废水生物脱氮基本原理
- 格式:docx
- 大小:297.83 KB
- 文档页数:3
污水脱氮原理
污水脱氮是指将污水中的氮化物(主要是氨氮和硝酸盐氮)转化为氮气的处理过程。
污水中的氮化物来自于人类活动、农业排放、工业废水等源头。
污水脱氮常用的方法有生物法和化学法。
生物法主要采用厌氧-好氧(A/O)工艺,通过厌氧反应池和好氧反应池的连续操作,使污水中的氮化物转化为氮气释放出去。
其中,厌氧反应池中的硝态氮被还原为氨态氮,然后在好氧反应池中通过硝化反应转化为亚硝酸盐和硝酸盐,最后通过硝化反应进一步转化为氮气。
化学法主要采用化学药剂来进行脱氮,常用的药剂有硫酸铁和硫酸铝等。
硫酸铁法利用硫酸铁作为氧化剂将氨氮氧化为氮气,同时生成硫酸亚铁;硫酸铝法则是利用硫酸铝沉淀污水中的氨氮,从而实现脱氮。
此外,还有一种新兴的脱氮技术是生物膜法。
利用特殊的微生物膜来吸附和分解污水中的氮化物,将其转化为氮气释放出去。
生物膜法具有体积小、处理效果好等优点。
总的来说,污水脱氮原理主要是通过生物法的硝化反应、还原反应以及化学法的氧化还原反应,将污水中的氮化物转化为氮气,从而达到去除氮化物的目的。
利用好氧和厌氧组合来进行生物脱氮和除磷的原理生物脱氮和除磷是现代污水处理过程中常用的处理方法,利用好氧和厌氧组合来进行生物脱氮和除磷可以有效去除废水中的氮和磷,使得废水达到排放标准。
生物脱氮的原理是通过好氧和厌氧综合作用,将废水中的氨氮和硝态氮转化为氮气释放到大气中,从而达到去除氮的目的。
该过程分为两个阶段:厌氧阶段和好氧阶段。
在厌氧阶段,通过加入硝化抑制剂来抑制硝化菌的生长,同时利用厌氧条件下的反硝化菌将废水中的硝态氮还原成氮气。
反硝化菌利用废水中的有机物作为电子供体,将硝态氮还原成氮气,并释放到大气中。
在好氧阶段,通过加入缺氧条件下的硝化菌来将废水中的氨氮氧化为硝态氮。
硝化菌利用废水中的氨氮作为电子供体,同时吸收氧气,将氨氮氧化成亚硝态氮,再经过氧化反应转化为硝态氮。
硝化过程产生的亚硝酸会进一步被反硝化菌氧化为N2,释放到大气中。
除磷的原理是通过好氧条件下的磷菌将废水中的磷转化为细菌形成的磷酸盐,从而实现磷的去除。
除磷过程可分为生物吸附和矿化两个阶段。
在生物吸附阶段,废水中的有机物作为磷菌的营养源,磷菌在好氧条件下吸附废水中的磷成为细菌形成的有机磷,从而将磷去除。
在矿化阶段,废水中的磷经过好氧条件下的生物氧化反应,被磷菌转化为无机磷酸盐,并与废水中的钙、铝等金属离子结合形成不溶于水的磷酸钙或磷酸铝沉淀物。
这些沉淀物可以通过沉淀或过滤的方式去除。
好氧和厌氧组合的生物脱氮和除磷方法相辅相成,通过两者的配合可以实现高效去除废水中的氮和磷。
好氧和厌氧条件下的细菌互相依赖,在厌氧阶段,反硝化菌利用废水中的硝态氮作为电子供体进行反硝化作用,产生氮气;在好氧阶段,硝化菌利用废水中的氨氮作为电子供体进行硝化作用,产生硝态氮。
同时,在除磷过程中,磷菌在好氧条件下吸附废水中的磷,然后通过好氧条件下的生物氧化反应转化为无机磷酸盐,形成沉淀物。
通过好氧和厌氧组合的生物脱氮和除磷方法可以实现高效的废水处理,不仅能够去除废水中的氮和磷,还能够减少能源消耗和化学药剂的使用。
生物脱氮原理碳源计算公式引言。
生物脱氮是一种环保的氮污染治理技术,通过微生物的作用将废水中的氨氮转化为氮气排放到大气中,达到净化水质的目的。
在生物脱氮过程中,碳源的供应对于微生物的生长和氨氮的转化起着至关重要的作用。
因此,准确计算生物脱氮过程中所需的碳源量对于工程设计和运行管理具有重要意义。
生物脱氮原理。
生物脱氮是利用硝化细菌和反硝化细菌的作用将废水中的氨氮转化为氮气的过程。
在生物脱氮系统中,硝化细菌将废水中的氨氮氧化为亚硝酸盐和硝酸盐,而反硝化细菌则将硝酸盐还原为氮气。
这一过程需要大量的碳源来提供能量和碳源供应。
碳源计算公式。
在生物脱氮系统中,碳源的计算可以通过以下公式进行:碳源需求量 = 氨氮去除量× 5.07 + 硝态氮去除量× 3.43。
其中,氨氮去除量和硝态氮去除量分别为废水中氨氮和硝态氮的去除量,单位为kg/d;5.07和3.43分别为氨氮和硝态氮的理论碳需求系数。
碳源需求量的计算。
以某废水处理厂为例,废水中的氨氮去除量为100kg/d,硝态氮去除量为80kg/d,那么根据上述公式,碳源的需求量可以计算如下:碳源需求量 = 100 × 5.07 + 80 × 3.43 = 507 + 274.4 = 781.4kg/d。
因此,该废水处理厂在生物脱氮过程中需要提供约781.4kg/d的碳源来满足微生物的生长和氨氮、硝态氮的转化需求。
碳源的选择。
在生物脱氮系统中,常用的碳源包括甲醇、乙醇、乙二醇、乙酸、乳酸等有机物质,其中甲醇是应用最为广泛的一种碳源。
在选择碳源时,需要考虑碳源的价格、供应稳定性、对微生物的毒性以及对环境的影响等因素。
同时,还需要根据废水的水质特点和处理工艺的要求来确定最适合的碳源类型和用量。
碳源的供应方式。
碳源的供应方式通常包括间歇供应和连续供应两种方式。
间歇供应是指根据废水的水质变化和处理工艺的需要,在特定的时间段内向生物脱氮系统中添加碳源;而连续供应则是通过设备和管道将碳源连续地注入到生物脱氮系统中。
生物脱氮机理、影响因素及应用工艺详解生物脱氮是指在微生物的联合作用下,污水中的有机氮及氨氮经过氨化作用、硝化反应、反硝化反应,最后转化为氮气的过程。
其具有经济、有效、易操作、无二次污染等特,被公认为具有发展前途的方法,关于这方面的技术研究不断有新的成果报道。
一、机理详解1、氨化反应氨化反应是指含氮有机物在氨化功能菌的代谢下,经分解转化为 NH4+的过程。
含氮有机物在有分子氧和无氧的条件下都能被相应的微生物所分解,释放出氨。
2、硝化反应硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。
硝化过程可以分成两个阶段。
第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。
3、反硝化反应反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮(N2)的过程。
反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。
二、生物脱氮主要影响因素1、温度生物硝化反应的适宜温度范围为20~30℃,15℃以下硝化反应速率下降,5℃时基本停止。
反硝化适宜的温度范围为20~40℃,15℃以下反硝化反应速率下降。
实际中观察到,生物膜反硝化过程受温度的影响比悬浮污泥法小,此外,流化床反硝化温度的敏感性比生物转盘和悬浮污泥的小得多。
2、溶解氧硝化反应过程是以分子氧作为电子终受体的,因此,只有当分子氧(溶解氧)存在时才能发生硝化反应。
为满足正常的硝化效果,在活性污泥工艺运行过程中,DO值至少要保持在2mg/L以上,一般为2~3mg/L。
当DO值较低时,硝化反应过程将受到限制,甚至停止。
反硝化与硝化在溶解氧的需求方面是一个对立的过程。
传统的反硝化过程需要在严格意义上的缺氧环境下才能发生,这是因为DO与NO3-都能作为电子受体,存在竞争行为。
生物脱氮工艺随着人类社会的不断发展,环境问题越来越引人关注。
其中,氮污染是一个严重的问题。
氮是生物体内必需的元素,但过量的氮却会对环境造成巨大的负担。
氮污染主要来自于农业、工业和城市污水处理等领域。
针对氮污染问题,科学家们研发了各种方法,其中生物脱氮工艺是一种环保、高效的氮污染治理方法。
一、生物脱氮的基本原理生物脱氮是利用微生物将废水中的氮转化为无害的氮气的过程。
该工艺的基本原理是:将含氮废水通过生物反应器,在一定的条件下,利用氨氧化细菌将氨氮转化为亚硝酸盐,再利用硝化细菌将亚硝酸盐转化为硝酸盐,最后通过反硝化细菌将硝酸盐还原为氮气,从而达到脱氮的目的。
二、生物脱氮工艺的优点1、环保:生物脱氮工艺不需要添加任何化学药剂,不会产生二次污染,对环境没有负面影响。
2、高效:生物脱氮工艺可以达到较高的脱氮效率,对氮污染治理效果显著。
3、经济:生物脱氮工艺不需要大量投入,运行成本低,对于农业、工业和城市污水处理等领域都具有实用性。
三、生物脱氮工艺的应用领域1、城市污水处理:城市污水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以有效地降低污水中的氮含量,达到国家排放标准。
2、农业:农业是氮污染的主要来源之一。
生物脱氮工艺可以应用于农业废水的处理,减少氮肥的使用量,达到节约能源和环保的目的。
3、工业:工业废水中含有大量的氮,如果不进行处理,会对周围环境和水体造成严重的污染。
生物脱氮工艺可以应用于工业废水的处理,降低氮污染的程度。
四、生物脱氮工艺的发展趋势目前,生物脱氮工艺已经成为氮污染治理的主要手段之一。
随着科技的不断进步和人们对环境问题的重视,生物脱氮工艺也在不断发展和完善。
未来,生物脱氮工艺将会更加智能化、高效化和精准化,为氮污染治理提供更加优秀的解决方案。
总之,生物脱氮工艺是一种环保、高效、经济的氮污染治理方法,已经在城市污水处理、农业和工业废水处理等领域得到广泛应用。
生物脱氮原理方程引言:氮是生物体内不可缺少的元素之一,但过多的氮排放会导致水体富营养化和环境污染。
因此,开发高效的生物脱氮技术具有重要意义。
本文将介绍生物脱氮的原理方程及其应用。
一、生物脱氮原理生物脱氮是利用特定微生物的代谢活动将氨氮转化为氮气,从而实现氮的去除过程。
生物脱氮主要包括硝化和反硝化两个过程。
1. 硝化过程硝化是将氨氮氧化为亚硝酸盐和硝酸盐的过程,主要由两种微生物完成:硝化细菌和亚硝酸细菌。
硝化细菌将氨氮氧化为亚硝酸盐,而亚硝酸细菌则进一步将亚硝酸盐氧化为硝酸盐。
硝化细菌通常分为两类:一类是氨氧化细菌(Ammonia-Oxidizing Bacteria,AOB),另一类是氨氧化古菌(Ammonia-Oxidizing Archaea,AOA)。
氨氧化细菌和氨氧化古菌具有不同的氨氧化活性和环境适应性。
2. 反硝化过程反硝化是将硝酸盐还原为氮气的过程,由反硝化细菌完成。
反硝化细菌可以利用硝酸盐作为电子受体进行呼吸代谢,将硝酸盐还原为亚硝酸盐、一氧化氮、二氧化氮和氮气。
常见的反硝化细菌有假单胞菌属(Pseudomonas)、乳杆菌属(Lactobacillus)和厌氧细菌属(Anaerobacter)等。
二、生物脱氮原理方程生物脱氮的原理方程可以用以下两个方程表示:1. 硝化方程式:NH3 + 1.5O2 → NO2- + H2O + 2H+(硝化细菌)NO2- + 0.5O2 → NO3-(亚硝酸细菌)2. 反硝化方程式:NO3- → 0.5N2 + 1.5O2(反硝化细菌)这两个方程描述了硝化和反硝化过程中氨氮和硝酸盐的转化关系。
通过这些代谢反应,生物体内的氨氮最终转化为氮气,并释放到大气中。
三、生物脱氮技术应用生物脱氮技术广泛应用于污水处理、农田排水、养殖废水处理等领域。
1. 污水处理生物脱氮技术是污水处理中常用的氮去除方法之一。
通过在处理系统中添加硝化细菌和反硝化细菌,可以有效地将废水中的氨氮和硝酸盐转化为氮气,从而减少氮的排放。
污水脱氮原理污水脱氮是指将含氮废水中的氨氮和有机氮去除的过程。
氮是生物体生长和代谢的必需元素,但过量的氮会导致水体富营养化,引发藻类大量繁殖,进而引起水体缺氧甚至死亡。
因此,对污水中的氮进行有效去除是保护水环境的重要措施之一。
污水脱氮的原理主要包括生物脱氮和化学脱氮两种方式。
生物脱氮是利用好氧和厌氧微生物将氨氮和有机氮氧化成氮气释放出去,或者转化成氮气通过反硝化作用排出。
而化学脱氮则是通过添加化学药剂,如硝化细菌抑制剂、硝化细菌氧化剂等,来促使氨氮和有机氮转化成氮气或氮氧化物,从而实现脱氮的目的。
生物脱氮是目前污水处理中较为常见的一种脱氮方式。
在生物脱氮过程中,首先是氨氮通过硝化作用转化为亚硝酸盐,然后再通过反硝化作用转化为氮气释放出去。
而有机氮则是通过厌氧微生物的作用,将有机氮分解成氨氮,再经过硝化和反硝化作用转化成氮气。
这种生物脱氮方式具有操作简单、能耗低、处理效果好等优点,因此在实际污水处理中得到了广泛应用。
化学脱氮则是通过添加化学药剂来实现氮的去除。
例如,通过添加硝化细菌抑制剂,可以抑制硝化细菌的活性,从而减少硝化作用的产生,达到脱氮的效果。
而添加硝化细菌氧化剂则是促进硝化作用的进行,加快氨氮和有机氮的转化成氮气或氮氧化物。
化学脱氮的优点是处理速度快、适用范围广,但缺点是操作复杂、成本较高。
在实际污水处理过程中,生物脱氮和化学脱氮常常结合使用,以达到更好的脱氮效果。
通过合理的工艺设计和操作控制,可以实现对污水中氮的高效去除,从而保护水环境,促进水体健康。
总而言之,污水脱氮是保护水环境、改善水质的重要手段之一。
了解污水脱氮的原理,选择合适的脱氮方式,并加强对污水处理技术的研究和应用,将有助于提高污水处理效率,减少对水环境的污染,实现可持续发展的目标。
生物接触氧化法脱氮的原理生物接触氧化法是一种常用的脱氮方法,其原理是通过生物作用将废水中的氨氮转化为硝态氮,再利用硝态氮的物理、化学方法进行除氮处理。
生物接触氧化法的主要步骤包括:接触氧化池的建设、填料的选取、好氧微生物的培养与固定、好氧微生物的自然衰亡、高浓度氨氮废水生物接触氧化等。
首先,接触氧化池的建设是生物接触氧化法脱氮的基础。
接触氧化池是一个密封的容器,通常由不锈钢或塑料制成,内部设置了填料。
填料的选取至关重要,它既要有一定的表面积,便于微生物的生长附着,又要有足够的空隙,保证废水可以充分与微生物接触。
常用的填料有塑料环、聚酯棉球等。
其次,好氧微生物的培养与固定是实现脱氮的关键。
好氧微生物附着在填料表面,通过氧气和废水中的有机物进行共同代谢,产生能量供自身生长。
在这个过程中,微生物将废水中的氨氮转化为亚硝酸盐,再进一步氧化为硝酸盐。
脱氮的关键步骤是将亚硝酸盐进一步氧化为硝酸盐,这需要好氧微生物固定在填料上,形成好氧微生物膜。
然而,好氧微生物的自然衰亡也是一个不可忽视的因素。
填料表面附着的好氧微生物会随着时间的推移,由于种群竞争、环境变化等原因逐渐死亡,导致脱氮效果下降。
因此,需要定期进行好氧微生物的补充和更新,以维持良好的脱氮效果。
最后,对于高浓度氨氮废水的处理,可以采用生物接触氧化法进行处理。
由于高浓度氨氮废水中氨氮的浓度较高,一般情况下无法直接进入生物接触氧化池进行氧化处理,需要通过稀释的方式降低氨氮浓度,然后进入接触氧化池进行脱氮。
在接触氧化池中,好氧微生物将废水中的氨氮转化为硝态氮,从而达到脱氮的目的。
总之,生物接触氧化法通过好氧微生物的作用将废水中的氨氮转化为硝态氮,是一种有效的脱氮方法。
它能够广泛应用于污水处理、环境保护等领域,对氮污染的治理起到了重要的作用。
随着科学技术的不断进步,生物接触氧化法在脱氮领域的研究和应用也将得到进一步的发展。
水处理中生物脱氮基本原理进行生物脱氮可分为氨化-硝化-反硝化三个步骤。
由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。
生物脱氮是在微生物的作用下,将有机氮和NH3-N转化为N2和NxO气体的过程。
废水中存在着有机氮、NH3-N、NOx--N等形式的氮,而其中以NH3-N和有机氮为主要形式。
在生物处理过程中,有机氮被异养微生物氧化分解,即通过氨化作用转化为成NH3-N,而后经硝化过程转化变为NOx--N,最后通过反硝化作用使NOx--N转化成N2,而逸入大气。
由此可见,进行生物脱氮可分为氨化-硝化-反硝化三个步骤。
由于氨化反应速度很快,在一般废水处理设施中均能完成,故生物脱氮的关键在于硝化和反硝化。
1.氨化作用氨化作用是指将有机氮化合物转化为NH3-N的过程,也称为矿化作用。
参与氨化作用的细菌称为氨化细菌。
在自然界中,它们的种类很多,主要有好氧性的荧光假单胞菌和灵杆菌、兼性的变形杆菌和厌氧的腐败梭菌等。
在好氧条件下,主要有两种降解方式,一是氧化酶催化下的氧化脱氨[2]。
例如氨基酸生成酮酸和氨:另一是某些好氧菌,在水解酶的催化作用下能水解脱氮反应。
例如尿素能被许多细菌水解产生氨,分解尿素的细菌有尿八联球菌和尿素芽孢杆菌等,它们是好氧菌,其反应式如下:在厌氧或缺氧的条件下,厌氧微生物和兼性厌氧微生物对有机氮化合物进行还原脱氨、水解脱氨和脱水脱氨三种途径的氨化反应。
2.硝化作用硝化作用是指将NH3-N氧化为NOx--N的生物化学反应,这个过程由亚硝酸菌和硝酸菌共同完成,包括亚硝化反应和硝化反应两个步骤。
该反应历程为:亚硝酸菌有亚硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球菌属。
硝酸菌有硝酸杆菌属、硝酸球菌属。
亚硝酸菌和硝酸菌统称为硝化菌[22]。
发生硝化反应时细菌分别从氧化NH3-N和NO2--N的过程中获得能量,碳源来自无机碳化合物,如CO32-、HCO-、CO2等。
假定细胞的组成为C5H7NO2,则硝化菌合成的化学计量关系可表示为:由上式可以看出硝化过程的三个重要特征:⑴NH3的生物氧化需要大量的氧,大约每去除1g的NH3-N需要4.2gO2;⑵硝化过程细胞产率非常低,难以维持较高物质浓度,特别是在低温的冬季;⑶硝化过程中产生大量的质子(H+),为了使反应能顺利进行,需要大量的碱中和,理论上大约为每氧化1g的NH3-N 需要碱度5.57g(以NaCO3计)。
废水生物脱氮基本原理
关于氨氮消耗碱度的理论计算问题书上写的理论上降解1克氨氮要消耗7.14克碱度(以碳酸钙计算),这里是不是说就是消耗7.14克碳酸钙啊?
果换算成纯碱又如何计算?换算成小苏打又怎么计算呢?
消耗的是碳酸氢根。
碳酸钙分子量100,纯碱106。
以碳酸钙计算的量乘以1.06就是需要的纯碱量。
在不考虑细菌增值硝化消耗的碱度为1g氨氮7.14g碱度(碳酸钙),在考虑细菌增值的情况下是8.62g碱度(碳酸钙)。
碱度与硝化的比例系数为7.1 即每氧化1mg氨氮为硝酸根需消耗7.1mg碱度而发生反硝化反应时每反应掉1mg硝酸根可以产生3.57mg碱度所以,脱氮反应时为了取得好的效果必须不断补充碱度积磷菌、反硝化菌和硝化细菌生长的最佳pH值在中性或弱碱性范围,当 pH 值偏离最佳值时,反应速度逐渐下降,碱度起着缓冲作用。
污水厂生产实践表明,为使好氧池的pH值维持在中性附近,池中剩余总碱度宜大于 70mg/L。
每克氨氮氧化成硝态氮需消耗 7.14g 碱度,大大消耗了混合液的碱度。
反硝化时,还原 1g 硝态氮成氮气,理论上可回收 3.57g 碱度,此外,去除1g五日生化需氧量可以产生0.3g 碱度。
出水剩余总碱度可按下式计算,剩余总碱度=进水总碱度+0.3×五日生化需氧量去除量+3×反硝化脱氮量一7.14×硝化氮量,式中 3 为美国 EPA(美国环境保护署)推荐的还原1g硝态氮可回收3g碱度。
由硝化方程式可知,随着NH3-N被转化成NO3—-N,会产生部分矿化酸度H+,这部分酸度将消耗部分碱度,每克NH3-N转化成NO3—-N 约消耗7.14g碱度(以CaC03计)。
因而当污水中的碱度不足而TKN负荷又较高时,便会耗尽污水中的碱度,使混合液中的pH值降低至7.0
以下,使硝化速率降低或受到抑制。
也就是说它只是个理论值,具体只能通过实验得出了。