控制系统计算机仿真(内蒙古工业大学)MATLAB基础第6章 SIMULINK仿真基础
- 格式:ppt
- 大小:522.50 KB
- 文档页数:88
MATLABSimulink控制系统建模最全资料Simulink 控制系统建模dSPACE 的软件环境主要由两⼤部分组成,⼀部分是实时代码的⽣成和下载软件RTI (Real Time Interface ),它是连接dSPACE 实时系统与MA TLAB/Simulink 的纽带,通过对RTW (Real time workshop )进⾏扩展,可以实现从Simulink 模型到dSPACE 实时硬件代码的⾃动下载。
另⼀部分为测试软件,其中包含了综合实验与测试环境ControlDesk 、⾃动试验及参数调整软件MLIB/MTRACE 、PC 与实时处理器通信软件CLIB 以及实时动画软件RealMotion 等。
连续模块库(Continuous)在连续模块(Continuous)库中包括了常见的连续模块,这些模块如图所⽰。
1. 积分模块(Integrator):功能:对输⼊变量进⾏积分。
说明:模块的输⼊可以是标量,也可以是⽮量;输⼊信号的维数必须与输⼊信号保持⼀致。
2. 微分模块(Derivative)功能:通过计算差分?u/ ?t 近似计算输⼊变量的微分。
3. 线性状态空间模块(State-Space)功能:⽤于实现以下数学⽅程描述的系统:+=+=Du Cx y Bu Ax x '4. 传递函数模块(Transfer Fcn)功能:⽤执⾏⼀个线性传递函数。
5. 零极点传递函数模块(Zero-Pole)功能:⽤于建⽴⼀个预先指定的零点、极点,并⽤延迟算⼦s 表⽰的连续。
6.存储器模块(Memory)功能:保持输出前⼀步的输⼊值。
7.传输延迟模块(Transport Delay)功能:⽤于将输⼊端的信号延迟指定的时间后再传输给输出信号。
8.可变传输延迟模块(Variable Transport Delay)功能:⽤于将输⼊端的信号进⾏可变时间的延迟。
离散模块库(Discrete)离散模块库(Discrete)主要⽤于建⽴离散采样的系统模型,包括的主要模块,如图所⽰。
目录1 绪论 (1)1.1 题目背景、研究意义 (1)1.2 国内外相关研究情况 (1)2 自动控制概述 (3)2.1 自动控制概念 (3)2.2 自动控制系统的分类 (4)2.3 对控制系统的性能要求 (5)2.4 典型环节 (6)3 MATLAB仿真软件的应用 (10)3.1 MATLAB的基本介绍 (10)3.2 MATLAB的仿真 (10)3.3 控制系统的动态仿真 (11)4 自动控制系统仿真 (14)4.1 直线一级倒立摆系统的建模及仿真 (14)4.1.1 系统组成 (14)4.1.2 模型的建立 (14)4.1.3 PID控制器的设计 (19)4.1.4 PID控制器MATLAB仿真 (22)4.2 三容水箱的建模及仿真 (23)4.2.1 建立三容水箱的数学模型 (24)4.2.2 系统校正 (25)总结 (28)致谢 (29)参考文献 (30)1 绪论1.1 题目背景、研究意义MATLAB语言是当今国际控制界最为流行的控制系统计算机辅助设计语言,它的出现为控制系统的计算机辅助分析和设计带来了全新的手段。
其中图形交互式的模型输入计算机仿真环境SIMULINK,为MATLAB应用的进一步推广起到了积极的推动作用。
现在,MATLAB语言已经风靡全世界,成为控制系统CAD领域最普及、也是最受欢迎的软件环境。
随着计算机技术的发展和应用,自动控制理论和技术在宇航、机器人控制、导弹制导及核动力等高新技术领域中的应用也愈来愈深入广泛。
不仅如此,自动控制技术的应用范围现在已扩展到生物、医学、环境、经济管理和其它许多社会生活领域中,成为现代社会生活中不可缺少的一部分。
随着时代进步和人们生活水平的提高,在人类探知未来,认识和改造自然,建设高度文明和发达社会的活动中,自动控制理论和技术必将进一步发挥更加重要的作用。
作为一个工程技术人员,了解和掌握自动控制的有关知识是十分必要的。
自动控制技术的应用不仅使生产过程实现了自动化,极大地提高了劳动生产率,而且减轻了人的劳动强度。
MATLAB-Simulink基础§1Simulink简介Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持连续、离散及两者混合的线性和非线性系统,也支持具有多种采样频率的系统。
在Simulink环境中,利用鼠标就可以在模型窗口中直观地“画”出系统模型,然后直接进行仿真。
它为用户提供了方框图进行建模的图形接口,采用这种结构画模型就像你用手和纸来画一样容易。
它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。
Simulink包含有Sink(输出方式)、Source(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和E某tra(其他环节)等子模型库,而且每个子模型库中包含有相应的功能模块,用户也可以定制和创建自己的模块。
用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。
用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的结构和各模块之间的相互关系。
在定义完一个模型后,用户可以通过Simulink的菜单或MATLAB的命令窗口键入命令来对它进行仿真。
菜单方式对于交互工作非常方便,而命令行方式对于运行一大类仿真非常有用。
采用Scope模块和其他的画图模块,在仿真进行的同时,就可观看到仿真结果。
除此之外,用户还可以在改变参数后迅速观看系统中发生的变化情况。
仿真的结果还可以存放到MATLAB的工作空间里做事后处理。
模型分析工具包括线性化和平衡点分析工具、MATLAB的许多基本工具箱及MATLAB的应用工具箱。
由于MATLAB和Simulink是集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改。
Simulink具有非常高的开放性,提倡将模型通过框图表示出来,或者将已有的模型添加组合到一起,或者将自己创建的模块添加到模型当中。
实验三振幅调制与解调制电路的SIMULINK仿真一、实验目的:1、深入理解各种振幅调制与解调制电路的工作原理;2、掌握振幅调制与解调制电路的SIMULINK仿真方法;二、实验要求:1、熟悉振幅调制与解调制电路的工作原理及主要性能;2、掌握振幅调制与解调制电路SIMULINK仿真的建模过程。
三、实验内容:1、用SIMULINK建模实现AM振幅调制与解调制的设计与仿真;1)、设计AM振幅调制与解调制仿真电路,要求调制信号的幅度为0.3V、频率为1kHz;载波信号的幅度为1V、频率为1MHz,调制度为0.3;绘制调制信号、载波信号和已调波信号的时域波形;2)、要求调制信号为三个正弦波信号的合成,幅度分别为0.3V、0.8V、0.2V;频率分别为1kHz、2kHz、5kHz;载波信号的幅度为1V、频率为1MHz,调制度分别为0.3、0.8、0.2;绘制调制信号、载波信号和已调波信号的时域波形;3)、用同步检波对已调波信号进行解调制,在同一示波器中绘制原调制信号和解调后的信号,比较它们的异同。
2、用SIMULINK建模实现DSB振幅调制与解调制的设计与仿真;1)、设计DSB振幅调制与解调制仿真电路,要求调制信号的幅度为0.3V、频率为1kHz;载波信号的幅度为1V、频率为1MHz;绘制调制信号、载波信号和已调波信号的时域波形;2)、要求调制信号为三个正弦波信号的合成,幅度分别为0.3V、0.8V、0.2V;频率分别为1kHz、20kHz、500kHz;载波信号的幅度为1V、频率为1MHz,调制度分别为0.3、0.8、0.2;绘制调制信号、载波信号和已调波信号的时域波形; 3)、用同步检波对已调波信号进行解调制,在同一示波器中绘制原调制信号和解调后的信号,比较它们的异同。
四、实验步骤:1、AM单输入振幅调制与解调输入调制信号的幅度为0.3V、频率为1kHz;载波信号的幅度为1V、频率为1MHz,根据方程:V=Ucm(1+ma*cosΩt)*coswct=Ucm*coswct+Ucm*ma*cosΩt*coswct实验要求建立simulink仿真模块的调制和解调如下图3-1所示:图3.1 AM调制与解调1)、AM调制波形图如下图3.1.1以及相关示波器参数图3.1.2所示:图3.1.1 AM调制波形图图3.1.2 调制输出相关示波器参数2)、解调波形如下图3.1.3以及示波器的相关参数如图3.1.4所示:图3.1.3 解调波与调制波(上为解调波)图3.1.4 示波器的相关参数通过解调图与原调制信号比较基本上能够调制,只是在幅值上有所变化,频率基本上保持一致。