浙教版初中数学八年级上册 2.7 探索勾股定理
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
浙教版数学八年级上册2.7《探索勾股定理》教学设计一. 教材分析《探索勾股定理》是浙教版数学八年级上册2.7节的内容,主要介绍了勾股定理的证明和应用。
本节内容是在学生已经掌握了相似三角形、全等三角形和勾股定理的初步知识的基础上进行学习的。
教材通过引导学生探索勾股定理的证明,让学生更深入地理解勾股定理,并能够运用勾股定理解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形的相关知识有一定的了解。
但是,对于证明勾股定理的深层次理解还存在一定的困难。
因此,在教学过程中,需要引导学生通过实践探索,加深对勾股定理的理解。
三. 教学目标1.理解勾股定理的证明过程,掌握勾股定理的应用。
2.培养学生的探索精神和合作意识。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重难点:勾股定理的证明过程。
2.难点:如何引导学生探索并理解勾股定理的证明过程。
五. 教学方法1.引导探究法:通过引导学生探索勾股定理的证明过程,让学生加深对勾股定理的理解。
2.小组合作法:在探索过程中,采用小组合作的方式,培养学生的合作意识。
3.实例讲解法:通过具体实例,讲解勾股定理的应用,提高学生运用数学知识解决实际问题的能力。
六. 教学准备1.教具准备:多媒体课件、黑板、粉笔。
2.学具准备:每人一份勾股定理的证明材料,一份练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示勾股定理的应用场景,引导学生思考勾股定理的意义和重要性。
2.呈现(10分钟)呈现勾股定理的证明过程,引导学生观察和思考,让学生尝试自己证明勾股定理。
3.操练(10分钟)学生分组合作,根据呈现的证明过程,自己动手操作,尝试证明勾股定理。
4.巩固(10分钟)学生分组讨论,总结证明勾股定理的方法和步骤,加深对勾股定理的理解。
5.拓展(10分钟)利用实例,讲解勾股定理在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
6.小结(5分钟)教师引导学生总结本节课的学习内容,加深对勾股定理的理解。
探索勾股定理-浙教版八年级数学上册教案一、教学目标1.了解直角三角形及其特殊性质。
2.了解勾股定理及其应用。
3.能够利用勾股定理求解直角三角形的边长及面积。
4.能够应用勾股定理解决实际问题。
二、教学重点和难点1.教学重点:勾股定理及其应用。
2.教学难点:如何应用勾股定理解决实际问题。
三、教学过程3.1 概念1.引入:让学生观察三角形ABC,找出其中的直角三角形。
2.介绍直角三角形及其特殊性质。
3.定义勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2。
3.2 探索勾股定理1.实验1:在正方形纸上,先画一条线段,再从这条线段的一个端点垂直于它作出一条线段,将这两条线段分别标为a和b,然后把它们剪下来,粘在直角三角形的两条直角边上,并将斜边边长c也剪下来,粘在直角三角形的斜边上。
接着,将剩余部分加上这三段长度比较,看看是否符合勾股定理。
2.实验2:分别选取棱长为3 cm、4 cm、5 cm的正方体,并构成三个直角三角形,尝试是否符合勾股定理。
3.3 勾股定理的应用1.应用勾股定理求直角三角形的边长和面积。
2.练习:小明从自家出发,走了3 km到一家房产中介公司,然后沿路向南15度的方向走了4 km找了一处房子,最后又从房子出发向东走了2 km回到家中。
请问小明家和他找到的房子的距离有多远?3.4 总结1.总结直角三角形及其特殊性质。
2.总结勾股定理的定义和应用。
四、作业1.完成课后练习。
2.思考如何用勾股定理解决其他实际问题。
五、教学反思本节课的教学重点在于勾股定理的应用。
通过实验和练习,学生能够更好地理解勾股定理的含义,并能够将所学知识应用到实际问题中。
在教学中,我也通过不同形式的练习,激发学生的积极性,提高课堂效果。
浙教版数学八年级上册2.7《探索勾股定理》教案一. 教材分析《探索勾股定理》是浙教版数学八年级上册第2.7节的内容。
本节内容是在学生已经学习了平面直角坐标系、相似三角形等知识的基础上,引导学生通过探索、发现、验证勾股定理,培养学生的逻辑思维能力和探索精神。
教材通过丰富的情境和实例,激发学生的学习兴趣,让学生在探究中掌握勾股定理,体验数学的乐趣。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于平面直角坐标系、相似三角形等概念有一定的了解。
但是,对于勾股定理的证明方法和证明过程可能较为陌生。
因此,在教学过程中,需要关注学生的认知水平,引导学生通过实际操作、观察、思考、交流等方式,逐步理解和掌握勾股定理。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理的证明方法。
2.培养学生的观察能力、操作能力、推理能力、交流与合作能力。
3.激发学生对数学的兴趣,感受数学的趣味性和魅力。
四. 教学重难点1.重点:勾股定理的理解和证明方法的掌握。
2.难点:如何引导学生发现和证明勾股定理。
五. 教学方法1.情境教学法:通过丰富的实例和情境,激发学生的学习兴趣,引导学生主动参与探索。
2.操作教学法:让学生通过实际操作,观察、分析、推理,发现和证明勾股定理。
3.交流讨论法:鼓励学生之间进行交流、讨论,培养学生的合作能力和表达能力。
六. 教学准备1.教学PPT:制作涵盖勾股定理的定义、证明方法、实例等内容的PPT。
2.教学素材:准备一些勾股定理的相关实例和图片,用于引导学生观察和思考。
3.学生活动材料:准备一些三角形模型、直尺、三角板等,供学生实际操作。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的勾股定理实例,如房屋建筑、家具设计等,引导学生关注勾股定理在生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)介绍勾股定理的定义,引导学生了解勾股定理的基本概念。
3.操练(10分钟)学生分组进行实际操作,使用三角板、直尺等工具,尝试构造三角形,并测量其边长,验证勾股定理。
浙教版数学八年级上册《2.7 探索勾股定理》教案一. 教材分析《探索勾股定理》这一节的内容,主要让学生通过探究、实践、验证勾股定理,培养学生的探究能力和实践能力。
教材中给出了丰富的探究活动,让学生在活动中体验到数学的乐趣。
二. 学情分析八年级的学生已经学习了相似多边形的性质,对图形的变换有了一定的了解。
同时,学生已经学习了锐角三角函数,对三角形的性质也有了一定的认识。
因此,学生具备了探索勾股定理的基本知识。
三. 教学目标1.让学生经历探索勾股定理的过程,理解并掌握勾股定理。
2.培养学生运用几何知识解决实际问题的能力。
3.培养学生的合作交流能力,提高学生的数学素养。
四. 教学重难点1.重点:让学生探索并理解勾股定理。
2.难点:如何引导学生运用几何知识解决实际问题。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主探究、合作交流,发现并证明勾股定理。
六. 教学准备1.准备相关的几何图形,如直角三角形、直角梯形等。
2.准备探究活动所需的工具,如直尺、圆规等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生关注勾股定理在生活中的应用。
2.呈现(10分钟)呈现探究活动,让学生分组进行讨论,每组选择一个几何图形,尝试运用已学的几何知识,探索并证明勾股定理。
3.操练(10分钟)学生在课堂上进行探究活动,教师巡回指导,解答学生的疑问。
4.巩固(5分钟)学生展示自己的探究成果,其他学生进行评价,教师总结并讲解勾股定理的运用。
5.拓展(5分钟)引导学生运用勾股定理解决实际问题,如计算直角三角形的边长等。
6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。
7.家庭作业(5分钟)布置相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)教师在黑板上板书勾股定理的证明过程,加深学生的记忆。
教学过程每个环节所用的时间如上所示,共计40分钟。
教学情境分析在教学《探索勾股定理》这一课时,我创设了丰富的教学情境,以激发学生的学习兴趣和探究欲望。
2.7 探索勾股定理-浙教版八年级数学上册教案一、教学目标1.熟练掌握勾股定理的定义和本质;2.能够利用勾股定理进行求解直角三角形的边长问题;3.培养学生探究问题、解决问题的能力。
二、教学重点1.勾股定理的定义和本质;2.利用勾股定理求解直角三角形的边长问题。
三、教学难点1.利用勾股定理求解直角三角形的实际问题;2.展示勾股定理的本质思想和应用价值。
四、教学准备1.PPT课件;2.宽教版八年级数学上册教材;3.核心素养学习笔记本;4.三角尺、卷尺、量角器、直尺等绘图工具。
五、教学过程5.1 自主探究:引入勾股定理1.自主观察图形,引导学生思考,了解勾股定理;2.介绍勾股定理的定义和本质;3.利用PPT演示,辅助学生理解勾股定理;4.完成交互式练习,深入掌握勾股定理的运用。
5.2 练习巩固:实际问题求解1.解决实际问题,应用勾股定理求解直角三角形的边长;2.划分不同的情景,考虑如何分析、解决和验证问题;3.再次利用PPT演示,逐步引导学生掌握实际问题求解的方法;4.在核心素养学习笔记本上整理思路,记录解题过程;5.撰写总结性小结,讲解勾股定理的本质思想和应用价值。
5.3 课堂互动:小组讨论1.听取不同组别的实际问题解答,比较差异性;2.学生之间互相翻阅笔记本,批评和欣赏彼此的解题过程;3.小组长进行总结,讲解小组讨论的研究成果;4.互相提供建议和意见,共同进步,进一步加深对勾股定理的理解和应用。
六、教学反思1.在教学过程中,学生的探究能力和解决问题的能力得到了增强;2.在讲解核心概念和思想的时候,可以更换多样的教学工具,增加趣味性和实用性;3.在以后的教学中,可以适当增加编排综合题目,更加全面地检测学生的综合素养。
浙教版数学八年级上册2.7《探索勾股定理》说课稿一. 教材分析《探索勾股定理》这一节是浙教版数学八年级上册第2章第7节的内容。
本节课主要引导学生通过探究直角三角形三边的关系,发现并证明勾股定理。
教材内容由浅入深,从实际问题出发,引导学生探究数学规律,培养学生的动手操作能力、逻辑思维能力和数学建模能力。
教材还注重引导学生利用信息技术辅助探究,提高学生的信息素养。
二. 学情分析八年级的学生已经学习了三角形的基本概念、性质和判定,对直角三角形有一定的了解。
学生具备一定的问题解决能力和合作交流能力,能够利用信息技术进行自主探究。
但部分学生在解决抽象数学问题时,可能存在思维障碍,需要教师引导和帮助。
此外,学生对数学史的了解较少,对勾股定理的背景和意义认识不足。
三. 说教学目标1.知识与技能目标:让学生掌握勾股定理,并能运用勾股定理解决实际问题。
2.过程与方法目标:培养学生动手操作、合作交流、探究发现的能力,提高学生的信息素养。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的创新精神和民族自豪感。
四. 说教学重难点1.教学重点:引导学生探究并证明勾股定理。
2.教学难点:理解并掌握勾股定理的证明过程,能够运用勾股定理解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究、教师引导的教学方法。
2.教学手段:利用多媒体课件、网络资源、几何画板等教学手段,辅助学生进行探究和验证。
六. 说教学过程1.导入新课:通过展示勾股定理的动画视频,引发学生对勾股定理的好奇心,激发学生的学习兴趣。
2.探究活动:让学生分组进行探究,利用信息技术和几何画板工具,验证勾股定理。
学生可以自主选择三角形的大小和形状,通过实际操作发现规律。
3.交流分享:各小组汇报探究成果,教师引导学生总结勾股定理的表述和证明过程。
4.拓展应用:让学生运用勾股定理解决实际问题,如计算直角三角形的边长等。
5.总结反思:教师引导学生总结本节课的学习内容,让学生分享自己的收获和感受。
浙教版数学八年级上册《2.7 探索勾股定理》教案1一. 教材分析《2.7 探索勾股定理》是浙教版数学八年级上册的一个重要内容。
这一节主要让学生通过探究、发现、证明勾股定理,培养学生的逻辑思维能力和空间想象能力。
教材通过丰富的情境和实例,引导学生感受勾股定理的美妙和应用,激发学生学习数学的兴趣。
二. 学情分析学生在学习这一节之前,已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但对于证明勾股定理,可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,适时给予引导和帮助。
三. 教学目标1.理解勾股定理的内容和意义,掌握勾股定理的证明方法。
2.培养学生的逻辑思维能力和空间想象能力。
3.感受数学的美妙和应用,激发学生学习数学的兴趣。
四. 教学重难点1.教学重点:理解勾股定理的内容和意义,掌握勾股定理的证明方法。
2.教学难点:证明勾股定理,理解勾股定理的证明过程。
五. 教学方法采用问题驱动法、合作探究法、讲授法等教学方法,引导学生主动参与学习,提高学生的学习效果。
六. 教学准备1.教学课件:制作详细的课件,展示勾股定理的证明过程。
2.教学素材:准备一些勾股定理的应用实例,用于巩固和拓展学习。
七. 教学过程1.导入(5分钟)通过展示直角三角形的模型,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)展示勾股定理的定义和表述,引导学生理解勾股定理的意义。
同时,呈现勾股定理的证明过程,让学生初步感受证明的方法。
3.操练(10分钟)让学生分组合作,运用勾股定理解决一些实际问题,巩固对勾股定理的理解。
4.巩固(10分钟)通过一些练习题,检验学生对勾股定理的掌握程度,并对学生的解答进行点评和指导。
5.拓展(10分钟)引导学生探索勾股定理的更多应用,如在实际工程中的运用,激发学生学习数学的兴趣。
6.小结(5分钟)对本节课的学习内容进行总结,强调勾股定理的重要性和应用价值。
2.7 探索勾股定理(2) 教案
教学任务分析
教学过程设计
B ’ A B
C A ’ C ’ D
B
A
C
2.如果△ABC 满足AC 2+BC 2=AB 2,那么
这个三角形是不是直角三角形?
[活动2] 理论释意
已知:如图在△ABC 中,AC=a ,BC=b ,AB=c ,
a 2+
b 2=
c 2.
求证:△ABC 是直角三角形.
[活动3] 例1、根据下列条件,分别判断以a ,b ,c 为边的三角形是不是直角三角形
(1)a =7,b =24,c =25
(2)a = ,b =1,c =
牛刀小试 :1、根据下列条件,判断下面以a 、b 、c 为边的三角形是不是直角三角形? (1) a =20,b=21,c=2 (2) a =5,b=7,c=8 (3)
2、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD 的面积.
学生结合活动1的体验,
独立思考问题1,在此基础上,
通过小组交流、讨论,说出问
题2的证明思路.
教师提出问题,并适时诱导,指导.
学生完成活动2的证
明.之后,归纳得出勾股定理
的逆定理.在此基础上,类比定理与逆定理的关系. 在活动2中教师应重点
关注: (1)学生能否联想到
了全等,进而设法构造全等三
角形,这一问题获解的关键; (2)学生在活动2中,所表
现出来的构造直角三角形的
意识;
(3)数形结合的意识和由特
殊到一般的数学思想方法;
学生说出例1(1)的判
断思路,部分学生演板问题2,剩下的学生在课堂作业本上完成.
教师板书例1的详细解答过程,并纠正学生在练习中出现的问题,最后向学生介绍勾股数的概念.
在活动3、4中教师应重点关注:
(1)学生的解题过程是否规
范;
(2)是不是用两条较小边长的平方和与较大边长的平方进行比较;
“命题+证明=定理”的推理模式为定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.
进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.
2c b a ===,3,732
教学设计说明
本节课是安排在勾股定理之后,主要内容包括,勾股定理的逆定理及其应用、互逆命题(定理)及勾股数的概念,其中前者是重点,勾股定理的逆定理的证明是难点.勾股定理的逆定理既是对直角三角形的再认识,也是判断一个三角形是不是直角三角形(确定直角)的一种重要方法,除此以外,它还是向学生渗透“数形结合”这一数学思想方法的很好素材.作为一种数学模型,它在日常生活中(比如,测量等)也有着极其广阔的应用.考虑到勾股定理逆定理与勾股定理的互逆关系,在教学中,我们首先从勾股定理的反面出发,给出三组数据,让学生通过摆、画三角形的实践,并结合观察、归纳、猜想等一系列探究性活动,得出勾股定理的逆命题.如何突破“勾股定理的逆定理的证明”这一教学难点呢?我们又设计了一个由特殊到一般的探索、归纳过程,来凸现“构造直角三角形”这一问题转化的关键.对于勾股定理的逆定理应用的教学,充分利用课本提供的两道例题,着眼于“双基”和“应用”这两个层面,来突出本节的教学重点.
本节课立足于创新和学生可持续发展,把教学内容分解为一系列富有探究性的问题,让学生在解决问题的过程中经历知识的发生、发展、形成的过程,把知识的发现权交给学生,让他们在获取知识的过程中,体验成功的喜悦,真正体现学生是学习的主人,教师只是学习的参与者、合作者、引导者.在重视基础知识和基本技能的同时,更关注知识的形成过程及应用数学的意识.。