工程力学包含静力学和材料力学两部分
- 格式:docx
- 大小:14.96 KB
- 文档页数:2
《工程力学Ⅰ》课程教学大纲课程编号:125111 学分: 4 (4学时/周) 总学时:68大纲执笔人:陈洁大纲审核人:王斌耀一、课程性质与目的工程力学(Ⅰ)(包括静力学、材料力学两部分)是土木工程专业的一门重要的技术基础课,它是各门后续课程的基础,并在许多工程技术领域中有着广泛的应用。
本课程的目的是使学生掌握静力学中一般力系的简化与平衡问题的分析介绍方法;掌握材料力学中构件在拉、压、剪切、扭转和弯曲时的强度与刚度问题的分析计算方法,构件在组合变形时的强度与刚度问题的分析计算方法,以及构件在受压时稳定性问题的分析计算方法等;掌握材料的基本力学性能和基本的材料力学实验方法;初步学会应用基本概念、基本理论和基本分析方法去分析问题和解决问题,为学习一系列后继课程打好必要的基础。
同时结合本课程的特点培养学生分析、解决工程实际问题的能力,提高学生的综合素质。
二、课程基本要求1、掌握力的概念、力的投影和力矩的计算;2、掌握力系简化的方法和一般的简化结果;3、掌握刚体静力学的平衡条件和平衡方程;4、对材料力学的基本概念和基本的分析方法有明确的认识。
5、具有将简单受力杆件简化为力学简图的初步能力,具有力学建模的初步概念与能力。
6、能熟练地做出杆件在基本变形下的内力图、计算其应力和位移、并进行强度和刚度计算。
7、对应力状态理论和强度理论有明确的认识,并能将其应用于组合变形下杆件的强度计算。
8、理解掌握简单超静定问题的求解方法。
9、对能量法的有关基本原理有明确认识,并熟练地掌握一种计算位移的能量方法。
10、对压杆的稳定性概念有明确的认识,能熟练计算轴向受压杆的临界载荷与临界应力,并进行稳定性校核等计算。
11、掌握质点系的质心、刚体的转动惯量、惯性积、惯性主轴和惯性积的平行移轴公式;掌握截面的静矩,形心的位置,惯性矩和惯性积及它们的平行移轴公式,转轴公式。
组合截面的惯性矩、惯性积计算,截面的形心主惯性轴和形心主惯性矩的计算11、对于常用材料在常温下的基本力学性能及其测试方法有初步认识。
0.1 工程力学的课程内容及其工程意义工程力学是一门关于力学学科在工程上的基本应用的课程,它通过研究物体机械运动的一般规律来对工程构件进行相关的力学分析和设计,其包含的内容极其广泛。
本书仅包括工程静力学和材料力学两部分。
机械运动是人们在日常生活和生产实践中最常见的一种运动形式,是物体的空间位置随时间的变化规律。
工程静力学研究的是机械运动的特殊情况,即物体在外力作用下的平衡问题,包括对工程物体的受力分析,对作用在工程物体上的复杂力系进行简化,总结力系的平衡条件和平衡方程,从而找出平衡物体上所受的力与力之间的关系。
构件,是工程上的机械、设备、结构的组成元素。
材料力学是研究工程构件在外力作用下,其内部产生的力,这些力的分布,以及将要发生的变形,这些变形中有些在外力解除后是可以恢复的,称为弹性变形;而另一些不可恢复的变形,则称为塑性变形。
为保证工程机械和结构的正常工作,其构件必须有足够的承载能力,即必须具有足够的强度、刚度和稳定性。
足够的强度,是保证工程构件在外力作用下不发生断裂和过大的塑性变形。
足够的刚度,是保证工程构件在外力作用下不发生过大的弹性变形。
足够的稳定性,是保证工程构件在外力作用下不失稳,即不改变其本来的平衡状态.在工程实际中,广泛地应用着工程力学的知识.例如图0—1所示的简易吊车,为了保证它能正常工作,首先需要用静力学知识分析和计算各构件所受的力,然后再应用材料力学知识,在安全、经济的前提下合理地确定各构件的材料和尺寸。
因此,工程力学是一门技术基础课程,它为后继专业课程和工程设计提供了必要的理论基础。
0。
2 工程力学的研究模型在工程力学中,由于工程静力学和材料力学所研究的问题不同,其工程模型也是各不相同的。
工程静力学的研究模型为刚体,即受力后理想不变形的物体。
因为大多数情形下,工程构件受力后产生的变形很小,忽略不计也不会对构件的受力分析产生影响。
而材料力学的研究模型是变形体。
因为材料力学是通过研究物体的变形规律来对工程构件进行安全性设计,所以构件的变形是不可忽略的。
工程力学知识点总结
静力学:静力学部分主要研究受力物体平衡时作用力所应满足的条件,同时也研究物体受力的分析方法以及力系的简化的方法等。
例如,二力平衡公理指出,作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。
加减平衡力系公理表明,在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。
此外,还有平行四边形法则等。
材料力学:材料力学部分研究构件在外力作用下的变形与破坏(或失效)的规律,为合理设计构件提供有关强度、刚度与稳定性分析的基本理论与方法。
例如,构件应具备足够的强度、刚度和稳定性,以保证在规定的使用条件下不发生意外断裂、显著塑性变形、过大变形或失稳。
工程力学的研究方法主要包括理论方法和试验方法。
在对事物观察和实验的基础上,经过抽象化建立力学模型,形成概念。
例如,在研究物体受外力作用而平衡时,可以采用刚体模型;但要分析物体内部的受力状态,必须考虑到物体的变形,建立弹性体的模型。
总的来说,工程力学涵盖了原有理论力学(静力学部分)和材料力学两门课程的主要经典内容,不仅与力学密切相关,而且紧密联系于广泛的工程实际。
如需更详细的知识点总结,建议查阅力学相关书籍或咨询力学专业人士。
《工程力学》课程标准课程编码:010149课程性质:专业基础课学分:4.0计划学时:64适用专业:机械制造与自动化1.前言1.1课程定位《工程力学》是机械制造与自动化专业一门重要的专业基础课,在人才培养中处于专业基础的地位。
通过本课程的学习,能够熟练绘制构件的受力图,能够利用受力物体平衡时作用力应满足的条件来解决工程中的实际问题,能够根据构件在外力的作用下的变形和破坏规律来合理设计构件,培养学生分析问题和解决问题的能力,为培养学生职业能力和学习后续课程奠定基础。
本课程的前修课程是《机械数学》和《机械制图》,后续课程有《机械设计基础》、《机械制造工艺与夹具》和《金属切削方法与设备》等专业课和专业基础课。
1.2设计思路依据本专业的人才培养方案,通过对企业进行走访、对机械制造与自动化专业岗位群的调研和分析、校企洽谈和毕业生工作跟踪调查,本课程标准的总体设计思路是:强化职业能力的培养,通过理论与实践的结合,逐步提高学生的分析问题和解决问题能力,最终培养学生能够合理设计构件并对构件进行优化设计的能力;利用“讲授+实验”的教学模式,灵活运用多种教学方法和教学手段,来调动学生的积极性;通过该课程的过程性考核,公平公正的评定学生成绩。
本课程标准以机械制造与自动化专业学生的就业为导向,根据行业专家对机械制造与自动化专业所涵盖的岗位群进行任务和职业能力分析,并遵循学生认知规律,整合序化教学内容,形成了静力学和材料力学两部分,其中静力学部分包括静力学基础、力系等效定理、汇交力系和力偶系和平面一般力系;材料力学部分包括拉伸和压缩变形、剪切和挤压变形、扭转变形和弯曲变形。
各个部分内容编排由简单到复杂,难度由低到高的顺序,符合学生的学习能力和认知特点;本课程共计64学时,其中静力学基础部分主要培养学生绘制构件受力图和利用平衡条件解决工程实际问题的能力,用时20学时,后面4个部分的内容属于材料力学的知识,主要训练学生通过分析构件的变形和破坏规律来合理设计构件的能力,同时难点和重点较多,用时42学时,其中包括四个力学实验,主要训练学生的实验动手能力,并能对实验结果进行分析、处理和给出合理的解释。
819工程力学考试大纲工程力学考试大纲通常包含两大部分:静力学和材料力学。
以下是一般情况下这两部分的考试大纲要点:静力学部分:1. 静力学公理、约束和约束力、物体的受力分析受力图。
2. 平面汇交力系、平面力偶系、平面力对点之矩、平面任意力系的简化及简化结果分析、平面力系的平衡条件平衡方程、物体系的平衡、静定与超静定问题、平面简单桁架的内力计算。
3. 空间力对点之矩和力对轴之矩、空间任意力系的简化及简化结果分析、空间力系的的平衡条件和平衡方程、物体的重心。
4. 滑动摩擦、摩擦角和自锁、考虑摩擦的平衡问题。
材料力学部分:1. 轴向拉伸与压缩的概念、轴力图、轴向拉压的应力和变形、材料拉压的力学性能、轴向拉压的强度计算、拉压杆静不定问题、应力集中的概念。
2. 剪切与挤压的概念及其实验规律、剪切与挤压的实用计算。
3. 扭转的概念、扭矩和扭矩图、切应力互等定理及剪切胡克定律、圆轴扭转的应力和变形计算、圆轴扭转的强度和刚度计算。
4. 弯曲的概念、梁的内力计算(剪力和弯矩)、梁的应力(特别是弯曲正应力)计算、梁的变形(挠度)计算。
5. 弯曲的强度计算,特别是弯曲正应力强度条件及其应用。
6. 应力状态的概念、一点应力状态的分析和描述方法(解析法和应力圆法)、二向和三向应力状态的分类及特点,特别是二向和三向应力状态的组合特点及工程应用。
7. 强度理论的概念,特别是常用的四种强度理论及其应用。
8. 组合变形的概念,特别是弯曲与扭转组合时的强度计算。
9. 压杆稳定的概念,特别是临界力的确定(经验公式和欧拉公式)及稳定性校核。
此外,具体考试大纲可能根据学校和专业有所差异,建议查询具体的学校官网或咨询该校相关人员,获取更详细和准确的考试大纲信息。
工程力学静力学与材料力学工程力学是研究物体在外力作用下的平衡、运动和变形规律的一门学科,它是工程学的基础和核心课程之一。
而工程力学又分为静力学和动力学两个部分,其中静力学是研究物体在静止状态下受力和力的平衡条件的学科,而材料力学则是研究材料的性质、行为和应用的学科。
本文将重点介绍工程力学静力学与材料力学的相关内容。
首先,我们来谈谈静力学。
静力学是研究物体在静止状态下受力和力的平衡条件的学科。
在工程实践中,静力学的理论常常被用于分析和计算各种结构的受力情况,比如建筑物、桥梁、机械设备等。
静力学的基本原理包括力的平衡条件、力的合成与分解、力的作用点、力的性质等。
在学习静力学的过程中,我们需要掌握平衡条件的原理,了解各种受力情况下物体的平衡条件,并能够运用相关理论进行实际问题的分析和计算。
其次,我们来看看材料力学。
材料力学是研究材料的性质、行为和应用的学科。
材料力学的内容非常广泛,包括材料的力学性能、材料的应力应变关系、材料的疲劳与断裂、材料的塑性变形等。
在工程实践中,材料力学的理论常常被用于材料的选用、结构的设计和材料的加工等方面。
学习材料力学需要掌握材料的基本力学性能,了解材料的应力应变关系,并能够运用相关理论进行材料的性能分析和计算。
工程力学静力学与材料力学是工程学的基础课程,它们为我们理解和掌握工程实践中的力学问题提供了重要的理论基础。
通过学习工程力学静力学与材料力学,我们能够更好地理解和应用力学原理,为工程实践提供科学的理论支持。
同时,工程力学静力学与材料力学的学习也是提高我们工程素质和解决工程实际问题能力的重要途径。
总之,工程力学静力学与材料力学是工程学习的重要基础课程,它们的学习对我们掌握工程学科知识、提高工程素质和解决工程实际问题能力具有重要意义。
希望大家能够认真学习,掌握其中的基本原理和方法,为将来的工程实践打下坚实的理论基础。
课程标准课程性质:必修课计划学时:72单位:机电汽车工程学院安徽文达信息工程学院二○一七年六月工程力学一、基本情况二、课程概述(一)课程性质地位该课程是四年制本科专业基础课程。
工程力学涵盖了原有理论力学和材料力学两门课程的主要经典内容。
通过对《工程力学》的学习,学生可以掌握如何对处于静定平衡状态的物体进行静力分析和对构件进行强度、刚度和稳定性的分析。
这门课以《高等数学》、《大学物理》为基础,也是进一步学习《机械原理》、《机械设计》等其它专业课程的基础。
《工程力学》课程在机械设计专业人才培养计划中占有举足轻重的地位,是衔接基础课程与专业课程的纽带。
(二)课程基本理念1、指导思想以学院“人才培养方案”为依据,以培养“基础扎实、专业面宽、重应用、强素质”的应用型人才为出发点,遵循技术应用型本科生成才规律,树立专业指向、能力本位、个性发展理念,突出学生主体地位,运用所学的工程力学知识来发现、分析和处理实际问题。
2、基本原则以机械设计专业就业岗位需求为目标,遵循认知规律,采用理论和实践相结合的教学方式,深入浅出,发挥学生主体意识,提高教学效果,在获得机械设计专业所需要的工程力学知识的同时,增强能力、提高素质。
(三)课程设计思路1、框架设计以本课程的基本理念为指导,按照专业基础实用的原则进行课程设计,以工程力学的基本概念和基本公理为基础,对工程构件进行受力分析和强度校核,通过实验操作巩固理论知识。
2、内容安排本课程共分三大模块:静力学;材料力学;运动学与动力学。
第一模块分两大任务:静力学基欢迎下载本概念和力系。
第二模块设一大任务,两条线索,一是载荷作用方式,二是外力-内力-内力图-应力-强度条件及应用。
本模块设有3个实验,安排六个课时,通过实验引出相关内容。
第三模块主要引导学生自学。
3、学时分配本课程教学课时共72学时,4.5学分,其中理论教学66学时,实践教学6学时,教学安排在第3学期。
4、教学实施课堂教学要确保教学大纲的教学要求和教学内容的完成。
工程力学工程力学包括静力学和材料力学。
Engineering mechanics includes statics and mechanics of materials.在静力学部分,我们第一部分学习了力的相关概念。
力是物体与物体之间的相互机械作用,这种作用使得物体的运动状态或形状改变。
力的三要素包括了大小、方向、作用点。
还学习了静力学的基本公理,包括二力平衡公理(作用在同一刚体上的两个力,使刚体平衡的条件是这两个力大小相等、方向相反,作用在同一条直线上。
)加减平衡公理(作用在刚体上的一个力系中,加上或减去一个平衡力系,不改变原力系对于该刚体的作用效果)力的平行四边形法则(两个力合成一个合力)作用和反作用定律(作用力和反作用力总是同时存在的.两者大小相等、方向相反,作用在同一条直线上,分别作用于两个物体)。
In the statics part, we learned the concepts of force in the first part. Force is the mechanical interaction between the object and the object, which makes the movement state or shape of the object change. The three elements of force include size, direction and action point. The basic axioms of statics, including two force balance axioms, are also studied The parallelogram law of the force (two forces combine to form a resultant force) and the reaction law of the force (the force and the reaction always exist at the same time, both of which are equal in size and opposite in direction and act on the same straight line. Act on two objects respectively).第二部分学习了约束和约束力,在空间里运动反向不受任何限制的物体称为自由体,反之,成为非自由体。
1.工程力学包含静力学和材料力学两部分。
2.工程构件在外力作用下丧失正常功能的现象称为“失效”或“破坏”。
工程力学范畴内的失效通常可分为三类:强度失效、刚度失效和稳定失效。
强度失效是指构件在外力作用下发生不可恢复的塑性变形或发生断裂。
刚度失效是指构建在外力作用下产生过量的弹性变形。
稳定失效是指构件在某种外力作用下,其平衡形式发生突然转变。
3.工程设计的任务之一就是保证构件在确定的外力作用下正常工作而不发生强度失效、刚度失效和稳定,即保证构件具有足够的强度、刚度与稳定性。
强度是指构件受力后不能发生破坏或产生不可恢复的变形的能力。
刚度是指构件受力后不能发生超过工程允许的弹性变形的能力。
稳定是指构件在压缩载荷的作用下,保持平衡形式不能发生在突然转向的能力。
4.为了完成常规的工程设计任务,需要进行以下几方面的工作:
(1)分析并确定构件所受各种外力的大小和方向。
(2)研究外力作用下构件的内部受力、变形和失效的规律。
(3)提出保证构件具有足够强度、刚度和稳定性的设计准则与设计方法。
5.实际工程构件受力后,几何形状和几何尺寸都要发生改变称为变形,这些构件都称为变形体。
6.在大多数情形下,变形都比较小,忽略这种变形对构件的受力分析不会产生什么影响。
由此,在静力学中,可以将变形体简化为不变形的刚体。
7.若构件在某一方向上的尺寸比其余两个方向上的尺寸大得多,则称为杆。
梁、轴、柱等均属于杆类构件。
杆横截面中心的连线称为轴线。
轴线为直线者称为直杆;轴线为曲线者称为曲杆。
所有横截面形状和尺寸都相同者称为等截面杆;不同者称为变截面杆。
8.若构件在某一方向上的尺寸比其余两个方向上的尺寸小得多,为平面形状者称为板;为曲面形状者称为壳。
9.若构件在三个方向上具有同一量级的尺寸,称为块体。
10.力系是指作用于物体上的若干个力所形成的集合。
11.静力学的理论和方法不仅是工程构件静力设计的基础,而且在解决许多工程技术问题中有着广泛应用。
12.静力学模型包括三个方面:
(1)物体的合理抽象与简化;
(2)受力的合理抽象与简化;
(3)连接与接触方式的合理抽象与简化;
13.实际物体受力时,其内部各点间的相对距离都要发生改变,这种改变称为位移。
14.各点位移累加的结果,使物体的形状和尺寸改变,这种改变称为变形。
15.物体变形很小时,变形对物体的运动和平衡的影响甚微,因而在研究力的作用效应时,可以忽略不计,这时的物体便可抽象为刚体。
16.如果变形体在某一力系作用下处于平衡,则忽略变形,将实际变形抽象为刚体,其平衡不变,称为刚化原理。
17.无论是施力体还是受力体,其接触所受的力都是作用在接触面积上的分布力。
、
18.当分布力作用面积很小时,为了工程分析计算方便起见,可以将分布力简化为作用于一点的合力,称为集中力。
19.力是物体间的相互作用,这种作用将使物体的运动状态发生变化------运动效应,或使物体发生变形-------变形效应。
20.力是矢量。
当力的作用在刚体上时,力可以沿着其作用线滑移,而不改变力对刚体的作
用效应,这时的力是滑移矢量;当力作用在变形体上时,力既不能沿其作用线滑移,也不能绕作用点转动,这表明,作用在变形体的力的作用线和作用点都是固定的,所以这时的力是定位矢量。
21.作用在物体上的力的集合称为力系。
22.不计自重的刚体在两个力作用下平衡的必要和充分条件是:这两个力沿着同一作用线,大小相等,方向相反。
这称为二力平衡原理。
23.有一些构件可简化为只在两点处各受到一个力作用的刚体,这样的构件又称为二力构件。
24.由于工程上的二力构件大多数是杆件,所以二力构件常被简称二力杆。
二力杆可以是直杆、也可以是曲杆。
25.在作用于刚体的力系中,加上或减去任意个平衡力系,不改变原力系对刚体的作用效应,这称为加减平衡力系原理。
26.加减平衡力系原理是力系简化的重要依据之一。
27.作用于刚体上的力可沿其作用线滑移至刚体内任意一点,而不改变力对刚体的作用效应。
这称为力的可传性定理。
28.力的三要素:力的大小、方向和作用线。
29.可以沿作用线移动的矢量称为滑移矢量。
作用于刚体上的力是滑移矢量。
30.作用于刚体上的三个力,若构成平衡力系,且其中两个力的作用线汇交于一点,则三个力必在同一平面内,而且第三个力的作用线一定通过汇交点。
这称为三力平衡汇交定理。
31.约束是接触和连接方式的简化模型。
32.物体的运动,如果没有受到其他物体的的直接制约,称这类物体为自由体。
33.物体的运动,如果受到其他物体直接制约,则称这类物体为非自由体或受约束体。
34.约束的作用是对与之连接物体的运动施加一定的限制条件。
35.绳索、工业带、链条等都可以理想化为单侧约束,统称为柔索。
这种约束的特点是其所产生的约束力只能沿柔索方向的单侧约束力,并且只能是拉力,不能是压力。
36.约束体与被约束体都是刚体,因而二者之间为刚性接触,这种约束称为刚性约束。
37.两个物体的接触面处光滑无摩擦时,约束物体只能限制被约束物体沿二者接触面公法线的方向运动,而不是限制沿接触面切线方向的运动。
这种约束称为光滑面约束。
38.光滑面约束的约束力只能沿着接触面的公法线方向,并指向被约束物体。
39.桥梁、屋架结构中采用的辊轴支承,又称辊轴支座,也是一种光滑面约束。
40.光滑圆柱铰链又称柱铰,或者简称铰链,若约束物体为固定铰支座,则又称这种约束为固定铰支座。
41.力对点之矩是力使物体绕某一点转动效应的量度。
这一点称为力矩中心,简称矩心。
42.解除约束后的物体,称为分离体或隔离体。
分析作用在分离体上的全部主动力和约束力,画出分离体的受力简图------受力图。
43.系统外物体作用与系统内物体上的力,称为外力;系统内物体间的相互作用力称为内力。