b)34,所以(a+b)3≤8,因此a+b≤2.考点一比较法证明不等式【例1】设a,b是非负实数,求证:a2+b2≥ab(a+b). 证明因为a2+b2-ab(a+b)=(a2-a ab)+(b2-b ab)=a a(a-b)+b b(b-a)=(a-b)(a a-b b)=(a 12-b12)(a32-b32).因为a≥0,b≥0,所以不论a≥b≥0,还是0≤a≤b,都有a 12-b12与a32-b32同号,所以(a 12-b12)(a32-b32)≥0,所以a2+b2≥ab(a+b).规律方法比较法证明不等式的方法与步骤1.作差比较法:作差、变形、判号、下结论.2.作商比较法:作商、变形、判断、下结论.提醒(1)当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.(2)当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.【训练1】(1)(2019·锦州模拟)设不等式|2x-1|<1的解集为M.①求集合M;②若a,b∈M,试比较ab+1与a+b的大小.(2)若a >b >1,证明:a +1a >b +1b. (1)解 ①由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.②由①和a ,b ∈M 可知0<a <1,0<b <1,所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .(2)证明 a +1a -⎝ ⎛⎭⎪⎫b +1b =a -b +b -a ab =(a -b )(ab -1)ab . 由a >b >1得ab >1,a -b >0,所以(a -b )(ab -1)ab>0. 即a +1a -⎝ ⎛⎭⎪⎫b +1b >0, 所以a +1a >b +1b. 考点二 综合法证明不等式【例2】 (1)已知a ,b ,c ∈R,且它们互不相等,求证a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2;(2)已知x ,y ,z 均为正数,求证:x yz +y zx +z xy ≥1x +1y +1z. 证明 (1)∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,a 4+c 4≥2a 2c 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2),即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又∵a ,b ,c 互不相等,∴a 4+b 4+c 4>a 2b 2+b 2c 2+c 2a 2.(2)因为x ,y ,z 都为正数,所以x yz +y zx =1z ⎝ ⎛⎭⎪⎫x y +y x ≥2z①,同理可得yxz+zyx≥2x②,z xy +xyz≥2y③,当且仅当x=y=z时,以上三式等号都成立. 将上述三个不等式两边分别相加,并除以2,得xyz +yzx+zxy≥1x+1y+1z.规律方法 1.综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.【训练2】已知实数a,b,c满足a>0,b>0,c>0,且abc=1.(1)证明:(1+a)(1+b)(1+c)≥8;(2)证明:a+b+c≤1a+1b+1c.证明(1)1+a≥2a,1+b≥2b,1+c≥2c,相乘得:(1+a)(1+b)(1+c)≥8abc=8.(2)1a +1b+1c=ab+bc+ac,ab+bc≥2ab2c=2b,ab+ac≥2a2bc=2a,bc+ac≥2abc2=2c,相加得a+b+c≤1a +1b+1c.考点三分析法证明不等式【例3】已知函数f(x)=|x-1|.(1)解不等式f (x -1)+f (x +3)≥6;(2)若|a |<1,|b |<1,且a ≠0,求证:f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a . (1)解 由题意,知原不等式等价为|x -2|+|x +2|≥6,令g (x )=|x -2|+|x +2|,则g (x )=⎩⎨⎧-2x ,x ≤-2,4,-2<x <2,2x ,x ≥2.当x ≤-2时,由-2x ≥6,得x ≤-3;当-2<x <2时,4≥6不成立,此时无解;当x ≥2时,由2x ≥6,得x ≥3.综上,不等式的解集是(-∞,-3]∪[3,+∞).(2)证明 要证f (ab )>|a |f ⎝ ⎛⎭⎪⎫b a , 只需证|ab -1|>|b -a |,只需证(ab -1)2>(b -a )2.而(ab -1)2-(b -a )2=a 2b 2-a 2-b 2+1=(a 2-1)(b 2-1)>0,从而原不等式成立. 规律方法 1.当要证的不等式较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.分析法证明的思路是“执果索因”,其框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件【训练3】 已知a >b >c ,且a +b +c =0,求证:b 2-ac <3a .证明 由a >b >c 且a +b +c =0,知a >0,c <0. 要证b 2-ac <3a ,只需证b 2-ac <3a 2.∵a +b +c =0,只需证b 2+a (a +b )<3a 2,只需证2a 2-ab -b 2>0,只需证(a -b )(2a +b )>0,只需证(a -b )(a -c )>0.∵a >b >c ,∴a -b >0,a -c >0,∴(a -b )(a -c )>0显然成立,故原不等式成立.[思维升华]证明不等式的方法和技巧:(1)如果已知条件与待证明的结论直接联系不明显,可考虑用分析法;如果待证的命题以“至少”“至多”等方式给出或否定性命题、唯一性命题,则考虑用反证法;如果待证不等式与自然数有关,则考虑用数学归纳法等.(2)在必要的情况下,可能还需要使用换元法、构造法等技巧简化对问题的表述和证明.尤其是对含绝对值不等式的解法或证明,其简化的根本思路是去绝对值号,转化为常见的不等式(组)求解.多以绝对值的几何意义或“找零点、分区间、逐个解、并起来”为简化策略,而绝对值三角不等式,往往作为不等式放缩的依据.[易错防范]在使用基本不等式时,等号成立的条件是一直要注意的事情,特别是连续使用时,要求分析每次使用时等号是否成立.基础巩固题组(建议用时:60分钟)1.设a ,b >0且a +b =1,求证:⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 证明 因为(12+12)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a >0,b >0,a +b =1,求证1a +1b +1ab≥8. 证明 ∵a >0,b >0,a +b =1,∴1=a +b ≥2ab , 即ab ≤12,∴1ab≥4, ∴1a +1b +1ab =(a +b )⎝ ⎛⎭⎪⎫1a +1b +1ab ≥2ab ·21ab +1ab ≥4+4=8. 当且仅当a =b =12时等号成立, ∴1a +1b +1ab≥8. 3.(2019·大理一模)已知函数f (x )=|x |+|x -3|.(1)解关于x 的不等式f (x )-5≥x .(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解 (1)f (x )=|x |+|x -3|=⎩⎨⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎨⎧x <0,3-2x ≥x +5或⎩⎨⎧0≤x ≤3,3≥x +5或⎩⎨⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8. 所以不等式的解集为⎝⎛⎦⎥⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ).且m ≥3,n ≥3,所以m -2>0,2-n <0,即(m -2)(2-n )<0,所以2(m +n )<mn +4.4.(2019·郴州质量检测)已知a ,b ,c 为正数,函数f (x )=|x +1|+|x -5|.(1)求不等式f (x )≤10的解集;(2)若f (x )的最小值为m ,且a +b +c =m ,求证:a 2+b 2+c 2≥12.(1)解 f (x )=|x +1|+|x -5|≤10等价于⎩⎨⎧x ≤-1,-(x +1)-(x -5)≤10或⎩⎨⎧-1<x <5,(x +1)-(x -5)≤10或⎩⎨⎧x ≥5,(x +1)+(x -5)≤10,解得-3≤x ≤-1或-1<x <5或5≤x ≤7,∴不等式f (x )≤10的解集为{x |-3≤x ≤7}.(2)证明 ∵f (x )=|x +1|+|x -5|≥|(x +1)-(x -5)|=6,∴m =6,即a +b +c =6.∵a 2+b 2≥2ab ,a 2+c 2≥2ac ,c 2+b 2≥2cb ,∴2(a 2+b 2+c 2)≥2(ab +ac +bc ),∴3(a 2+b 2+c 2)≥a 2+b 2+c 2+2ab +2ac +2bc =(a +b +c )2,∴a 2+b 2+c 2≥12.当且仅当a =b =c =2时等号成立.5.(2019·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2)a bc +b ac +c ab ≥3(a +b +c ). 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证a 2+b 2+c 2+2(ab +bc +ca )≥3.而ab +bc +ca =1,故只需证明a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ),即证a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2(当且仅当a =b =c时等号成立)证得.所以原不等式成立. (2)a bc +b ac +c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c , 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac2, b ac ≤ab +bc2,c ab ≤bc +ac2,所以a bc +b ac +c ab ≤ab +bc +ca⎝ ⎛⎭⎪⎫当且仅当a =b =c =33时等号成立. 所以原不等式成立.6.(2019·百校联盟联考)已知函数f (x )=|2x -3|+|2x -1|的最小值为M .(1)若m ,n ∈[-M ,M ],求证:2|m +n |≤|4+mn |;(2)若a ,b ∈(0,+∞),a +2b =M ,求2a +1b的最小值. (1)证明 ∵f (x )=|2x -3|+|2x -1|≥|2x -3-(2x -1)|=2,∴M =2. 要证明2|m +n |≤|4+mn |,只需证明4(m +n )2≤(4+mn )2,∵4(m +n )2-(4+mn )2=4(m 2+2mn +n 2)-(16+8mn +m 2n 2)=(m 2-4)(4-n 2), ∵m ,n ∈[-2,2],∴m 2,n 2∈[0,4],∴(m 2-4)(4-n 2)≤0,∴4(m +n )2-(4+mn )2≤0,∴4(m +n )2≤(4+mn )2,可得2|m +n |≤|4+mn |.(2)解 由(1)得,a +2b =2,因为a ,b ∈(0,+∞),所以2a +1b =12⎝ ⎛⎭⎪⎫2a +1b (a +2b ) =12⎝ ⎛⎭⎪⎫2+2+a b +4b a ≥12⎝ ⎛⎭⎪⎫4+2a b ·4b a =4, 当且仅当a =1,b =12时,等号成立. 所以2a +1b的最小值为4. 能力提升题组(建议用时:20分钟)7.已知函数f (x )=x +1+|3-x |,x ≥-1.(1)求不等式f (x )≤6的解集;(2)若f (x )的最小值为n ,正数a ,b 满足2nab =a +2b ,求证:2a +b ≥98. (1)解 根据题意,若f (x )≤6,则有⎩⎨⎧x +1+3-x ≤6,-1≤x <3或⎩⎨⎧x +1+(x -3)≤6,x ≥3, 解得-1≤x ≤4,故原不等式的解集为{x |-1≤x ≤4}.(2)证明 函数f (x )=x +1+|3-x |=⎩⎨⎧4,-1≤x <3,2x -2,x ≥3,分析可得f (x )的最小值为4,即n =4, 则正数a ,b 满足8ab =a +2b ,即1b +2a=8, 又a >0,b >0,∴2a +b =18⎝ ⎛⎭⎪⎫1b +2a (2a +b )=18⎝ ⎛⎭⎪⎫2a b +2b a +5≥18⎝ ⎛⎭⎪⎫5+22a b ·2b a =98,当且仅当a =b =38时取等号. 原不等式得证.8.(2015·全国Ⅱ卷)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.证明 (1)∵a ,b ,c ,d 为正数,且a +b =c +d ,欲证a +b >c +d ,只需证明(a +b )2>(c +d )2, 也就是证明a +b +2ab >c +d +2cd ,只需证明ab >cd ,即证ab >cd .由于ab >cd ,因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .∵a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2, ∴a +b +2ab >c +d +2cd .∵a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.。