金属电子逸出功的测量分析-中山大学物理学院2016
- 格式:pdf
- 大小:715.45 KB
- 文档页数:8
金属电子逸出功的测定实验报告金属电子逸出功的测定实验报告引言:金属电子逸出功是指金属表面的电子脱离金属表面所需的最小能量。
测定金属电子逸出功对于理解金属的电子结构以及应用于光电子学等领域具有重要意义。
本实验旨在通过测定金属电子逸出功的实验方法,探究金属电子的逸出行为,并分析其与金属表面性质的关系。
实验材料与仪器:本实验使用的材料为常见的金属样品,如铜、铝等。
实验所需仪器包括电子能谱仪、真空系统、光源等。
实验步骤:1. 准备金属样品:选择适当的金属样品,并将其表面清洗干净,以确保实验结果的准确性。
2. 搭建实验装置:将金属样品放置于真空系统中,确保系统处于良好的真空状态。
调整光源的位置和强度,以保证实验的可靠性。
3. 测定电子能谱:通过电子能谱仪测定金属样品的电子能谱曲线。
在实验过程中,可以调整光源的波长和强度,以获得不同能量下的电子能谱数据。
4. 分析数据:根据电子能谱曲线,确定金属电子的逸出功。
通过计算能量差值,可以得到电子逸出所需的最小能量。
结果与讨论:根据实验数据,我们可以得到不同金属样品的电子逸出功数值。
通过对比不同金属的逸出功,我们可以发现金属的电子逸出功与其物理性质之间存在一定的关系。
首先,金属的电子逸出功与其导电性能有关。
一般来说,导电性能较好的金属具有较低的电子逸出功,因为其电子更容易脱离金属表面。
相反,导电性能较差的金属则具有较高的电子逸出功,因为其电子与金属原子之间的束缚力较强。
其次,金属的电子逸出功与其晶格结构有关。
晶格结构较紧密的金属通常具有较高的电子逸出功,因为其表面原子对电子的束缚力较大。
相反,晶格结构较疏松的金属则具有较低的电子逸出功,因为其表面原子对电子的束缚力较小。
此外,金属的电子逸出功还与其表面的化学性质有关。
金属表面的氧化物、硫化物等化学物质会影响金属电子的逸出行为。
一般来说,金属表面存在氧化物等化学物质时,电子逸出功会增加,因为这些化学物质会增加电子与金属原子之间的相互作用力。
金属电子逸出功的测定
05112 杨昊庆10.23
一、实验数据的记录与处理
4.计算
逸出电压U=K/(-5.04E03)=-22639/(-5.04E03) V=4.492V
逸出功eU=4.429 eV
理论值eU’=4.54 eV
相对误差E=2.5%
二、实验的反思感悟与总结
1.造成误差可能的原因:
①改变电流值的时候,灯丝可能没有达到预定温度;
②Ia的调节不太好调,导致Ua不稳就读数;
③开始时预热不充分;
④可能是阳极电压偏低或灯丝电压必读数偏高,导致测量值小于理论值。
2.里查逊直线的优点:
不用知道B和S的数值,就可以求出逸出功,这种思想应该牢牢掌握。
3.excel处理实验数据的优越性:
计算机处理数据要方便的多,在这个实验上有深刻的体现,excel能自动画图并精准的算出线性回归方程,省时又省力。
4.感悟
这个实验的操作很简单,在excel的帮助下数据处理也很简单,而且没有不确定度的计算,可以说是本学期最简单的实验之一。
但是有两点让我感触很深。
一是里查逊直线的思想,二是君子生非异也,善假于物,一定要好好掌握计算机技术的应用。
实验22 金属电子逸出功的测定【实验目的】1.用里查逊(Richardson)直线法测定金属钨的电子逸出功。
2.了解光测高温计的原理和学习高温计的使用。
3.学习数据处理的方法。
【实验原理】若真空二极管的阴极(用被测金属钨丝做成)通以电流加热,并在阳极上加以正电压时,在连接这二个电极的外电路中将有电流通过,如图3—22—1所示。
这种电子从加热金属丝发射出来的现象,称为热电子发射。
研究热电子发射的目的之一可以选择合适的阴极材料。
诚然,可以在相同加热温度下测不同阳极材料的二极管的饱和电流,然后相互比较,加以选择。
但通过对阴极材料物理性质的研究来掌握其热电子发射的性能,这是带有根本性的工作,因而更为重要。
1.电子的逸出功根据固体物理学中金属电子理论,金属中的传导电子能量的分布是按费米——狄拉克(Fermi-Dirac)分布的。
即3—22—1式中称费米能级。
图3—22—1 图3—22—2在绝对零度时电子的能量分布如图3—22—2中曲线(1)所示。
这时电子所具有的最大能量为。
当温度升高时电子的能量分布曲线如图3—22—2中曲线(2)所示。
其中能量较大的少数电子具有比更高的能量,而其数量随能量的增加而指数减少。
在通常温度下由于金属表面与外界(真空)之间存在一个势垒,所以电子要从金属中逸出必须至少具有能量从图3—22—2可见,在绝对零度时电子逸出金属至少需要从外界得到的能量为:称为金属电子的逸出功,其常用单位为电子伏特(ev),它表征要使处于绝对零度下的金属中具有最大能量的电子逸出金属表面所需要给予的能量。
称为逸出电位,其数值等于以电子伏特表示的电子逸出功。
可见,热电子发射就是用提高阴极温度的办法以改变电子的能量分布,使其中一部分电子的能量大于,这样能量大于的电子就可以从金属中发射出来。
因此,逸出功的大小,对热电子发射的强弱,具有决定性作用。
2.热电子发射公式根据费米—狄拉克能量分布公式3—22—1,可以导出热电子发射的里查逊—杜什曼(Richar-dson-Dushman)公式3—22—2式中——热电子发射的电流强度,单位为安培。
金属电子逸出功的测定实验原理实验仪器实验要求实验内容金属电子逸出功的测定V从电子热发射理论可知道,当处于真空中的金属材料被加热到足够高的的温度时,金属中的电子会从金属中逃逸出来,这种现象称为热电子发射。
由于不同的金属材料其电子的逸出功是不同的,因此热电子的发射情况也不一样。
本实验本实验以金属钨为例,测量其热电子的逸出功。
虽然该实验具有其特定性,但由于采用了里查逊直线法,因而避开了一些难以测量的量,而只需测出一些基本量即可较容易得到金属钨的电子逸出功。
该方法具有其普适性,在实验中应对其内含的物理机制予以掌握。
实验原理V金属电逸出功(或逸出电位)的测定实验,综合性地应用了直线测定法、外延测量法和补偿测量法等基本实验方法。
在数据处理方面有比较好的技巧性训练。
因此,这是一个比较有意义的实验。
V根据固体物理学中金属电子理论,金属中的传导电子能量的分布是按费密-狄喇克能量分布的。
即式中EF 成为费密能级12/331exp)2(4)(−⎥⎦⎤⎢⎣⎡+⎟⎠⎞⎜⎝⎛−==kTEEmhdEdNEf Fπ实验原理V在绝对零度(T=0)时,电子的能量分布如图所示。
在绝对零度时电子要从金属逸出,至少需要从外界得到能量。
电子逸出功实验原理V根据里查逊-热西曼公式⎟⎠⎞⎜⎝⎛−=kTeexpASTI2κ式中,I为热电子发射的电流强度,单位为A;A为何阴极表面化学纯度有关的系数,单位为A·m·KS为阴极的有效发射面积,单位为T 为发射热电子的阴极的绝对温度,单位为K;k为玻尔兹曼常数,K/J1038.1k23−×=2m原则上我们只要测定I,A,S和T,就可以根据公式计算出阴极材料的逸出功实验原理V但是,困难在于A和S这两个量是难以直接测定的。
所以在实验测量中,常用下属的里查逊直线法。
以设法避开A和S这两个量的测量。
1、里查逊直线法TASkTeAST11004.5lg30.2lg1lg3 2ϕϕ×−=−=从公式上可看出,和成线性关系。
逸出功的测量实验报告
《逸出功的测量实验报告》
在物理学中,逸出功是指从金属表面逸出的最小能量。
测量逸出功对于理解金
属的电子结构和性质具有重要意义。
本实验旨在通过实验方法测量金属的逸出功,并对实验结果进行分析。
实验过程中,我们选择了几种常见金属作为实验样品,包括铜、铝、铁等。
首先,我们将金属样品放置在真空室中,并通过加热或光照的方式激发金属表面
的电子。
随后,我们使用逸出功仪器测量金属表面逸出的电子能量,并记录实
验数据。
通过实验数据的分析,我们发现不同金属的逸出功存在一定的差异。
这一结果
与理论预期相符,因为不同金属的电子结构和束缚能会影响逸出功的大小。
此外,我们还发现逸出功与金属的表面特性和处理方式有关,例如金属的晶格结构、表面粗糙度等因素也会对逸出功产生影响。
通过本次实验,我们不仅成功测量了几种常见金属的逸出功,还深入了解了逸
出功与金属性质之间的关系。
这些实验结果对于深入理解金属的电子结构和应
用于光电器件等领域具有重要意义。
总的来说,本次实验为我们提供了一种简单而有效的方法来测量金属的逸出功,并为我们提供了更深入的认识金属性质的机会。
我们相信通过不断的实验探索
和理论分析,我们将能够更好地理解金属的电子结构和性质,为相关领域的研
究和应用提供更多的参考和支持。
竭诚为您提供优质文档/双击可除金属逸出功的测定实验报告篇一:金属电子逸出功测量实验报告篇二:物理金属电子逸出功的测量实验数据处理金属电子逸出功的测量一、实验目的1.了解热电子的发射规律,掌握逸出功的测量方法。
2.了解费米—狄拉克量子统计规律,并掌握数据分析处理的方法。
二、实验原理(一)电子逸出功及热电子发射规律热金属内部有大量自由运动电子,其能量分布遵循费米-狄拉克量子统计分布规律,当电子能量高于逸出功时,将有部分电子从金属表面逃逸形成热电子发射电流。
电子逸出功是指金属内部的电子为摆脱周围正离子对它的束缚而逸出金属表面所需的能量。
逸出功为w0?wa?wf,其中为wa位能势垒,wf为费米能量。
由费米—狄拉克统计分布律,在温度T?0,速度在v~dv 之间的电子数目为:m1dn?2()2(w?wf)/kTdv(1)he?1其中h为普朗克常数,k为波尔兹曼常数。
选择适当坐标系,则只需考虑x方向上的情形,利用积分运算????e?mv2y/2kT?dvy??e?mvz/2kTdvz?(??22?kT1/2)(2)m可将(1)式简化为m2kTwf/kT?mvx2/2kTdn?4?e?edvx(3)3h而速度为vx的电子到达金属表面的电流可表示为dI?esvxdn(4)其中s为材料的有效发射面积。
只有vx?将(3)代入(4~?范围积分,得总发射电流Is?AsT2e?e?/kT(5)其中A?4?emk2/h3,(5)式称为里查逊第二公式。
(二)数据测量与处理里查逊直线法:将(5)式两边同除以T2后取对数,得I?lgs2?lg?As??5.039?103(6)TT由(6)知lg(Is/T2)与1/T成线性关系,只需测量不同温度T下的Is,由直线斜率可求得φ值,从而避免了A和s 不能准确测量的困难。
发射电流Is的测量:为有效收集从阴极材料发射的电子,必须在阴极与阳极之间加一加速电场ea。
而ea降低了逸出功而增大发射电流,使测量到的发射电流值不是真正的Is,因此必须对实验数据作相应的处理。
增补实验:金属电子逸出功的测定增补实验:金属电子逸出功的测定【实验目的】1. 了解热电子发射的基本规律,验证肖特基效应;2. 学习用理查森直线法处理数据,测量电子逸出电位。
【实验原理】二十世纪前半叶,物理学在工程技术方面最引人注目的应用之一是在无线电电子方面。
无线电电子学的基础是热电子发射。
当时名为热离子学的学科研究的就是热电子发射。
它的创始人之一,英国著名物理学家理查森(Owen W.Richardson,1879-1959),由于发现了热电子发射定律,即理查森定律,为设计合理的电子发射机构是指明了道路,其研究工作队无线电电子学的发展产生了深远的影响,因而荣获1928年诺贝尔物理学奖。
在真空玻璃管中装上两个电极,其中一个用金属丝做成(一般称为阴极),并通过电流使之加热,在另一个电极(即阳极)上加一高于金属丝的正电位,则在连接这两个电极的外电路中就有电流通过。
有电子从加热的金属丝中射出,这种现象称为热电子发射。
研究各种材料在不同温度下的热电子发射,对于以热阴极为基础的各种真空电子器件的研制是极为重要的,电子的逸出电位正是热电子发射的一个基本物理参数。
根据量子理论,原子内电子的能级是量子化的。
在金属内部运动着的自由电子遵循类似的规律:1.金属中自由电子的能量是量子化的;2.电子具有全同性,即各电子是不可区分的;3.能级的填充要符合泡利不相容原理。
根据现代的量子论观点,金属中电子的能量分布服从费米-狄拉克分布。
在绝对零度时,电子数按能量的分布曲线如图1中的曲线(1)所示,此时电子所具有的最大动能为W,W所处能级又称为费米能级。
当温度升高时,电子能量分ii布曲线如图1中的曲线(2)所示,其中少数电子能量上升到比W高,并且电子数随能量以i接近指数的规律减少。
T= 0 K dN/dWT=1500KWWi图1电子能级分布曲线W W0WaW idN/dW图2 势能壁垒图-10由于金属表面存在一个厚约10米左右的电子-正电荷电偶层,阻碍电子从金属表面逸出。
电子逸出功的测定实验报告
《电子逸出功的测定实验报告》
实验目的:通过测定金属表面的逸出功,探究电子逸出的规律并验证光电效应
理论。
实验仪器:光电效应实验装置、光电管、数字示波器、光源、金属样品
实验原理:光电效应是指金属表面受到光照射后,电子从金属表面逸出的现象。
逸出功是指光照射金属表面,使得电子逸出所需的最小能量。
根据光电效应理论,逸出功与光的频率成正比,与光的强度无关。
实验步骤:
1. 将金属样品放置在光电管的阳极上,并连接光电管和数字示波器。
2. 调节光源的频率和强度,使得光照射到金属样品上。
3. 观察数字示波器上的波形变化,记录光照射金属样品后的电压值。
4. 根据实验数据,计算出金属样品的逸出功。
实验结果:通过实验测定,得到金属样品的逸出功为X电子伏特。
实验结论:实验结果验证了光电效应理论,即逸出功与光的频率成正比。
通过
测定金属样品的逸出功,可以进一步了解光电效应的规律,并为相关理论研究
提供实验数据支持。
总结:本实验通过测定金属样品的逸出功,验证了光电效应理论,并为进一步
研究光电效应提供了实验数据支持。
同时,实验结果也可以应用于光电器件的
设计和制造中,具有一定的实际意义。
通过本次实验,我们对电子逸出功的测定有了更深入的理解,同时也对光电效
应的原理有了更加清晰的认识。
希望通过不断的实验和研究,我们能够更好地
探索光电效应的规律,为相关领域的发展做出更大的贡献。