(完整版)中子散射简介
- 格式:ppt
- 大小:22.28 MB
- 文档页数:89
中子散射技术在材料科学中的应用材料科学一直是科学技术领域的重要分支之一,而中子散射技术则是材料科学中不可或缺的研究手段之一。
中子是介于光子和质子之间的粒子,具有较强的穿透能力和灵敏的成分分析能力。
在材料科学中,中子散射技术可以用于探测材料的晶体结构、原子结构及动力学特性等,为材料科学的研究提供了有力支持。
一、中子散射技术的原理中子散射技术是指利用中子与物质相互作用的特点,研究材料中原子与原子之间距离、相互排列顺序、运动方式及衍射成像等。
中子在物质中的传播会因为散射而产生一些有规律的变化,这些变化可以被记录下来并得出物质的结构信息。
中子散射技术的原理比较复杂,需要先了解一些基础概念,如晶体结构、衍射和散射等。
二、1. 晶体分析中子散射技术可以用来研究材料中晶体结构的细节信息,这对于材料科学的研究非常重要。
晶体结构的分析需要通过衍射实验获得晶体的结构信息,然后结合模拟技术和理论计算进行深入分析。
中子散射技术可以从非常小的角度探测晶体结构,可以对材料中的晶体结构进行非破坏性分析,这对于材料性能的研究具有重要意义。
2. 动力学研究材料的动力学研究可以帮助研究材料的变形、腐蚀、疲劳等问题。
中子散射技术可以通过研究物质中原子的位移、振动等信息,获得材料的动力学特性,为相关研究提供有力支持。
3. 氢同位素分析材料中氢的存在对其性质有很大影响,比如材料的电学性能、光学性能、化学性能等。
中子散射技术可以通过测量物质中氢同位素的分布和运动轨迹等信息,来研究材料中氢的运动、储存、传输等过程,从而深入了解材料性质的相关问题。
4. 磁性材料研究中子被磁场时会发生自旋散射效应,这种效应可以用来研究磁性材料中不同原子的磁性行为。
中子散射技术可以通过测量磁性材料中中子的散射强度、散射角度等信息,进一步了解材料中磁旋转、磁畴耦合等问题,有助于研发新型磁性材料。
5. 工业应用中子散射技术不仅是材料科学领域的重要研究工具,还可以应用于工业生产和质量控制中。
中子散射技术在基础研究中的应用在当今科学研究的广阔领域中,中子散射技术宛如一颗璀璨的明珠,为我们揭示了物质世界的诸多奥秘。
它是一种强大而独特的研究手段,在基础研究的多个领域都发挥着至关重要的作用。
让我们先来了解一下什么是中子散射技术。
简单来说,中子散射就是让中子束与物质相互作用,然后通过分析中子散射后的行为来获取物质内部结构和动态信息的一种技术。
中子具有一些独特的性质,使其在研究中具有无可替代的优势。
与常见的 X 射线相比,中子对轻元素更为敏感。
这意味着对于那些包含氢、碳、氮等轻元素的物质,中子散射能够提供更准确和详细的信息。
例如,在生物学研究中,蛋白质和 DNA 等生物大分子中氢原子的位置和运动对于理解其功能至关重要,中子散射就能在这方面大显身手。
在材料科学领域,中子散射技术为研究材料的微观结构和性能关系提供了有力的工具。
比如,对于磁性材料,中子可以直接探测到原子磁矩的排列和动态变化,帮助科学家深入理解磁性的本质和磁相变过程。
在超导材料的研究中,中子散射能够揭示超导态下电子对的行为和相干性,为开发更高性能的超导材料提供关键线索。
化学领域也得益于中子散射技术的发展。
通过研究化学反应过程中分子的结构和运动变化,我们可以更好地理解反应机制和动力学。
例如,在催化反应中,中子散射可以帮助确定催化剂表面活性位点的结构和反应物分子的吸附行为,从而优化催化剂的设计。
在凝聚态物理中,中子散射对于研究晶体结构、晶格振动和缺陷等方面具有重要意义。
它能够揭示晶体中的原子位移、热振动以及缺陷对晶体性能的影响。
此外,对于量子材料,如拓扑绝缘体和量子自旋液体等,中子散射可以探测到奇特的量子态和自旋行为,推动了量子物理的研究进展。
中子散射技术在能源研究中也扮演着重要角色。
在电池研究中,它可以帮助我们了解电极材料在充放电过程中的结构变化和离子扩散机制,为提高电池性能和开发新型电池提供理论依据。
在氢能源研究中,中子能够探测到氢在储氢材料中的存储和释放过程,有助于开发高效的储氢材料。
第一章—核反应堆的核物理基础直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。
非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
微观截面:一个中子和一个靶核发生反应的几率。
宏观截面:一个中子和单位体积靶核发生反应的几率。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内所有中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约10-14s)发射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中发射出来的,把这些中子叫缓发中子。
第二章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
扩散时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反应堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最后被俘获的平均时间,称为中子的平均寿命。
慢化密度:在r处每秒每单位体积内慢化到能量E以下的中子数。
分界能或缝合能:通常把某个分界能量E c以下的中子称为热中子,E c称为分界能或缝合能。
第三章—中子扩散理论中子角密度:在r处单位体积内和能量为E的单位能量间隔内,运动方向为 的单位立体角内的中子数目。
慢化长度:中子从慢化成为热中子处到被吸收为止在介质中运动所穿行的直线距离。
中子散射方法测定结构中子是在二十世纪初被发现的. 中子和质子一样是组成原子核的基本粒子. 中子的质量与质子相近, 中子不带电荷但具有磁矩, 其自旋为1/2. 早在二十世纪三十年代, 就发现中子可以被散射. 但直到二十世纪中期, 核反应堆的建立提供了稳定的强中子源, 使得中子散射研究成为可能. 二十世纪八十年代散裂脉冲中子源的出现使人们可以得到更强的中子流. 由于中子散射研究的迅速发展及其在科学上的重大贡献, 1994年诺贝尔物理奖授予了中子散射领域的两位代表人物 C.G. Shull 和B.N. Brockhouse, 以表彰他们分别在中子弹性散射和非弹性散射领域做出的卓越贡献.3.11.10.1 中子散射的特点热中子(下面一般简称为中子)的波长与一般晶胞的线度相近, 可用来测定晶体结构和磁结构. 与X射线相比, 中子具有如下特点:z X射线的散射体是核外电子, 其相干散射长度与各元素的原子序数成比例; 而中子的散射体是原子核, 其相干散射长度与各元素的原子序数无关, 且各同位素因核结构不同而具有不同的相干散射长度. 因此中子散射可以精确测定较轻原子特别是H的位置, 也可区分元素周期表上的近邻原子, 还可以识别同位素.z中子具有磁矩, 是直接探测磁结构的唯一手段.z中子具有极强的穿透力, 适于研究在各种环境条件, 如高温, 低温及高压等, 下的结构及其变化.3.11.10.2 中子结构分析的基本原理3.11.10.2.1 晶体结构分析中子晶体结构分析的原理与X射线基本相同, 区别仅在于散射体不同.晶体产生中子衍射的条件是布拉格方程2 d Sinθ = λ式中d 为晶面间距, λ 为中子波长, θ 为入射角(=反射角).在此条件下可测到晶面间距为d, 晶面指标为 (hkl ) 的晶面产生的衍射强度I hkl , 它与结构因子F hkl 的模的平方成正比I hkl = k | F hkl |2式中, k 为常数, 其中包括洛伦兹因子, 吸收因子, 消光因子等. 温度因子的影响暂不考虑.结构因子F hkl 是复数, 其相角为 αhklF hkl =| F hkl | exp(i αhkl )结构因子与晶胞内各原子的关系为:F hkl =∑=nj 1b j exp{2π i (hx j +ky j +lz j)} 式中对一个晶胞中的所有原子求和, x j ,y j ,z j 是第 j 个原子在晶胞中的分数坐标, b j 是第 j 个原子的中子相干散射长度. 与X 射线不同, 由于是核散射, 中子的相干散射长度b 是常数, 不随角度或晶面间距而变化.结构因子F hkl 是晶胞内散射长度分布, 即晶体结构, 的傅立叶变换. 此傅立叶变换的反变换为:b j =∑hkl Fhkl exp{-2π i (hx j +ky j +lz j )}此式给出了相干散射长度随晶胞内位置的变化, 即晶体结构.衍射实验给出的是衍射强度. 由此可直接得到结构因子F hkl 的模. 因此寻找F hkl 的相角就成了晶体结构分析的核心内容.对于那些完全未知的结构, 一般需要利用单晶的衍射数据. 因为单晶的衍射数据是完全独立的, 信息量大, 利用直接法(中子散射长度的差别不大, 最适用于直接法)可以通过位相关系得到部分衍射的相角. 以此为基础, 利用傅立叶变换就可以得到部分原子的位置. 利用这些原子位置又可以得到更多的相角. 反复多次就可以得到绝大多数原子的位置. 差傅立叶法可以给出其余的原子位置. 依此为模型进行最小二乘法修正就可得到精确的晶体结构. 散裂脉冲中子源上的高分辨粉末衍射仪的分辨率很高, 其数据也可用来解出较小的未知结构.对于那些基本结构已知部分结构待定的晶体结构, 中子衍射研究的对象大多属于这一范畴, 分析方法较为简单. 在一般情况下, 模型法(基于晶体结构的初步模型, 对其进行修正的方法)可以解出晶体结构.3.11.10.2.2 磁结构分析中子磁矩与原子磁矩间的相互作用导致核散射之外附加的磁散射.正是中子散射揭示了在固体的原子结构中存在磁结构的概念. 由于磁性原子的磁散射长度与原子的核散射长度可以相比, 中子衍射可以精确测定磁结构. 本文简要介绍利用非极化中子测定铁磁和反铁磁材料的磁结构的基本原理.非极化中子使得核散射与磁散射之间不相干. 因此总的散射强度等于核散射强度与磁散射强度之和.| F hkl | 2 = | F hkl cry | 2 + | F hkl mag | 2式中F hkl cry 为(晶体学)结构因子, F hkl mag 为磁结构因子.F hkl mag =∑=nj 1q j p j exp{2π i (hx j +ky j +lz j)} 式中p 为原子的磁散射长度, 其数值与该原子的磁量子数和磁形状因子在该散射角的数值成正比; q 为磁相互作用矢量, 其方向取决于原子磁矩在反射面上投影的方向, 其数值等于原子磁矩与反射面法线间的夹角的正弦.与晶体学中的结构因子不同, 磁结构因子F hkl mag 是一矢量.从实验中得到的衍射强度中减去核散射的贡献就得到了磁散射的强度. 将此磁散射强度的实验数据与根据各种磁结构模型计算出的磁散射强度相比较可以解出磁结构.铁磁体的磁晶胞与晶体学晶胞相同, 因此磁衍射峰的位置与核衍射峰的位置完全重合. 反铁磁体的磁晶胞会在某个方向上为晶体学晶胞的两倍, 因此会出现衍射指标为半整数(如1/2, 3/2, …)的磁衍射峰. 这是由于用较小的晶体学晶胞来描述较大的磁晶胞而引起的.3.11.10.2.3 小角散射小角散射是指在直射束附近的散射. 利用波长为2~30Å的长波(冷)中子可以探测不同尺度上的不均运性, 其中包括缺陷的分布, 磁畴的大小, 聚合物和生物大分子的结构等. 在下文中这些研究对象统称为颗粒.小角散射中包括衍射和折射两部分, 其比率取决于中子穿过颗粒引起的位相变化与中子穿过同样长度的真空引起的位相变化之间的差值Φ,Φ = (4π / λ) (1- n) R p式中λ为中子波长, n 为颗粒的中子折射率, R p 为颗粒的半径.当Φ>>1 时, 折射占主导地位, 散射峰的展宽只与颗粒数相关, 而与颗粒大小无关.当Φ<<1 时, 衍射占主导地位, 散射峰由两部分组成: 一部分是直接穿过的中子, 另一部分是衍射峰. 后者出现的展宽与颗粒的半径相关. 依此可以得到颗粒的大小和形状.衍射峰上每一点的强度I 与峰值强度I0的关系为I = I0 exp (-Q2 R2 / 3 )式中Q = 4π Sinθ / λR 被称为参与散射的颗粒的回旋半径.利用log I - Q2 图可以得到R2. 一个圆球的回旋半径为其半径的5/3倍.R2 定义为每个原子到通过颗粒的重心且与散射矢量平行的轴的距离的平方的散射长度加权平均值.R2 = ∑b i r i2 / ∑b i利用此公式可对颗粒大小及形状的各种模型计算出相应的R2 来与实验值进行比较, 以确定颗粒的结构.3.11.10.3 中子散射实验3.11.10.3.1 中子源(1) 反应堆中子源核反应堆能够提供稳定的热中子流来进行中子散射研究. 反应堆中可以安装冷源和烫源, 他们可以使那些通过他们的中子的波长分布发生变化. 冷源可以增加长波(冷)中子的通量, 烫源可以增加短波中子的通量.(2)散裂脉冲中子源加速器用来加速脉冲质子. 当质子达到一定的能量后, 被用来轰击重金属靶以产生脉冲中子. 经慢化器后, 脉冲中子可用来进行中子散射研究. 通过不同慢化器的脉冲中子的波长分布是不同的, 分别适用于不同的谱仪.3.11.10.3.2谱仪(1)反应堆中子源上的谱仪a.粉末衍射仪对反应堆上的粉末衍射仪而言, 在一次实验中波长λ保持不变. 因此探测器的扫描角度2θ对应于相应的晶面间距d. 当2θ远离衍射峰时, 探测到的是本底; 而2θ在衍射峰上时, 探测到的是衍射峰上一点的中子计数, 一个衍射峰上全部测点的计数之和对应于该峰的衍射强度.中子粉末衍射谱中包含了全部晶体学和磁结构的信息, 但 d 值相同或相近的衍射峰会出现不同程度的重叠, 降低了提取信息的能力. 中子粉末衍射谱能提供基本的晶体学信息, 如晶胞参数和对称性, 也能给出磁结构的基本模型, 为单晶结构分析打下基础. 在结构分析中, 一般用于基本结构已知, 部分参数待定或结构精修的研究.粉末衍射仪要求粉末样品尽可能做到各向同性, 以保证衍射峰强度比的真实性和结构的可靠性. 圆柱形样品管有利于做到这一点. 现在各结构分析程序都能对各相异性做出修正, 但只是某种程度上的近似. 对于那些特殊形状的样品, 如针状或片状, 无法做到各向同性, 只能依靠程序来修正. 样品量要求较大, 一般为几个立方厘米, 这取决于谱仪和样品种类.基本构件:z单色器用来选择所需波长的中子. 通常采用提高单晶嵌镶度的方法, 适当牺牲分辨率来提高中子通量. 近来聚焦单色器得到广泛应用.z准直器用来选择合格的中子, 提高谱仪的分辨率;z计数器用来接收中子. 为了提高计数效率, 多探头探测器(包括准直器) 得到广泛应用. 位置灵敏计数器的计数率较高, 但分辨率较低.b.单晶衍射仪单晶的优点在于可以单独测量每个衍射峰, 没有粉末衍射中的重叠现象. 单晶中子衍射中影响强度的主要因素是次级消光. 通常要求单晶的大小适中(取决于谱仪和样品种类), 线度一般为几个毫米, 且三个方向上差别不要太大. 要求单晶的嵌镶度较大. 这可以通过在液氮中急冷等方法来实现. 单晶衍射仪的特点是它的样品架可以绕几个轴旋转, 使得单晶的一些晶面分别转到特定的方位来观测其衍射峰. 例如四园衍射仪, 欧拉环可将单晶的所有晶面自动就位进行测量. 由于每个衍射峰都是单独测量的, 因此精度高, 信息量大. 可以精确测定晶体结构和磁结构. 特别适于测定未知的晶体结构.c.小角衍射仪基本构件:z冷源用于得到长波(冷)中子.z中子导管避开直射束, 截断热中子, 使冷中子无损失的传输.z机械速度选择器选出所需波长的中子.z探测器目前通用二维位置灵敏探测器.(2)散裂脉冲中子源上的谱仪飞行时间法经加速器加速到一定能量的脉冲质子轰击重金属靶可以产生脉冲中子. 每个脉冲都是由各种波长的中子组成的. 慢化器用来改变中子的波长分布, 以适应各种研究的需要. 不同波长的中子具有不同的速度, 因此不同波长的中子从慢化器出发经样品散射到计数管所用的时间不同. 这种利用测量从慢化器到计数器中子飞行的时间来得到波长的方法被称作飞行时间法. 飞行时间法的主要优点是分辨率高, 且一个脉冲中的中子基本上(除去两端的延伸部分, 特别是特短波长部分)都可以得到利用.a. 粉末衍射仪根据布拉格方程, 对于一个固定的θ角, 晶面间距d与波长λ成正比. 因此, 利用固定的探测器, 通过测量中子的飞行时间就可以得到对应于晶面间距d值的中子衍射谱. 粉末衍射仪一般装有三组固定的探测器, 每一组都由多个探测器组成以提高计数率. 背散射探测器可得到最高的分辨率, 90ο探测器适用于有环境条件的测量. 低角度探测器适于较大分子的测量. 散裂脉冲中子源上的粉末衍射仪的主要优点是高分辨率和高通量. 高分辨衍射仪需要较长的中子飞行距离, 谱仪需要安置在距中子靶站较远的地方. 目前最高的分辨率达到∆d/d=4x10-4, 且不随d 值而变化. 这样的高分辨率不但能提供更多的更高精度的结构参数, 而且能解决一些原先只有单晶才能解决的问题, 例如解出完全未知的晶体结构. 高通量衍射仪距靶站较近. 由于每一个脉冲的中子基本上都得到利用, 样品处得到较高的中子通量. 这种衍射仪可以测量较小的样品, 一些衍射仪的样品量可以小於1克. 对于较大的样品测量时间就很短, 这也使得某些实时测量成为可能.基本构件z探测器一般分为三组: 背散射, 90ο, 低角度.z斩波器用来清理本底, 整理每个脉冲和防止相邻脉冲间的重叠.z中子导管一般用于飞行距离较远的高分辨谱仪, 以减小中子的损失.b. 单晶衍射仪散裂脉冲中子源上的单晶衍射仪利用飞行时间劳埃技术, 在一次单独的测量中可以探测到三维倒易点阵的一个很大的部分. 在脉冲中子的波长范围之内, 任何方向的晶面(具有特定的d和θ值) 都会将波长λ符合布拉格方程的中子反射到特定的方向, 并被计数器记录下来. 这样就得到了与每个d值相应的衍射强度. 由于一个脉冲中的中子的波长是连续的, 被探测到的这部分三维倒易点阵中的衍射信息, 如峰的劈裂, 超点阵峰等, 将一览无遗. 这使得散裂脉冲中子源上的单晶衍射仪在涉及到纵观倒易点阵的研究, 例如相变和无公度结构等, 中起到特别重要的作用. 对于那些单晶样品的方向受到限制的结构分析测定, 这种单晶衍射仪是特别适用的.基本构件z样品台可使单晶样品转到任何方向来测量一组劳埃衍射数据.z探测器记录劳埃衍射数据.主要应用z结构测定(包括氢原子定位).z漫散射(高温导致的无序, 缺陷导致的无序, 短程有序的磁结构等. )z相变(包括对称性的变化, 超晶格反射等).z无公度结构.c.小角衍射仪与反应堆上的小角衍射仪相比, 其特点是只采用飞行时间法.3.11.10.4 数据分析结构分析一般需要专业研究人员来进行. 有关知识请见有关专著.参考文献Neutron Diffraction (Third Edition) G.E. Bacon Clarendon Press Oxford 1975。
中子物理中的中子共振与中子散射实验中子是构成原子核的基本粒子之一。
在中子物理研究中,中子共振和中子散射实验是两种重要的实验手段。
本文将介绍中子共振和中子散射实验的基本原理、实验方法、应用以及对物理研究的意义。
一、中子共振实验中子共振是指中子与原子核之间发生共振相互作用的现象。
在特定能量范围内,中子与原子核中的核子相互作用形成共振态,使得中子的散射截面显著增大。
中子共振实验通过测量中子与样品中原子核的相互作用,得到中子能量与散射截面之间的关系。
中子共振实验的基本原理是利用中子束流通过样品时,中子与样品中的原子核相互作用,其中一部分中子散射,另一部分中子被吸收,从而使中子束流发生衰减。
通过测量不同能量的中子对应的散射截面,可以得到中子与样品中原子核之间的散射的能量依赖关系,进而推断出中子共振态的能量。
中子共振实验通常采用中子散射法和中子时间飞行法两种方法。
中子散射法通过测量中子的散射角度和散射能量,得到相应的散射截面;中子时间飞行法是利用中子在样品中传播的时间与中子的散射截面相关联,通过测量中子到达和离开探测器的时间差,得到散射截面。
中子共振实验在核物理、材料科学、天体物理等领域具有重要的应用价值。
通过中子共振实验可以研究原子核的结构、核反应的动力学过程等,对于核能的利用、新材料的开发等方面具有重要意义。
二、中子散射实验中子散射是指入射中子与目标物质的原子核相互作用后发生散射现象。
通过中子散射实验可以研究中子与原子核之间的相互作用力、核子结构、核反应等问题。
中子散射实验通常采用中子束流通过目标物质后,测量出射中子的角度和能量分布。
通过这些数据可以计算出样品中原子核的散射截面、散射相移等信息,从而揭示中子与原子核之间的相互作用机制。
中子散射实验可分为弹性散射和非弹性散射两种形式。
在弹性散射过程中,入射中子与目标物质的原子核发生碰撞后,散射出的中子仍然保持原来的能量;而在非弹性散射过程中,散射出的中子能量发生改变。
中子散射技术在材料科学研究中的应用材料是现代科技的基础,包括建筑材料、电子材料、医用材料等,都是人类社会发展的必要条件。
如何在制备高质量材料的同时,提高其性能和应用范围,是材料科学家一直在不断探索的方向。
而中子散射技术作为一种快速、非破坏性、准确的测试手段,被广泛地运用于材料科学研究中。
一、中子散射技术的基本原理中子散射技术是利用中子束的一些性质,来研究物质结构和性质的一种方法。
中子是一种不带电的粒子,具有波粒二象性,波长约为0.1纳米。
在散射表面或内部时,会与原子核或电子发生相互作用,导致它的波长发生改变,这就是所谓的中子散射效应。
二、1.材料结构分析中子散射技术可以用来分析材料的结构,它可以提供材料中原子的位置、振动和自旋的信息。
在材料制备和加工过程中,中子散射技术可以用来检测材料中的缺陷或瑕疵,以确定材料的牢固性和性能。
例如,中子散射技术可以用来确定钢中的碳浓度和晶体结构,以及铝合金中的晶粒大小和分布。
2.材料性质研究中子散射技术可以用来研究材料的物理性质,如磁性、电性、超导性等。
例如,在超导体的研究中,中子散射技术可以用来确定超导体的结构和磁性,以及超导体中电子的运动情况。
在固体燃料电池的研究中,中子散射技术可以用来研究电离质输运的机制,以及材料与离子交互的方式。
3.材料性能测试中子散射技术可以用来测试材料的性能。
例如,在超导体的研究中,中子散射技术可以用来测试超导体的临界电流密度和临界温度,以确定超导体的性能。
在材料的弹性和塑性变形的研究中,中子散射技术可以用来测试材料中晶格的变化和畸变,以评估材料的力学性能。
三、中子散射技术在实际应用中的例子1.材料学中的固体润滑剂利用中子散射技术,材料学家可以研究固体润滑剂的结构和性能。
如韦普和卢杰克等人使用中子散射技术,研究了锂质固体润滑剂对金属表面的润滑效果。
他们发现,固体润滑剂可以形成一个均匀分布在金属表面上的薄膜,有效地减少了表面之间的摩擦和磨损。
中国散裂中子源简介韦 杰一、中子散射1932年,查德威克发现了中子,人们认识到原子核由带正电的质子和不带电的中子构成。
中子的发现及应用是20世纪最重要的科技成就之一。
当一束中子入射到所研究的对象上时,与研究材料中的原子核或磁矩发生相互作用,被散射出来,通过测量散射出来的中子能量和动量的变化,可以研究在原子、分子尺度上各种物质的微观结构和运动规律,告诉人们原子、分子在哪里,原子、分子在做什么,这种研究手段就叫中子散射技术。
用于中子散射的中子,波长从几埃到几十埃、能量在毫电子伏特到电子伏特之间,分别与物质中原子分子之间的距离和相互作用能量相当。
图1 中子不带电、具有磁矩、穿透性强,能分辨轻元素、同位素和近邻元素以及具有非破坏性,使中子散射成为研究物质结构和动力学性质的理想探针之一,是多学科研究中探测物质微观结构和原子运动的强有力手段。
自1936年成功进行首次中子衍射实验以来,中子散射已广泛用于物理、化学、材料、生物、地质、能源、医疗卫生和环境保护等众多研究领域。
同步辐射产生的高亮度X 射线,主要与原子外围的电子云发生相互作用,从而探知物质的微观信息;而中子是电中性的,它与电子云基本不发生相互作用,而主要与物质中的原子核相互作用。
因此,作为探测微观结构的两种主要探针,同步辐射和中子散射看到的正好是物质的两个不同方面。
这种优势互补已被许多学科用来准确研究物质中原子的位置、排列、运动和相互作用等,图1是利用中子散射观察到的含水溶解酵素蛋白和肌红蛋白的结构。
中子散射的作用既与同步辐射互补,又具有独特和不可替代性。
其先进性与优越性表现在:①具有宽泛的波长范围:从零点几埃到亚微米范围内连续可调。
是度量原子、分子和原子分子团簇间距离从埃到纳米范围内的凝聚态物质微观结构最适合的标尺;②有合适的能量覆盖:热中子的能量从微电子伏特到电子伏特,与凝聚态物质中的大部分动态过程的能量相当,适合研究物质中各种不同的相互作用和动态过程;③能精确确定轻原子的位置;④能区分同位素:原子核内中子数的变化可以极大地影响其对中子的散射。
中子散射技术在材料科学中的应用在材料科学领域,为了深入理解材料的性质和行为,科学家们不断探索和应用各种先进的分析技术。
其中,中子散射技术凭借其独特的优势,成为了研究材料微观结构和动态过程的有力工具。
中子散射技术是什么呢?简单来说,它是利用中子与物质相互作用产生的散射现象来获取材料内部信息的一种方法。
中子具有一些独特的性质,使得它在材料研究中具有不可替代的作用。
首先,中子不带电,这使得它能够相对容易地穿透材料,并且在穿透过程中受到的库仑力影响较小。
相比之下,X 射线等带电粒子在与物质相互作用时,容易受到电荷的影响,从而限制了其在某些材料中的应用。
其次,中子与原子核的相互作用较强,而与电子的相互作用较弱。
这意味着中子能够对材料中的轻元素(如氢、锂等)进行更有效的探测,而这些轻元素在许多材料的性能中往往起着关键作用。
在材料科学中,中子散射技术有着广泛的应用。
它在研究晶体结构方面发挥着重要作用。
通过中子衍射,可以精确测定晶体中原子的位置和排列方式,从而深入了解晶体的对称性、晶格参数等重要信息。
这对于开发具有特定性能的新型晶体材料具有重要意义。
在研究磁性材料方面,中子散射技术也表现出色。
中子具有磁矩,能够与材料中的磁矩相互作用,从而揭示磁性材料中磁结构、磁畴分布等微观信息。
这有助于我们设计和优化高性能的磁性材料,如永磁体、磁存储材料等。
对于高分子材料,中子散射技术能够提供有关分子链的构象、运动和相互作用的详细信息。
这对于理解高分子材料的力学性能、热性能和加工性能等至关重要。
此外,中子散射技术还可以用于研究材料中的缺陷和扩散过程。
例如,通过监测中子散射强度的变化,可以追踪材料中原子或分子的扩散路径和速率,从而为改善材料的性能和稳定性提供依据。
在实际应用中,中子散射技术通常与其他分析技术相结合,以获得更全面和准确的材料信息。
例如,与 X 射线衍射、电子显微镜等技术相互补充,可以从不同角度揭示材料的微观结构和性质。