E(二章3讲)态叠加原理(二)
- 格式:pptx
- 大小:899.32 KB
- 文档页数:25
对量子力学中态叠加原理的探讨引言量子力学是描述微观领域中物质和能量行为的理论,提出了一些令人难以理解的概念和原理。
其中,态叠加原理是量子力学的基石之一,也是与经典物理学最明显的区别之一。
本文将探讨态叠加原理的背景、基本概念以及相关实验证据,并对其可能的物理解释进行讨论。
什么是态叠加原理态叠加原理是指在量子力学中,一个量子体系可以处于多个互不相同的态的叠加状态下。
简言之,当一个物体处于超微观的状态时,并不一定处于一个确定的状态,而是处于多个可能的状态中,直到它被测量或与其它体系相互作用时。
根据态叠加原理,物体的波函数可以表示为不同状态的叠加。
双缝实验与态叠加双缝实验的原理双缝实验是量子力学中重要的实验之一,可以用来验证态叠加原理。
实验中,光或电子通过一个带有双个狭缝的屏幕,并在后面的屏幕上形成干涉条纹。
经典物理学的解释是,光或电子可以通过其中的一个缝洞或另一个缝洞。
然而,量子力学的解释是,光或电子同时通过两个缝洞,并在后面的屏幕上形成干涉图样。
双缝实验与态叠加的关系根据双缝实验的结果,我们可以得出一个重要结论:在未进行观测或测量时,粒子可以处于多个可能的状态,以一种叠加的形式存在。
这与态叠加原理是一致的,因为双缝实验显示了光或电子既可以通过一个缝洞,也可以通过两个缝洞,这意味着它们可以处于多种可能的状态。
干涉与态叠加的现象干涉的定义干涉是指波之间相互作用的结果。
在双缝实验中,光或电子通过两个缝洞后,形成了干涉图样。
这是因为通过双个缝洞的波相干叠加形成了干涉效应。
干涉与态叠加的联系根据双缝实验的干涉图样,我们可以得出结论:在没有测量或观测的情况下,粒子可以处于多个状态的叠加,这些状态相互作用形成了干涉。
这进一步支持了量子力学中的态叠加原理。
薛定谔的猫与态叠加的概念薛定谔的猫是由奥地利物理学家埃尔温·薛定谔提出的一个思想实验。
它是对态叠加原理的一种生动描述,旨在说明在微观尺度下,物体可以处于多种可能的状态中。
§2.2 态的叠加原理1、量子态及其表象在统计物理中,我们学过量子态的概念。
那时我们把微观粒子的运动状态称为量子态。
通过前面的学习我们又知道2|)(|rψ给出粒子出现在r 的处几率。
2|)(|pϕ给出粒子出现在p 处的几率。
)(p ϕ是)(rψ的Fourier 变换:⎰⋅-=r e r p r p i 3/2/3d )()2(1)(ψπϕ ⎰⋅=p e p r r p i 3/2/3d )()2(1)( ϕπψ 此时若),(t rψ给定,所有力学量测值几率分布就给定,平均值就可求出。
),(t r ψ完全确定了一个三维空间t 时刻的量子态,),(t rψ是几率幅,又称态函数。
同样)(p ϕ给定后,动量的几率分布就可求,而且由于)(r ψ可由)(p ϕ求出,故)(pϕ也可作为量子态完全描述体系,即)(p ϕ和)(rψ是等价的,彼此有确定的关系,那么二者有何区别?二者的表象不一样。
量子力学中把态和力学量的具体表示方式成为表象。
)(r ψ、)(pϕ是一个状态在坐标表象和动量表象中的表示。
有关表象的问题我们将在以后作详细介绍。
前面我们学习了量子力学的基本原理之一:微观粒子的运动状态用波函数),(t rψ完全来描述。
下面我们学习第二个基本原理 2、态的叠加原理问题的提出:自由粒子的波函数是动量取确定值的态函数,即平面波。
考虑一个波包)(rψ,它由平面波叠加而成。
在这个波包中测量动量,能测得什么值? 态的叠加原理能回答这个问题。
态的叠加原理:设体系处于1ψ状态,测量力学量A 所得值为a 1,1ψ称为力学量A 的相应于本征值a 1的本征态。
又体系处于2ψ状态,测量力学量A 所得值为a 2,2ψ称为力学量A 的相应于本征值a 2的本征态。
则2211ψψψc c +=也是体系的一个状态,这就是态的叠加原理。
在ψ态中测量A 可能得a 1,也可能得a 2,而且相应的测量几率是确定的。
——态的叠加是波的叠加的结果,导致叠加态下观测结果的不确定性。
(4)态叠加原理 1 量子态及其表象若体系由归一化的波函数()r ψ 来描述,若测量粒子的位置, 则()2r ψ表示粒子出现在r点的几率密度。
在傅立叶变换下: ()()()33212ip r p er d r ϕψπ-⋅=⎰若测量粒子的动量p, 则测得粒子动量为p的几率密度为()2p ϕ, 同理, 也可以确定其他力学量的测量值的几率分布.故()r ψ 完全描述一个粒子的量子态. ()r ψ称为态函数, 也叫几率波幅.反之, 若体系由归一化的波函数()p ϕ 来描述, 则测量粒子动量为p 的几率为()2p ϕ, 在傅立叶变换下:()()()33212ip r r ep d r ψϕπ⋅=⎰若在位置r点测量粒子, 则测得粒子出现在r点的几率密度为()2r ψ。
这样, ()p ϕ也可完全描述这个粒子的量子态.因此, 我们知道, 对于一个体系, 粒子的量子态可以有多种描述方式, 每种方式对应于一种不同的表象, 它们彼此之间存在着确定的变换关系. 如()r ψ 是粒子态在坐标表象中的表示, 而()p ϕ是同一个状态在动量表象中的表示. 2 态叠加原理若体系由()r ψ 来描述,则2()r ψ(已归一)描述了体系的几率分布或称几率密度。
若单粒子处于()()()()1122,exp ,exp c p t ip r c p t ip r ⋅+⋅ 态中,则测量动量的取值仅为1p 或2p,而不在12p p -之间取值。
对于由大量粒子组成的体系,好像一部分电子处于1p 态,另一部分电子处于2p态。
但你不能指定某一个电子只处于1p 态或只处于2p 态。
即对一个电子而言,它可能处于1p 态(即动量为1p ),也可能处于2p态(即动量为2p ),即有一定几率处于1p 态,有一定几率处于2p态。
由这启发建立量子力学最基本原理之一: A 、 态叠加原理:设体系处于1ψ态下, 测量力学量A 时, 测得值为1a , 若体系处于2ψ态下, 测量力学量A 时, 测得值为2a , 则体系处于1122c c ψψψ=+下, 测量力学量A 时, 测得值只可能为1a 或2a ,并且测得1a 和2a 的几率分别2221c ,c ∝。
态叠加原理
态叠加原理是指在物理学中,当两个或多个波相遇时,它们的位移会相互叠加,形成新的波形。
这种叠加的过程称为态叠加。
态叠加原理在光学、声学、量子力学等领域都有重要的应用,对于理解波动现象和解决实际问题具有重要意义。
首先,我们来看看光学中的态叠加原理。
在光学中,当两束光波相遇时,它们
的电场和磁场会相互叠加,形成新的光波。
这种叠加是线性的,即叠加后的光波仍然满足麦克斯韦方程组,因此可以通过叠加原理来分析复杂的光场分布。
态叠加原理在干涉、衍射、偏振等光学现象中都有重要应用,为光学领域的研究和技术应用提供了重要的理论基础。
在声学中,声波的态叠加原理也是非常重要的。
当两个或多个声波相遇时,它
们的压强会相互叠加,形成新的声场。
这种叠加可以导致声音的增强或减弱,从而产生共鸣、干涉等现象。
态叠加原理在音响工程、声纳技术、噪声控制等方面有着广泛的应用,对于改善声学环境和提高声学设备性能具有重要意义。
在量子力学中,波函数的态叠加原理是描述微观粒子行为的重要原理之一。
根
据量子力学的叠加原理,当一个量子系统处于多个可能的状态时,它的波函数可以表示为这些状态的叠加态。
这种叠加态可以导致干涉、叠加、量子纠缠等现象,对于理解微观世界的奇特现象和开发量子技术具有重要意义。
总的来说,态叠加原理是描述波动现象的重要原理,它在光学、声学、量子力
学等领域都有着广泛的应用。
通过对态叠加原理的研究,可以深入理解波动现象的规律,解决实际问题,推动科学技术的发展。
希望本文能够帮助读者更好地理解态叠加原理,并在相关领域的研究和应用中发挥作用。
[精品]态叠加原理态叠加原理是指,在物理学中,多个波叠加时,每个波的振幅加起来形成了叠加波。
这个原理是事实上许多物理现象的基础,包括声音、光线和无线电信号。
态叠加原理也被用于研究量子力学中的电子态和波函数。
在经典物理学中,波叠加的原理可以解释许多现象。
例如,当两个相同的波同时到达一个点时,它们的振幅加起来会形成一个更大的波。
这可以用加法来表示,即A + B = C,其中C表示两个波的叠加波的振幅。
这个原理不仅适用于相同的波,也适用于不同的波。
例如,当两个不同的波到达一个点时,它们可以相互干涉。
这种情况下,波的振幅可以相互增强(构造干涉),也可以相互抵消(破坏干涉)。
另一个例子是当一个波通过一个狭窄的孔时,它会形成一个由多个波叠加而成的模式。
这种模式称为衍射模式,并且可以用来确定孔的大小和形状。
在量子力学中,态叠加原理是量子力学中的核心概念之一。
量子力学中的电子、质子等粒子不是像经典物理学中的粒子一样存在于确定的位置和速度,而是存在于一系列可能的状态和位置之中。
这些可能的状态和位置由波函数描述,波函数本质上是对粒子的可能状态的描述。
当两个或多个波函数叠加时,它们的相干叠加可以导致一个新的波函数出现。
在这种情况下,波函数的模方表示粒子位于某个位置或处于某种状态的可能性。
在量子力学中,这个过程被称为波函数坍缩。
波函数坍缩是一种出现新的波函数的过程,它的出现是由测量粒子而导致的。
态叠加原理的实际应用非常广泛。
它在声学,光学,通信和量子计算中都具有重要的作用。
它还可以用于控制和操纵量子系统,包括利用波函数坍缩来实现量子态的测量和控制。
最近,态叠加原理在量子信息领域中被广泛应用,以实现超导量子计算和量子通信。
态叠加原理的认识与探讨摘要: 叠加原理是量子力学中的一个基本原理,广泛应用于量子力学各个方面。
阐述了量子力学中态叠加原理的重要性,分析该原理的两种表述,并强调了波函数的相因子对叠加态的重要影响。
关键词: 量子力学态叠加原理波函数量子力学是研究微观量子系统运动变化规律的理论,它是在上个世纪20 年代在总结了大量实验事实和旧量子论的基础上建立起来的。
不同的著作对量子力学基本原理的表述方法不尽相同,但从整体上来看,其总的内涵没有多大的区别,这些基本原理以及由此推出的全部内容早已为物理学界所公认。
尽管如此,但对某些基本原理的描述,以及对微观世界物理图像的看法还是存在着一定的分歧,尤其是对量子态叠加原理的认识更是各有见解。
在量子力学理论中,态叠加原理是其中的一个基本原理,它说明了波函数的性质,起着统制全局的作用,被称之为“量子力学中头等重要的原理”。
不同的学者对这个原理给出了不同的表述。
两种典型的表述(1) 周世勋的表述[1]:对于一般的情况,如果Ψ1和Ψ2 是体系的可能状态,那么它们的线性叠加Ψ = c1Ψ1 + c2Ψ2(c1,c2 是复数)也是体系的一个可能状态。
当粒子处于态Ψ1 和态Ψ2 的线性叠加态Ψ时,粒子是既处在态Ψ1,又处在态Ψ2。
(2) 曾谨言的表述[2]:设体系处于Ψ1 描述的态下,测量力学量A 所得结果是一个确切值a1(Ψ1 称为A 的本征态,A 的本征值为a1)。
又假设在Ψ2 态下,测得的结果是另一个确切值a2,则在Ψ = c1Ψ1+ c2Ψ2 所描述的状态,测量所得的结果,既可能为a1,也可能为a2(但不会是另外的值),而测得结果为a1 或a2 的相对几率是完全确定的。
我们称Ψ态是Ψ1 态和Ψ2 态的线性叠加态,而且量子力学中态叠加原理是与测量密切联系在一起的。
2 分析与讨论以上两种表述虽有所不同,但一致的观点是:若Ψ1 和Ψ2 是体系的两个可能的态,则它们的线性叠加态Ψ = c1Ψ1 + c2Ψ2 也是体系可能的状态,这种叠加并且可以推广到很多态。