控制工程实验报告
- 格式:pdf
- 大小:508.77 KB
- 文档页数:11
《控制工程基础》实验报告姓名欧宇涵 914000720206周竹青 914000720215 学院教育实验学院指导老师蔡晨晓南京理工大学自动化学院2017年1月实验1:典型环节的模拟研究一、实验目的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量方法,并计算其典型环节的传递函数。
二、实验内容:完成比例环节、积分环节、比例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。
三、实验步骤与方法(1)比例环节图1-1 比例环节模拟电路图比例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。
步骤: 1、连接好实验台,按上图接好线。
2、调节阶跃信号幅值(用万用表测),此处以1V 为例。
调节完成后恢复初始。
3、Ui 接阶跃信号、Uo 接IN 采集信号。
4、打开上端软件,设置采集速率为“1800uS”,取消“自动采集”选项。
5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。
图1-2 比例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。
步骤:同比例环节,采集数据如下图。
图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K S T S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。
参数取:R 1=100K ,R 2=200K ,C=1µf 。
步骤:同比例环节,采集数据如下图。
图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。
控制工程实验报告1. 引言控制工程是一门研究如何通过设计和操作系统来达到预期目标的学科。
实验是控制工程学习过程中重要的一部分,通过实验可以加深对控制理论的理解,提高实际操作能力。
本实验报告旨在总结和分析在进行控制工程实验时所遇到的问题和解决方法。
2. 实验背景本次实验旨在研究单输入单输出(SISO)的控制系统。
通过建模、设计和实施控制器,我们将探讨如何使系统达到期望的性能指标。
在实验过程中,我们使用了控制工程中常用的方法和工具,如PID控制器、校正方法和稳定性分析等。
3. 实验目标本实验的主要目标是设计一个PID控制器来控制一个特定的系统,使其满足给定的性能要求。
具体目标如下: - 理解PID控制器的原理和工作方式; - 利用实验数据建立系统的数学模型; - 利用系统模型设计优化的PID控制器; - 分析和评估实验结果,判断控制系统的稳定性和性能。
4. 实验过程实验分为以下几个步骤: ### 4.1 建立系统模型首先,我们需要对所控制的系统进行建模。
使用传感器收集系统的输入和输出数据,并通过系统辨识方法分析这些数据,得到系统的数学模型。
常用的辨识方法包括最小二乘法和频域分析法。
4.2 设计PID控制器基于系统模型的分析,我们可以设计PID控制器。
通过调整PID控制器的参数,如比例增益、积分时间常数和微分时间常数,我们可以优化控制系统的性能。
4.3 实施控制器将设计好的PID控制器实施到实际系统中。
在实验中,我们需要将传感器和控制器与被控对象连接,并配置合适的控制策略。
4.4 性能评估通过收集系统的输入和输出数据,并利用系统模型进行仿真和分析,我们可以评估控制系统的性能。
常见的评估指标包括超调量、上升时间和稳态误差等。
5. 实验结果与分析根据实验数据和分析结果,我们得到了以下结论: - PID控制器可以有效地控制被控对象,使其稳定在期望值附近; - 通过适当调整PID控制器的参数,我们可以优化控制系统的性能; - 预测模型与实际系统存在一定差异,可能需要进一步改进和校正。
材料成型及控制工程专业综合实验报告实验报告:材料成型及控制工程专业综合实验一、实验目的:1.掌握材料成型及控制工程的基本原理;2.学习并了解材料成型及控制工程的实际应用;3.提高实验操作技巧和实验数据分析能力。
二、实验仪器和材料:1.数控铣床:用于完成加工实验;2.数控线切割机:用于完成线切割实验;3.材料样品:使用铝合金和塑料材料。
三、实验内容:1.数控铣床实验:a.将铝合金材料夹在数控铣床上,设定加工参数;b.进行铣削操作,实现铝合金材料的加工成型;c.调整加工参数,观察对加工结果的影响。
2.数控线切割机实验:a.将塑料材料放置在数控线切割机上,设定切割参数;b.进行线切割操作,实现塑料材料的切割成型;c.调整切割参数,观察对切割结果的影响。
四、实验过程:1.数控铣床实验:a.将铝合金材料夹在数控铣床上,设定加工参数,包括切削速度、进给速度、转速等;b.打开数控铣床电源,进行加工操作,观察铝合金材料的加工成型情况;c.根据加工结果,调整加工参数,观察对加工结果的影响。
2.数控线切割机实验:a.将塑料材料放置在数控线切割机上,设定切割参数,包括切割速度、电弧电压、电弧电流等;b.打开数控线切割机电源,进行切割操作,观察塑料材料的切割成型情况;c.根据切割结果,调整切割参数,观察对切割结果的影响。
五、实验结果及分析:1.数控铣床实验结果:a.观察到不同的加工参数对铝合金的加工效果有明显影响,例如切削速度过快会导致切削不够充分,切削速度过慢则会导致切削效果不理想;b.通过不断调整加工参数,得以实现较为满意的加工成型结果。
2.数控线切割机实验结果:a.观察到不同的切割参数对塑料材料的切割效果有明显影响,例如切割速度过快可能导致切割不完全,切割速度过慢则可能引起材料熔化;b.通过不断调整切割参数,得以实现较为满意的切割成型结果。
六、实验总结:材料成型及控制工程是一门综合性很强的工程学科,通过本次实验,我们了解到了材料成型和控制工程的基本原理和实际应用情况。
控制工程基础[英]实验实验一.典型环节的模拟研究:已知一个小车、倒单摆系统非线性系统方程为:( 2.92)0.008x x u =-+20.004sin 36cos n n x θωθωθθ=-+-其中假设 (0)0;(0)0.2x x ==,(0)0;(0); 6.781,n θθπω===(1)要求绘出系统[0,10]t ∈的状态响应曲线(2)并将上述系统在0θ≈的条件下线性化,并要求绘出线性化后系统[0,10]t ∈的状态响应曲线,并与非线性系统状态响应曲线相比较。
(1)下面利用Simulink 对该系统进行仿真如下图所示。
图1.倒单摆系统仿真图在图中已经对主要信号进行了标注下面给出每个未标注信号后加入放大器的增益:008.092.2=阶跃K 008.01-=一阶微分x K 98.45=二阶微分θK通过示波器Scope 和Scope1观察x(t)和θ(t)的波形图如下所示。
图2.x(t)波形图3.θ(t)波形(2)将上述系统在0θ≈的条件下线性化,则方程组改写成如下形式:( 2.92)0.008x x u=-+20.004sin36n n xθωθωθ=-+-在Simulink中对系统仿真如下所示。
图4.线性化后仿真系统通过示波器模块可以观察输出信号,图形如下图所示。
图5.x(t)输出波形图6.θ(t )输出波形实验二.典型系统时域响应动、静态性能和稳定性研究; 已知系统的开环传递函数为2()11G s s s =++(1)利用已知的知识判断该开环系统的稳定性(系统的特征方程根、系统零极点表示法)。
(2)判别系统在单位负反馈下的稳定性,并求出闭环系统在[0,10]t ∈内的脉冲响应和单位阶跃响应,分别绘制出相应响应曲线。
(1)该系统的特征方程的根、零极点表示的求解代码如下:输出结果如下图所示。
图7.特征方程求根结果图8.零极点分布图从图中可以看出两个极点在虚轴上,所以该系统处于临界稳定状态。
控制工程基础实验报告控制工程基础实验报告引言:控制工程是一门涉及自动化、电子、计算机等多个学科的交叉学科,其实验是培养学生动手能力和实践能力的重要环节。
本篇文章将以控制工程基础实验为主题,探讨实验的目的、过程和结果等方面。
实验目的:控制工程基础实验的目的是让学生通过实践了解控制系统的基本原理和方法,培养其分析和解决问题的能力。
通过实验,学生可以掌握闭环控制系统的设计与调试技巧,加深对控制理论的理解。
实验内容:本次实验的内容是设计一个简单的温度控制系统。
系统由温度传感器、控制器和加热器组成。
温度传感器采集环境温度,控制器根据设定的温度值来控制加热器的工作状态,以维持温度在设定值附近。
实验步骤:1. 搭建实验平台:将温度传感器、控制器和加热器按照实验要求连接起来,确保电路正常工作。
2. 设计控制算法:根据控制系统的要求,设计合适的控制算法。
可以采用比例控制、积分控制或者PID控制等方法。
3. 参数调试:根据实验平台和控制算法的特点,调试控制器的参数,使系统能够快速、稳定地响应设定值的变化。
4. 实验数据采集:通过实验平台上的数据采集器,记录系统的输入和输出数据,以便后续分析和评估。
实验结果:经过实验,我们得到了一组温度控制系统的数据。
通过对这些数据的分析,我们可以评估系统的控制性能和稳定性。
在实验中,我们使用PID控制算法,经过参数调试,得到了较好的控制效果。
系统能够在设定值附近稳定工作,并且对设定值的变化能够快速响应。
实验总结:通过这次实验,我们深入了解了控制工程的基本原理和方法。
实践中遇到的问题和挑战,锻炼了我们的动手能力和解决问题的能力。
实验结果表明,合适的控制算法和参数调试是实现良好控制效果的关键。
控制工程实验的重要性不言而喻,它不仅是理论学习的延伸,更是培养学生实践能力的重要途径。
结语:控制工程基础实验是掌握控制工程理论和方法的重要环节。
通过实践,学生能够更好地理解和应用所学知识,提高解决实际问题的能力。
自动控制理论实验报告实验一典型环节的时域响应院系:班级:学号:姓名:实验一 典型环节的时域响应一、 实验目的1.掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。
2.熟悉各种典型环节的阶跃响应曲线。
3.了解各项参数变化对典型环节动态特性的影响。
二、 实验设备PC 机一台,TD-ACC+教学实验系统一套。
三、 实验步骤1、按图1-2比例环节的模拟电路图将线接好。
检查无误后开启设备电源。
注:图中运算放大器的正相输入端已经对地接了100k 电阻。
不需再接。
2、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”接好。
将信号形式开关设为“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为1V ,周期为10s 左右。
3、将方波信号加至比例环节的输入端R(t), 用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入R(t)端和输出C(t)端。
记录实验波形及结果。
4、用同样的方法分别得出积分环节、比例积分环节、惯性环节对阶跃信号的实际响应曲线。
5、再将各环节实验数据改为如下:比例环节:;,k R k R 20020010== 积分环节:;,u C k R 22000==比例环节:;,,u C k R k R 220010010=== 惯性环节:。
,u C k R R 220010=== 用同样的步骤方法重复一遍。
四、 实验原理、内容、记录曲线及分析下面列出了各典型环节的结构框图、传递函数、阶跃响应、模拟电路、记录曲线及理论分析。
1.比例环节 (1) 结构框图:图1-1 比例环节的结构框图(2) 传递函数:K S R S C =)()( KR(S)C(S)(3) 阶跃响应:C(t = K ( t ≥0 ) 其中K = R 1 / R 0 (4) 模拟电路:图1-2 比例环节的模拟电路图(5)记录曲线:(6)k R k R 20020010==,时的记录曲线:_R0=200kR1=100k_ 10K10KC(t)反相器 比例环节 R(t)(7)曲线分析:比例放大倍数K 与1R 的阻值成正比。
控制工程基础实验报告实验一 典型环节及其阶跃响应实验目的1.学习构成典型环节的模拟电路。
2.熟悉各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响。
3.学会由阶跃响应曲线计算典型环节的传递函数。
4.熟悉仿真分析软件。
实验内容各典型环节的模拟电路如下:1. 比例环节 12)(R R s G -=2. 惯性环节 RC T Tss G =-=1)(3. 积分环节 1221)(R R K C R T Ts Ks G ==+-=4. 微分环节 RCs s G -=)(改进微分环节1)(12+-=Cs R Cs R s G 5. 比例微分环节)41()(212s C R R R s G +-=实验步骤1.用Workbench 连接好比例环节的电路图,将阶跃信号接入输入端,此时使用理想运放;2.用示波器观察输出端的阶跃响应曲线,测量有关参数;改变电路参数后,再重新测量,观察曲线的变化。
3. 将运放改为实际元件,如采用“LM741",重复步骤2。
5.仿真其它电路,重复步骤2,3,4。
实验总结通过这次实验,我对典型环节的模拟电路有了更加深刻的了解,也熟悉了各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响;熟悉仿真分析软件。
这对以后的控制的学习有很大的帮助。
实验二 二阶系统阶跃响应实验目的1. 研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率ωn 对系统动态性能的影响。
2. 学会根据阶跃响应曲线确定传递函数,熟悉二阶系统的阶跃响应曲线。
实验内容二阶系统模拟电路如图: 1)/(1)(12222++-=RCs R R s C R s G 思考:如何用电路参数表示ξ和ωn实验步骤1. 在workbench 下连接电路图;将阶跃信号接入输入端,用示波器观测记录响应信号;2.取ωn=10rad/s,即令R=100K,C=1uf :分别取ξ=0,0.25,0.5,0.7,1,2, 即取R1=100K,考虑R2应分别取何值,分别测量系统阶跃响应,并记录最大超调量δp%和调节时间ts 。
控制工程基础实验报告班级_____________姓名_____________河南科技大学机电工程学院实验中心2010-9-24实验一典型环节时间响应分析结合报告重点预习: 各环节电路结构、时间响应函数、及各环节在零点输出值。
一实验目的:二实验设备:三实验原理:四实验内容及数据整理:1、阶跃信号(方波)的产生方式2、画出各典型环节方块图(写出传递函数)、模拟电路图(注明元件参数)及实际输出响应函数。
1)比例(P)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线2)惯性(T)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线3)积分(I)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线4)比例积分(PI)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线5)比例微分(PD)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线五思考题1、实验中每个典型环节使用了两个模拟运放单元,第二个模拟运放单元起什么作用?2、根据PD环节对阶跃信号的响应曲线,试分析电路工作过程。
3、惯性环节分别在什么情况下可近似为比例环节和积分环节?实验二控制系统的频率特性结合报告重点预习:开环传递函数、开环频率特性幅值相位、及如何通过BODE图确定系统参数K和T 的值。
一实验目的:二实验设备:三实验原理:四实验记录1、正弦信号的产生方式2、画出被测系统的方块图及模拟电路图(注明元件参数)。
3、实验数据处理及被测系统的开环对数幅频曲线和相频曲线4、开环频率特性Bode图:5、根据Bode图求出系统开环传递函数五思考题1、根据测得的Bode图的幅频特性,就能确定系统的相频特性,试问这在什么系统时才能实现?2、在Bode图中,为什么横坐标习惯采用对数进行分度?3、改变开环增益或时间常数时对系统动态性能有何影响?实验三系统的校正结合报告重点预习: 比例、积分、微分各环节对系统瞬态性能指标的影响。
控制工程基础实验姓名:专业:机电班级:02 学号:1003120225实验一:比较二阶系统在不同阻尼比下的时间响应一、实验目的1.熟悉MA TLAB软件环境,学会编写matlab文件(***.m)和使用SIMULINK建模,进行时间响应分析。
二、实验要求1.编写m文件,使用命令sys=tf(num,den),建立二阶系统的传递函数模型;2.编写m文件,使用命令impulse(sys),画出二阶系统在不同阻尼比下的脉冲响应曲线簇;3.编写m文件,使用命令step(sys),画出二阶系统在不同阻尼比下的阶跃响应曲线簇;4.根据阶跃响应曲线,记录不同阻尼比下的时域性能指标,列表写出实验报告,并分析阻尼比和无阻尼自然频率对于性能的影响;5.利用SIMULINK建立方框图仿真模型,进行阶跃响应实验,学会使用workspace的数组变量传递,使用命令plot(X,Y)画出阶跃响应图。
三、实验过程1.编写m文件,使用命令sys=tf(num,den),建立二阶系统的传递函数模型M文件如下:clear;clc;num=[1];den=[1 2 1];sys=tf(num,den)运行结果:Transfer function:1-------------s^2 + 2 s + 12.编写m文件,使用命令impulse(sys),画出二阶系统在不同阻尼比下的脉冲响应曲线簇M文件如下:clear;clc;k=1;xi=[0.1 0.4 0.8 1 5 8];wn=1;for i=1:length(xi);sys=tf([k*wn^2],[1 2*xi(i)*wn wn^2]);impulse(sys);hold on;endhold offgrid运行结果:3.编写m文件,使用命令step(sys),画出二阶系统在不同阻尼比下的阶跃响应曲线簇M文件如下:clear;clc;k=1;xi=[0.1 0.4 0.8 1 5 8];wn=1;for i=1:length(xi);sys=tf([k*wn^2],[1 2*xi(i)*wn wn^2]);step(sys);hold on;endhold offgrid运行结果:4.根据阶跃响应曲线,记录不同阻尼比下的时域性能指标,列表写出实验报告,并分析阻尼比和无阻尼自然频率对于性能的影响利用时域响应特性函数function [tr,tp,mp,ts,td]=texing(sys,xi,m,n)求得系统在不同阻尼比xi下阶跃响应的时域特性指标(texing函数见附录)。
控制工程基础实验报告北京工业大学机电学院指导教师:初红艳学号:姓名:一.实验目的本实验中,学生使用MATLAB 语言进行控制系统的分析,可以达到以下目的: (1)通过MATLAB 的分析,掌握控制系统的时域瞬态响应、频率特性,根据时域性能指标、频域性能指标评价控制系统的性能,根据系统频率特性进行稳定性分析,了解对系统进行校正的方法,从而进一步巩固、加深对课堂内容的掌握,加强对控制工程基础知识的掌握。
(2)熟悉MATLAB 的控制系统图形输入与仿真工具SIMULINK ,能够对一些框图进行仿真或线性分析,使一个复杂系统的输入变得相当容易且直观。
(3)通过本实验,使学生掌握进行控制系统计算机辅助分析的方法,学会利用MATLAB 语言进行复杂的实际系统的分析、校正与设计,具备解决工程实际问题的能力。
二.实验内容控制系统方块图如图1所式。
这是一个电压—转角位置随动系统,系统的功能是用电压量去控制一个设备的转角,给定值大,输出转角也就成比例地增大。
图1 系统方块图 图中,)(1s G 为前置放大及校正网络传递函数K 2为功率放大器放大倍数,102=K K 3为电动机传递系数,s V rad K ⋅=/83.23 T M 为电动机机电时间常数,s T M 1.0= T a 为电动机电磁时间常数,ms T a 4= K c 为测速传递系数,rad s V K c /15.1⋅=β 为测速反馈分压系数,1=βK a 为主反馈电位计传递系数,rad V K a /7.4= U i 为输入电压U b 为反馈电压 U i 2为速度环输入电压 U c 为测速机电压 U D 为电动机电压n 为电动机转速取1=β三、实验报告1.对于二阶系统:1)(23++=s s G Ts T T KMaM,a M MaM T T T T T 21n ==ζω其阶跃响应和单位脉冲响应分别如图1-1、1-2所示:MATLAB 语言为: >>num=[2.83]num =2.8300>> den=[0.0004,0.1,1]den =0.0004 0.1000 1.0000>> sys=tf(num,den) sys =2.83 ---------------------- 0.0004 s^2 + 0.1 s + 1Continuous -time transfer function.>> step(sys)>> impulse(sys)图1-1图1-2此时阻尼比为2.5,由其阶跃响应可知其稳态值为2.83,为过阻尼状态,瞬态响应指标如上图所示;在无阻尼自振角频率不变时,通过简单计算得出如下的结论:M a M n T T T 25===ζω,0004.0,50调整TM=0.01,Ta=0.04,使得系统处于欠阻尼状态,0.25=ξ,其阶跃响应与单位脉冲响应1-3、1-4;MATLAB 语言如下:>>num=[2.83]num =2.8300>> den=[0.0004,0.01,1]den =0.0004 0.0100 1.0000>> sys=tf(num,den) sys =2.83 -----------------------0.0004 s^2 + 0.01 s + 1Continuous -time transfer function.>> step(sys) >> impulse(sys)其瞬态响应指标在下图中标出;图1-3图1-4调整TM=0.04,Ta=0.01,使得系统处于临界阻尼状态,其阶跃响应与单位脉冲响应如图1-5、1-6所示;MATLAB语言如下:>>num=[2.83]num =2.8300>> den=[0.0004,0.04,1]den =0.0004 0.0400 1.0000>> sys=tf(num,den)sys =2.83-----------------------0.0004 s^2 + 0.04 s + 1Continuous-time transfer function.>> step(sys)>> impulse(sys图1-5图1-6由以上当TM=0.1,Ta=0.0004,系统处于过阻尼状态,其阶跃响应与单位脉冲响应见图1-1、1-2所示:分析:由以上响应曲线和响应指标可知,过阻尼与临界阻尼无超调、无振荡,而欠阻尼有超调和振荡,过阻尼达到平衡状态所需的时间比临界阻尼和过阻尼都要长。