|
|
例2 求(319,377).
解:∵ 377÷319=1(余58),
∴(377,319)=(319,58); ∵ 319÷58=5(余29), ∴(319,58)=(58,29); ∵ 58÷29=2(余0), ∴(58,29)=29; ∴(319,377)=29。
可以用下面的简便形式来求(319,377).
2. 折一个角 谈话:我们已经认识了角,能用自己灵巧的 小手折一个角吗?看谁折得快折得好。(用准 备好的白纸折角) 3. 角的大小比较 (1)提问:能使你折的角变得再大一些吗?你 是怎么办的?能把它变得小一些吗?又是怎么 做到的? (2)钟面上的时针和分针转动时,形成了大小 不同的角,同学们能比较出哪个角大些吗?用 什么方法比较? (3)谈话:观察老师手上的这两个三角形(两 个纸做的一大一小的三角形),哪个三 角形大些呢?还是一样大呢?你知道角 的大小和什么有关吗?
∵ [a,b]•(a,b)=a • b, ∴ [a,b]=ab÷(a,b).
求两个数的最小公倍数,可以用两
个数的最大公约数,除两个数的积,所
得的商就是这两个数的最小公倍数。
例2
求[105,42].
解:∵(105,42)=21, ∴ [105,42] =105×42÷21 =210.
1、用分解质因数法求下列各组数的最小公倍数。 (1)36和48 (2)64和72 (3)4、12和42 (4)112、124和420 2、用求最大公约数法求下列各组数的最小公倍数; (1)185和338 (2)46和240 3、指出小明在求三个数的最小公倍数时的错误,并对他作正 确的解释。
(2)391和299
(3)252和180
(4)4935和13912