高层连体结构的动力计算模型讲解
- 格式:ppt
- 大小:1.73 MB
- 文档页数:27
高层建筑结构的荷载计算高层建筑结构的竖向荷载包括自重等恒载及使用荷载等活载,其计算方法与一般建筑结构类似,在此不再重复。
本章主要介绍在高层建筑结构设计中起主导作用的水平荷载—风荷载和地震荷载作用的计算方法。
第一节 风荷载空气流动形成的风遇到建筑物时,在建筑物表面产生的压力或吸力即建筑物的风荷载。
风荷载的大小主要和近地风的性质、风速、风向有关;和该建筑物所在地的地貌及周围环境有关;同时和建筑物本身的高度、形状以及表面状况有关。
垂直于建筑物表面上的风荷载标准值可按下式计算:0ωµµβωz s z k =式中:k ω为风荷载标准值(kN/m 2);z β为z 高度处的风振系数;s µ为风荷载体型系数;z µ为风压高度变化系数; 0ω为基本风压(kN/m 2)。
1. 基本风压0ω我国《建筑结构荷载规范》(GB50009-2001),《全国基本风压分布图》中给出的基本风压值0ω,是用各地区空旷地面上离地10m 高、重现期为30年的10min 平均最大风速0υ(m/s )计算得到的,基本风压值1600/200υω=(kN/m 2)。
荷载规范给出的0ω值适用于多层建筑;对于一般高层建筑和特别重要的或有特殊要求的高层建筑可按《全国基本风压分布图》中的数值分别乘以1.1和1.2采用。
2. 风压高度变化系数z µ表1 风压高度变化系数风速大小与高度有关,一般近地面处的风速较小,愈向上风速逐渐加大,但风速的变化与地貌及周围环境有关。
在近海海面、海岛、海岸、湖岸及沙漠地区,地面空旷,空气流动几乎无阻挡物(A 类粗糙度),风速随高度的增加最快;在中小城镇和大城市的郊区(B 类粗糙度),风速随高度的增加减慢;在有密集建筑物的大城市市区(C 类粗糙度),和有密集建筑群,且房屋较高的城市市区(D 类粗糙度),风的流动受到阻挡,风速减小,因此风速随高度增加更缓慢一些。
表1列出了各种情况下的风压高度变化系数。
谈论多塔楼的连体结构设计分析近年来,随着人们对新颖的结构形式要求及高层建筑的发展,出现了大量复杂的高层建筑包括高空连体结构,该类结构体系的特点较为复杂,同时塔楼之间由于连体而形成较强的空间耦联作用,其施工比一般高层建筑结构复杂得多。
一工程概况某工程属于超限结构,包含高位大悬挑钢结构、空中连廊等复杂施工部位。
连廊本身由箱型桁架组成,箱型桁架系统的四个面全由大宽度及深度的桁架组成,以提高抗弯及抗扭能力;悬挑部分结构采用钢结构。
在塔楼内除设置核心筒外,还设置了十字型剪力墙,以提高塔楼整体的刚度和抗倾覆能力。
二连体结构设计⑴计算分析。
①应采用至少两个不同力学模型的三维空间软件进行整体内力位移计算;连体结构因体型特殊,连体部位受力复杂,宜采用有限元模型进行整体建模分析,对连接体部位应采用弹性楼盖进行计算。
②)抗震计算时,应考虑平扭耦联计算结构的扭转效应,振型数不应小于15,多塔楼结构的振型数不应小于塔楼数9倍,且计算振型数应使振型参与质量不小于总质量的90%。
③应采用弹性时程分析法进行补充计算。
④宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。
⑵结构选型。
高层建筑连体结构各独立部分宜有相同或相近的体型平面和刚度,7度、8度抗震设计时,对于层数和刚度相差较大的建筑,不宜简单采用强连接方式,应根据弹塑性静力或动力分析结果,使结构在罕遇地震下能满足“大震不倒”的抗震要求。
三高层结构体系设计方法⑴高层多塔楼、高位悬挑及连体结构形式独特,我国目前还没有制定出相应的设计规范或规程,因此课题组结合具体工程情况,在理论分析和概念设计的基础上,注重结构体系、设计关键技术以及构造方法的研究,初步探讨了高层多塔楼、高位悬挑及连体结构的设计方法。
⑵某工程为结构特别不规则的超出规范适用范围的高层建筑群,由于建筑体型和功能要求,其复杂体形的大底盘多塔、结构竖向高位收进、高位悬挑、复杂大跨连体、竖向构件不连续等设计对抗震不利。
经过大量研究,通过对结构进行多遇及罕遇地震作用下的全过程非线性时程分析,提出性能设计的方法,解决了复杂工程抗震设计的关键技术。
带有双塔楼高层建筑结构动力特性分析摘要:随着社会经济的不断发展,人类科技水平发展的进步,以及人们生活水平的提高和文化素养的提升,对建筑的外观和性能要求也越来越高。
自上世纪八十年代起,我国便出现了多种多样的塔楼高层建筑,随着时代的不断进步,双塔楼高层建筑在生活中得到了普遍的应用。
但是由于双塔楼之间的连接体的设置或多或少的会使得双塔楼高层建筑整体会出现建筑竖向刚度和质量分布不均的现象,加上双塔楼结构的复杂,经常会出现各种问题,本文就带有双塔楼的高层建筑结构的动力特性进行深入的分析和研究,并通过对带有双塔楼高层建筑有影响动力性能的因素进行定量分析,明确相关的概念并加深理解,从而提供一些可供参考的意见和措施。
关键词:双塔楼高层建筑;建筑物整体;结构;动力;特性一、双塔楼高层建筑结构动力特性分析的重要性众所周知,双塔楼高层建筑结构主要是指两个高层塔楼式建筑相连的结构形式。
由于两个高层塔楼之间有密不可分的联系,使得双塔楼高层建筑结构存在着动力相关性,每个塔楼之间都存在着单独的形变,这种形变主要是因为塔楼建筑底盘的连接关系和底盘所受力特性控制的原因,两个相互连接和构成的塔楼并没有直接的影响关系。
双塔楼高层建筑科学合理的设计在地震及大的外力作用发生时,其振幅应该是同步和同向的,如果二者不相对称,在外力的作用下就会出现振幅不同步的情况,不对称程度越大,双塔楼高层建筑整体的震动也就相应增大,因此,对双塔楼高层建筑结构动力特性进行分析主要是因为两个塔楼之间的高度和刚度及外在负荷力的影响下对建筑物底盘造成形变,防止不合理的规划设计造成双塔楼高层建筑的侧移和变形。
不仅如此,双塔楼高层建筑和单体的高层建筑相比,需要特别注意其结构的性能会随着外力和负荷力的变化而发生不同的变化,同理,在对双塔楼高层建筑结构动力的特性分析计算时要注意建筑结构所受负荷力的作用力大小和方向。
比如在分析对称轴双塔结构的动力特性时,结构受大的外力作用或地震力的影响只会沿无偏心的方向发生微小的侧移,不会发生建筑结构整体扭转的情况,而双塔楼高层建筑受到大的外力影响和负荷力作用时,除了发生侧移的现象,还会出现不同的结构形变现象。