洛伦兹力问题
- 格式:doc
- 大小:326.10 KB
- 文档页数:10
Җ㊀山东㊀刘㊀兵㊀㊀张㊀红㊀㊀在学习洛伦兹力时,我们可以根据左手定则得到洛伦兹力方向与速度方向时刻垂直,从而得到洛伦兹力对运动电荷不做功.那么,洛伦兹力真的不做功吗?我们先来看一道例题.例㊀如图1所示,下端封闭㊁上端开口㊁高h =5m 内壁光滑的细玻璃管竖直放置,管底有质量m =10g ㊁电荷量的绝对值|q|=0 2C 的小球,整个装置以v =5m s-1的速度沿垂直于磁场方向进入磁感应强度B =0 2T ,方向垂直纸面向内的匀强磁场,由于外力的作用,玻璃管在磁场中的速度保持不变,最终小球从上端管口飞出.下列说法正确的是(㊀㊀).(g取10ms-2)图1A.小球带负电B .小球在竖直方向做匀加速直线运动C .小球在玻璃管中的运动时间小于1s D.小球机械能的增加量为1J 分析㊀这道题的答案是B ㊁D.题目解完后,反思这道题发现这样一个问题,小球在竖直方向受到竖直向下的重力,若洛伦兹力不做功,小球在竖直方向的速度为什么变大了呢?解决这个问题需要从洛伦兹力入手.洛伦兹力是运动电荷受到磁场的作用力,当电荷的运动速度垂直于磁场时其公式可以写成F =qv B ,从这个公式可以看出洛伦兹力大小与电荷的运动速度有关.玻璃管刚进入磁场时,小球速度水平向右,此时小球所受洛伦兹力竖直向上.小球在磁场中运动过程中,同时参与了水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动,其合运动为匀变速曲线运动.小球的速度时刻在改变,所受洛伦兹力也时刻改变.根据运动的合成与分解可以将小球在磁场中运动过程中某时刻的速度进行分解,如图2所示.其中v 1㊁v 2分别为此时刻水平方向㊁竖直方向的分速度.此时小球所受洛伦兹力F 也可以进行分解,如图3所示.图2㊀㊀㊀㊀㊀㊀㊀㊀图3其中F 为合速度对应的洛伦兹力,F 1㊁F 2分别为v 1㊁v 2对应的洛伦兹力.下面我们来计算一下F 1㊁F 2这两个分力从小球进入磁场到小球离开玻璃管过程中的做功情况.由于小球水平方向为匀速直线运动,其速度v 1=5m s-1,这个速度对应的洛伦兹力为F 1,其大小为F 1=qv 1B =0 2N ,这个力的方向竖直向上,此力对小球竖直方向的运动状态产生了影响.这个力做的功为W 1=F 1h =1J .这也是小球竖直方向速度变大的原因.再来分析一下F 2的做功情况.F 2是分速度v 2对应的洛伦兹力,其大小为F 2=q v 2B ,这个分力的方向为水平向左.v 2与时间t 成正比,水平方向的位移x 与时间t 成正比,由此可得v 2正比于水平方向的位移x .由式F 2=q v 2B 可以得到F 2正比于水平方向的位移x .我们可以通过图象来反映F 2与水平方向位移x的变化关系,如图所示.图424通过已知条件可知小球飞出管口用时1s ,图4中的x 1=v 1t =5m ,小球离开管口时受到的水平分力F ᶄ2=q v 2B =0 4N ,F 2在此过程中所做的功数值上与图中阴影部分的面积相等,即W 2=-1J .动生电动势的产生原因同样也涉及洛伦兹力分力做功问题.下面我们来分析一下动生电动势的产生.如图5所示,一金属直导线以速度v 在垂直于纸面向外的匀强磁场B 内匀速向右运动,由右手定则可以得到导线b 端的电势高于a 端的电势,在导线中产生了电动势,这个电动势是怎么产生的呢?图5我们先来回顾一下电动势的概念.人教版高中物理教材«选修3G1»中对电动势是这样描述的: 电动势在数值上等于非静电力把1C 的正电荷在电源内从负极移送到正极所做的功. 在上面的情境中,是什么力充当了非静电力使电荷移动,从而产生了电动势呢?我们知道,在金属中能够自由移动的是自由电子,我们以其中的一个电子为研究对象进行分析.由于导线的运动使电子在水平方向产生了位移,水平方向的速度对应的洛伦兹力F 是竖直向上的.这样电子在竖直方向就产生了位移,与上面的题目类似,电子在匀强磁场中同时参与了水平方向和竖直方向两个方向的运动.正是水平方向的速度对应的洛伦兹力F 充当了非静电力使电子从b 端向a 端运动,从而产生了动生电动势.分析洛伦兹力做功问题时需要明确是哪个速度对应的洛伦兹力.合速度对应的洛伦兹力是不做功的,若把速度分解,其分速度对应的两个洛伦兹力就会分别对运动电荷做功.(作者单位:山东省邹平市第一中学)Җ㊀江苏㊀黄㊀剑㊀㊀新课程改革强调核心素养的培育,核心素养能有效推动学生的进步和发展,是促进学生各方面均衡发展的基石.因此,在物理教学活动中,务必加强对核心素养的培养.本文以 静摩擦力 为例,根据学生的特点及知识含量设计相关的课堂内容,旨在促进学生物理学科核心素养的养成.1㊀设计思想摩擦力是高中物理中的基础知识点,摩擦力在生活中处处有体现,学生能够自主感知事物的特点.教师应根据实际生活中的摩擦力,引导学生去感悟,再借助通俗易懂的实例给学生讲解什么是摩擦力.利用生活实际配合实验让学生自主思考,真正理解摩擦力的意义,建立物理概念.2㊀静摩擦力的教学设计2.1㊀教材分析静摩擦力是高中物理«必修1»教材中的重要知识点.在教学开始时,由重力㊁弹力等概念引出摩擦力,既有利于学生理解摩擦力,还能为力与运动㊁功与能等知识进行良好的铺垫.2.2㊀教学目标1)初步认识摩擦力的概念和种类;2)了解静摩擦力的产生条件;3)知晓静摩擦力的方向和大小,理解二力平衡.2.3㊀教学重点与难点明白静摩擦力的产生原因;掌握静摩擦力的方向和大小.2.4㊀教学流程设计教学流程如图1所示.创设情境游戏引入⇒复习回顾引出问题⇒实验感知形成概念⇒实验探究建立规律⇒讨论交流深入理解⇒学习小结总结提升图12.5㊀教学过程设计说明1)设置问题情境引入内容教师:提前备好绳子,让两名力气差别较大的学34。
洛伦兹力作用下的力学问题-高考物理知识点洛伦兹力作用下的力学问题1.涉及洛伦兹力的动力学问题中,因洛伦兹力的大小和方向与物体的运动状态有关,在分析物体的运动过程时,需将运动对受力的影响、受力对运动的影响综合考虑来确定物体的运动性质及运动过程,此类问题中往往还会出现临界状态,需分析临界状态下满足的条件。
2.在设计洛伦兹力(详情查看高考物理知识点总结)的能量问题中,因洛伦兹力不做功,系统能量的转化取决于其他力做功的情况,但需要考虑洛伦兹力对最终运动状态的影响。
3,在定性判定设计洛伦兹力的非匀变速运动过程中,可利用运动的合成与分解来定性地判断通过的位移、运动的时间等问题。
洛伦兹力公式及条件
洛伦兹力公式是F=qvBsinθ,其中F是洛伦兹力,q是电荷量,v是电荷速度,B是磁场强度,θ是电荷运动方向与磁场方向的夹角。
这个公式描述了运动电荷在磁场中所受到的力的大小和方向。
这个公式适用的条件是电荷的运动方向与磁场方向不平行,即θ≠0°。
如果电荷的运动方向与磁场方向垂直,即θ=90°,则洛伦兹力的大小为F=qvB。
洛伦兹力的方向可以通过左手定则来判断。
具体方法是:将左手掌摊平,让磁感线穿过手掌心,四指表示正电荷运动方向,则和四指垂直的大拇指所指方向即为洛伦兹力的方向。
洛伦兹力是磁场对运动电荷的作用力,是电磁学中的一个基本概念。
在实际应用中,洛伦兹力可以用来描述带电粒子在磁场中的运动轨迹和受力情况,对于电磁学的研究和应用具有重要意义。
高二物理洛伦兹力公式与方向试题1.下图中,电荷的速度方向、磁场方向和电荷的受力方向之间关系正确的是()【答案】C【解析】选项A、B中粒子速度方向与磁感线平行,不受洛伦兹力,故选项A、B错误;由左手定则知C选项正确;选项D中负粒子受洛伦兹力向上,故D错误。
【考点】洛伦兹力2.如图所示,一个带正电的物体,从固定的粗糙斜面顶端沿斜面滑到底端时的速度为v,若加上一个垂直纸面向外的匀强磁场,则物体沿斜面滑到底端时的速度A.不变B.变小C.变大D.不能确定【答案】C【解析】当没有加磁场时,物体从斜面上滑下时,重力做正功,摩擦力做负功,合外力做的功使物体的动能增大;当加上磁场时,带正电的物体滑下时要受到洛伦兹力,洛伦兹力垂直斜面向上,使得物体与斜面间的压力减小,摩擦力减小,摩擦力做的负功减小,故合外力做的功变大,物体滑到底端时的动能增大,速度也会变大,C是正确的。
【考点】洛伦兹力,动能定理。
3.如图,将一阴极射线管置于一通电螺线管的左方,则A.通电螺线管内部的磁场方向向右B.通电螺线管内部的磁场方向向左C.阴极射线管中的电子束将向纸面外偏转D.阴极射线管中的电子束将向纸面内偏转【答案】BD【解析】由安培定则知通电螺线管产生的磁场方向向左,螺线管左为N极,故A选项错误,B选项正确;由左手定则阴极射线管中的电子束将向纸面内偏转,故C选项错误,D选项正确。
【考点】安培定则左手定则4.如图,水平导线中有电流I通过,导线正下方的电子初速度的方向与电流I的方向相同,则电子将()A.沿路径a运动,轨迹是圆B.沿路径a运动,轨迹半径越来越大C.沿路径a运动,轨迹半径越来越小D.沿路径b运动,轨迹半径越来越小【答案】B【解析】由右手螺旋定则可知,在直导线的下方的磁场的方向为垂直纸面向外,根据左手定则可以得知电子受到的力向下,所以电子沿路径a运动;通电直导线电流产生的磁场是以直导线为中心向四周发散的,离导线越远,电流产生的磁场的磁感应强度越小,由半径公式r=可知,电子的运动的轨迹半径越来越大,所以B正确.【考点】本题考查带电粒子在磁场中的运动。
高二物理洛伦兹力公式与方向试题答案及解析1.如图所示,水平直导线中通有恒定电流I,导线的正上方处有一电子初速度v,其方向与电流方向相同,以后电子将()A.沿路径a运动,曲率半径变小B.沿路径a运动,曲率半径变大C.沿路径b运动,曲率半径变小D.沿路径b运动,曲率半径变大【答案】D【解析】水平导线中通有稳定电流I,根据安培定则判断导线上方的磁场方向向里,导线下方的磁场方向向外,由左手定则判断可知,导线上面的电子所受的洛伦兹力方向身向上,则电子将沿b轨迹运动,其速率v不变,而离导线越远,磁场越弱,磁感应强度B越小,由公式可知,电子的轨迹半径逐渐增大,故轨迹不是圆,故D正确。
【考点】考查了带电粒子在磁场中的运动,安培定则2.某单色光照射到一逸出功为W的光电材料表面,所产生的光电子在垂直于磁感应强度为B的匀强磁场中做圆周运动的最大半径为r,设电子的质量为m,带电量为e,普朗克常量为h,则该光波的频率为()A.B.C.-D.+【答案】D【解析】根据光电效应方程得,EKm =hν-W.根据洛伦兹力提供向心力,有:evB=,最大初动能EKm=mv2 该光波的频率:v= +,D正确。
【考点】本题考查光电效应、洛伦兹力提供向心力。
3.如图所示,在垂直纸面向里的匀强磁场中,有a、b两个电子从同一处沿垂直磁感线方向开始运动,a的初速度为v,b的初速度为2v.则()A.a先回到出发点B.b先回到出发点C.a、b同时回到出发点D.不能确定【答案】C【解析】电子在磁场中只受到洛伦兹力的作用,做匀速圆周运动,故有,解得粒子在磁场中的运动周期与粒子的运动速度无关,所以只有选项C正确;【考点】带电粒子在磁场中的运动4. 如图为一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( )【答案】AD【解析】带正电的小环向右运动时,受到的洛伦兹力方向向上,注意讨论洛伦兹力与重力的大小关系,然后即可确定其运动形式,注意洛伦兹力大小随着速度的大小是不断变化的.由左手定则可判断洛伦兹力方向向上,圆环受到竖直向下的重力、垂直细杆的弹力及向左的摩擦力,A 、当qvB=mg 时,小环做匀速运动,此时图象为A ,故A 正确;B 、当qvB <mg 时,F N =mg-qvB 此时:μF N =ma ,所以小环做加速度逐渐增大的减速运动,直至停止,所以其v-t 图象的斜率应该逐渐增大,故BC 错误.D 、当qvB >mg 时,F N =qvB-mg ,此时:μF N =ma ,所以小环做加速度逐渐减小的减速运动,直到qvB=mg 时,小环开始做匀速运动,故D 正确; 故选AD【考点】分析洛伦兹力要用动态思想进行分析,注意讨论各种情况,同时注意v-t 图象斜率的物理应用,总之本题比较全面的考查了高中所学物理知识.5. 如图所示是用阴极射线管演示电子在磁场中受洛仑兹力的实验装置,图中虚线是电子的运动轨迹,那么下列关于此装置的说法正确的有( )A .A 端接的是高压直流电源的负极B .A 端接的是高压直流电源的正极C .C 端是蹄形磁铁的S 极D .C 端是蹄形磁铁的N 极【答案】AD【解析】阴极射线管电子从A 极射向B 极,电子带负电,可以判断A 、B 所接电源的极性.如图,电子从A 极射向B 极,电子带负电,则B 端应接正极,A 端应接负极。
v=v孔射出的速度为vR=+()R=LB==5vr=evB=mt=.R==T/4===m-mvOC=()==R=mvB=m,则R==0.2m PQ=2PO=2=0.2≈0.35m.v=m2解析(1)要使电子不发生偏转,则应有电场力与洛伦兹力相等,即eE=ev0B,则E=v0B.(2)电子在电场中向上偏转量s=t2,且tanθ==,而在加速电场中,有eU=mv02,且l=v0t,又偏移距离y=s+dtanθ,解以上方程得U=.五、带电粒子在电磁场中的动态运动问题顾名思义,在处理带电粒子或带电物体,在电磁场中的动态问题时,要正确进行物体的运动状况分析,找出物体的速度、位置及其变化,分清运动过程,注意正确分析其受力,此乃求解之关键.[例8] 如图10所示,套在很长的绝缘直棒上的小球,其质量为m,带电荷量为+q,小球可在棒上滑动,将此棒竖直放在互相垂直且沿水平方向的匀强电场和匀强磁场中,电场强度是E,磁感强度是B,小球与棒的动摩擦因数为μ,求小球由静止沿棒下落的最大加速度和最大速度.(设小球带电荷量不变)解析小球的受力情况如图10所示,且有N=qE+qvB因而F合=mg-μ(qE+qvB),显然随着v的增大,F合减小,其加速度也减小,即小球做加速度减小的变加速度运动,当a=0时,速度达最大值,故可解得v=0时,a m==g-a=0时,即mg-μ(qE+qvB)=0时,v m=.六、极值问题求极值是物理学中的一类重要问题,可以通过对物理过程准确分析反映学生分析问题的能力,一般地首先要建立合理的物理模型,再根据物理规律确定极端情况而求极值,此即所谓的物理方法求极值.当然根据需要也可以采用其他方法如几何方法、三角方法、代数方法等.[例9]如图11所示,真空的狭长的区域内有宽度为d,磁感强度为B的匀强磁场,质量为m、电荷量为q的带负电的粒子,从边界AB垂直磁场方向以一定的速率v射入磁场,并能从磁场边界CD穿出磁场,则粒子入射速度跟边界AB成角θ=_________时,粒子在磁场中运动时间最短.(不计重力,结果用反三角函数表示)解析带电粒子以一定的速率射入磁场时,其运动半径是一定的.当粒子在磁场中运动时间最短时,圆周的圆心角应最小,即对应的弧长(或弦长)也最短.显然,最短的弦长为磁场宽度d,由图12,则有cosθ=时,即R=,又qvB=m,则有R=,故cosθ=.因此,粒子入射速度跟边界AB成角θ=arccos时,粒子在磁场中运动时间最短.[例10]顶角为2θ的光滑圆锥置于方向竖直向下的匀强磁场中,小球质量为m,带电荷量为q,磁场的磁感强度为B,小球沿圆锥面做匀速圆周运动,则:(1)顺着磁场方向看,小球如何运动?(2)小球运动的最小半径是多少?[解析]小球此时受重力及弹力作用,要使小球能绕圆锥运动,当小球处于图13位置时还须受水平方向向右的洛伦兹力,由左手定则可判知小球由图示位置向外运动,即顺着磁场方向看,小球逆时针运动.在水平方向有qvB-Ncosθ=m在竖直方向有Nsinθ=mg故qvB-mgcotθ=m即mv2-qvBR+mgRcotθ=0当该方程有解时,则必有(qBR)2-4m2gRcotθ≥0解之得R≥4m2g/q2B2tanθ,因此小球运动的最小半径为R=4m2g/q2B2tanθ.七、洛伦兹力在实际中的应用电场可以对带电粒子有电场力的作用,而磁场对运动的带电粒子有洛伦兹力作用.当电场和磁场共同存在时,对带电粒子也会施加影响,这一知识在现代科学技术中有着广泛的应用.1.带电粒子在电场力和洛伦兹力同时作用下的运动主要有三种应用,即速度选择器、磁流体发电机和霍尔效应.2.带电粒子在电场力与洛伦兹力递次作用可交替作用下的运动也有三种应用,即电视显像管、质谱仪和回旋加速器.[例11]质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图14所示,离子源S产生的一个质量为m电荷量为q的正离子,离子产生时速度很小,可以看作是静止的,离子产生出来后经过电压U加速,进入磁感应强度为B的匀强磁场,沿着半圆周运动而达到记录它的照相底片P上,测得它在P上的位置到入口处S1的距离为x,则下列说法正确的是( )A.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子的质量一定变大;B.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明加速电压U一定变大C.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明磁感应强度B一定变大D.若某离子经上述装置后,测得它在P上的位置到入口处S1的距离大于x,则说明离子所带电荷量q可能变小解析离子加速时,有qU=,在匀强磁场中,做圆周运动,有qvB=m,而x=2R,由以上方程,得x2=,可见本题正确选项为D.[例12] 磁流体发电技术是一种目前世界上正在研究的新兴技术,它可以直接把内能转化为电能,同时具有效率高(可达45%~55%,火力发电效率为30%),污染少等优点.其原理如图15所示,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)以声速的0.8~2.5倍的速度喷射入磁场中,磁场中有两块金属板A、B,这时A、B上就积聚电荷产生电压,设粒子所带电荷量为q,进入磁场的喷射速度是v,磁场的磁感应强度为B,两块金属板的面积为S,AB间的距离为d.(1)该磁流体发电机的电动势有多大?(2)设磁流体发电机内阻为r,当外电阻R是多少时输出功率最大?并求最大输出功率.(3)为使等离子体以恒定速度v通过磁场必须使通道两端保持一定的压强差,压强差为多大?解析(1)磁流体发电机的电动势即为S断开时,电源两极板间的电势差,在洛伦兹力作用下,等离子体中的正、负电荷分别向上、下板偏转,使两极板间产生电势差,且电势差随着电荷在两极板上的积累而增大,当电荷不偏转时,两极板间电势差达到最大值.此时有qvB=qE=q,则U=Bdv.该磁流体发电机的电动势E=Bdv.(2)发电机的输出功率P=I2R=()2R==显然,当外电阻R=r时输出功率最大,且P m=.(3)当等离子体受到的洛伦兹力与等离子压力差相等时方可以恒定速度通过磁场,即有△p=又F=BId,I==解之得△p=.八、与力学的综合题这类问题是以洛伦兹力为载体,本质上可看作是力学题,故解题中在考虑洛伦兹力的前提下,可以利用解决力学问题的三大方法处理之,即动力学观点,包括牛顿三大定律和运动学规律;动量观点,包括动量定理和动量守恒定律;能量观点,包括动能定理和能量守恒定律.在上述方法中,应首选能量观点和动量观点,对多个物体组成的系统,优先考虑两大守恒定律.[例13]一小球质量为m,带负电,电荷量为q,由长l的绝缘丝线系住,置于匀强磁场中,丝线的另一端固定在A点,提高小球,使丝线拉直与竖直方向成60°角,如图16所示.调节磁场的磁感强度B0,释放小球,球能沿圆周运动,到最低点时,丝线的张力为零,且继续摆动,求:(1)摆球至最低点时的速度;(2)B0的值;(3)小球在摆动过程中丝线受的最大拉力.解析(1)小球在磁场中受到重力、弹力及洛伦兹力作用,但从释放到运动至最低点只有重力做功,由动能定理,则有mgl(1-cos60°)=mv2解之得v=.(2)在最低点时,洛伦兹力与重力的合力提供向心力,即有qvB0-mg=m,由以上二式,解得B0=.(3)由于小球运动方向的不同而使洛伦磁力方向改变,不难判断当小球从右边开始运动时,张力较大,且最低处张力最大,此时有T-qvB0-mg=m解之得T=4mg.[例14]一带电液滴在互相垂直的匀强电场和匀强磁场中运动,已知E和B,若此液滴在垂直磁场的平面内做半径为R的匀速圆周运动,如图17所示.求:(1)液滴速度的大小,绕行方向;(2)液滴运动到轨道最低点A分裂为质量、电荷量都相等的两液滴,其中一个液滴仍在原运动平面内做半径R1=3R的匀速圆周运动,绕行方向不变,且这个圆周最低点仍为A,则另一个液滴如何运动?解析本题文字叙述较长,但只要理解题意,求解仍是较简单的.(1)据题意,应有qE=mg,由此可判断液滴带负电,且qvB=m,则v=BqR/m=BgR/E,方向为顺时针方向.(2)分裂后,有.则v1=3BqR/m=3BgR/E由动量守恒定律,则有mv=故v2=2v-v1=-BgR/E这说明,另一液滴做反方向的圆周运动,且半径不变.[例15]一个质量m,带有+q电荷量的小球,悬挂在长为L的细线上,放在匀强磁场中,其最大摆角为α,为使摆的周期不受磁场影响,磁感应强度B应有何限制?解析由左手定则易判断:小球向左摆动时,所受洛伦兹力背离悬点,将使悬线张力增加,但不影响摆的周期,而向右摆动时,如B足够大,小球可能向悬点移动进而破坏其正常摆动.设小球处于图中的位置时摆球速度为v,当周期不受磁场影响时由机械能守恒定律,有=mgL(cosβ-cosα)据牛顿第二定律,有T+qvB-mgcosβ=m由以上二式可求得T=0时的B值,且B=,可见,T=0时B的取值与小球运动的速度v有关.由有关数学方法可以求得当时,B有最小值,即v=时,最小值B min=.这说明了当B=B min时,其他位置上悬线的张力均大于零,故使摆周期不受影响的磁感应强度应满足条件B min≤.[例16]如图19所示,在某一足够大的真空室中虚线PH的右侧是一磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧是一场强为E,方向水平向左的匀强电场.在虚线PH上的一点O处有质量为M,电荷量为Q的镭核().某时刻原来静止的镭核水平向右放出一个质量为m,电荷量为q的α粒子而衰变为氡核(Rn),设α粒子与氡核分离后它们之间的作用力可忽略不计,涉及动量问题时,亏损的质量可不计.(1)写出镭核衰变为氡核的核反应方程;(2)经过一段时间α粒子刚好垂直到达虚线PH上的A点,测得OA=L,求此刻氡核的速度.解析(1)根据核衰变的特点可知,镭核衰变为氡核时满足电荷数守恒和质量数守恒,故有.(2)镭核衰变时遵守动量守恒定律,则(M-m)v0=mvα粒子在匀强磁场做匀速圆周运动,在磁场中运动了圆周,则到达A点需时t=且有qvB=m,R=L/2而氡核在电场中做匀加速直线运动,t时刻速度v t=v0+at,同时满足牛顿第二定律,即(Q-q)E=(M-m)a,联立以上各式解得所求氡核速度为v t=.。