概率论 第一章D
- 格式:ppt
- 大小:337.50 KB
- 文档页数:30
习题1-21. 选择题(1) 设随机事件A ,B 满足关系A B ⊃,则下列表述正确的是( ).(A) 若A 发生, 则B 必发生. (B) A , B 同时发生.(C) 若A 发生, 则B 必不发生. (D) 若A 不发生,则B 一定不发生.解 根据事件的包含关系, 考虑对立事件, 本题应选(D).(2) 设A 表示“甲种商品畅销, 乙种商品滞销”, 其对立事件A 表示( ).(A) 甲种商品滞销, 乙种商品畅销. (B) 甲种商品畅销, 乙种商品畅销.(C) 甲种商品滞销, 乙种商品滞销.(D) 甲种商品滞销, 或者乙种商品畅销.解 设B 表示“甲种商品畅销”,C 表示“乙种商品滞销”,根据公式B C B C =I U ,本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) 一袋中有5只球, 其中有3只白球和2只黑球, 从袋中任意取一球, 观察其颜色;(2) 从(1)的袋中不放回任意取两次球, 每次取出一个, 观察其颜色;(3) 从(1)的袋中不放回任意取3只球, 记录取到的黑球个数;(4) 生产产品直到有10件正品为止, 记录生产产品的总件数.解 (1) {黑球,白球}; (2) {黑黑,黑白,白黑,白白}; (3) {0,1,2};(4) 设在生产第10件正品前共生产了n 件不合格品,则样本空间为{10}.|0,1,2,n n +=L 3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表示下列各事件:(1) 仅有A 发生;(2) A , B , C 中至少有一个发生;(3) A , B , C 中恰有一个发生;(4) A , B , C 中最多有一个发生;(5) A , B , C 都不发生;(6) A 不发生, B , C 中至少有一个发生.解 (1) ABC ; (2) ; (3) A B C U U ABC ABC ABC U U ; (4) ABC ABC ABC ABC U U U ; (5) ABC ; (6) ()A B C U .4. 事件A i 表示某射手第i 次(i =1, 2, 3)击中目标, 试用文字叙述下列事件:(1) A 1∪A 2; (2)A 1∪A 2∪A 3; (3)3A ; (4) A 2-A 3; (5)2A A U 3; (6)12A A . 解 (1) 射手第一次或第二次击中目标;(2) 射手三次射击中至少击中目标;(3) 射手第三次没有击中目标;(4) 射手第二次击中目标,但是第三次没有击中目标;(5) 射手第二次和第三次都没有击中目标;(6) 射手第一次或第二次没有击中目标.习题1-31. 选择题(1) 设A, B 为任二事件, 则下列关系正确的是( ).(A)()()()P A B P A P B −=−. (B)()()()P A B P A P B =+U .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解 由文氏图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0.解 本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解 因 ()1()1()()()()P AB P A B P A P B P AB P AB =−=−−+=U ,故. 于是()()1P A P B +=()1.P B p =−3. 已知()0.4P A =,,()0.3P B =()0P A B .4=U , 求()P AB .解 由公式()()()()P A B P A P B P AB =+−U 知()0.P AB 3=. 于是()()()0.1P AB P A P AB =−=..34. 设A , B 为随机事件,,()0.7P A =()0P A B −=, 求()P AB .解 由公式()()(P A B P A P AB )−=−可知,()0.4P AB =. 于是()0.6P AB =.5. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发生的概率.解 因为,所以=0, 即有=0.ABC AB ⊂0()P ABC P AB ≤≤()()P ABC 由概率一般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++−−−+=U U 由对立事件的概率性质知A ,B , C 全不发生的概率是5()()1()12P ABC P A B C P A B C ==−U U U U =.习题1-41. 选择题 在5件产品中, 有3件一等品和2件二等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是一等品. (B) 恰有1件一等品.(C) 至少有1件一等品. (D) 至多有1件一等品.解 至多有一件一等品包括恰有一件一等品和没有一等品, 其中只含有一件一等品的概率为113225C C C ×, 没有一等品的概率为023225C C C ×, 将两者加起即为0.7.答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) 至少有1件次品的概率; (4) 至多有1件次品的概率; (5) 至少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )至少有1件次品的概率是1-03545350C C C ; (4) 至多有1件次品的概率是03545350C C C +12545350C C C ; (5) 至少有2件次品的概率是21545350C C C +30545350C C C . 3. 袋中有9个球, 其中有4个白球和5个黑球. 现从中任取两个球. 求:(1) 两个球均为白球的概率;(2) 两个球中一个是白的, 另一个是黑的概率;(3)至少有一个黑球的概率.解 从9个球中取出2个球的取法有种,两个球都是白球的取法有种,一黑一白的取法有种,由古典概率的公式知道29C 24C 1154C C (1) 两球都是白球的概率是2924C C ; (2) 两球中一黑一白的概率是115429C C C ; (3) 至少有一个黑球的概率是12924C C −. 习题1-51. 选择题(1) 设随机事件A , B 满足P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件.(C) AB B =. (D)()(P AB P B )=.解 由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()P A 1<<, 则下列命题正确的是( ).(A) 若((P AB P A =), 则A , B 互斥.(B) 若()P B A 1=, 则()0P AB =.(C) 若()()P AB P AB +1=, 则A , B 为对立事件.(D) 若(|)1P B A =, 则B 为必然事件.解 由条件概率的定义知选(B ).2. 从1,2,3,4中任取一个数, 记为X , 再从1,2,…,X 中任取一个数, 记为Y ,求P {Y =2}.解 解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813. 3. 甲、乙、丙三人同时对某飞机进行射击, 三人击中的概率分别为0.4, 0.5, 0.7. 飞机被一人击中而被击落的概率为0.2, 被两人击中而被击落的概率为0.6, 若三人都击中, 飞机必定被击落. 求该飞机被击落的概率.解 目标被击落是由于三人射击的结果, 但它显然不能看作三人射击的和事件. 因此这属于全概率类型. 设A 表示“飞机在一次三人射击中被击落”, 则表示“恰有i 发击中目标”. (0,1,2,3i B i =)i B 为互斥的完备事件组. 于是没有击中目标概率为,0()0.60.50.30.09P B =××=恰有一发击中目标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =××+××+××=,恰有两发击中目标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =××+××+××=,恰有三发击中目标概率为3()0.40.50.70.14P B =××=.又已知 012(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B 3====,所以由全概率公式得到30()()(|)0.360.20.410.60.1410.458.i i i P A P B P A B ===×+×+×=∑4. 在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3个白球; 第三箱装有3个黑球, 5个白球. 现任取一箱, 再从该箱中任取一球.(1) 求取出的球是白球的概率;(2) 若取出的为白球, 求该球属于第二箱的概率.解 (1)以A 表示“取得球是白球”,表示“取得球来至第i 个箱子”,i =1,2,3. i H 则P ()=i H 13, i =1,2,3, 1211(|),(|),(|)52P A H P A H P A H ==358=. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P ()=2|H A 222()()(|)20()()53P AH P H P A H P A P A == 5. 某厂甲、乙、丙三个车间生产同一种产品, 其产量分别占全厂总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取一件进行检查.(1) 求这件产品是次品的概率;(2) 已知抽得的一件是次品, 问此产品来自甲、乙、丙各车间的概率分别是多少?解 设A 表示“取到的是一件次品”, i B (i =1, 2, 3)分别表示“所取到的产品来自甲、乙、丙工厂”. 易知, 123,,B B B 是样本空间S 的一个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,,.12(|)0.04,(|)0.03P A B P A B ==3(|)0.05P A B =(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.050.0384.=×+×+×=. (2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ×===, 222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ×===, 333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ×===. 习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成立的是( ).(A) A , B 相互独立. (B) A , B 不相互独立.(C) A , B 互为对立事件. (D) A , B 不互为对立事件.解 用反证法, 本题应选(B).(2) 设事件A 与B 独立, 则下面的说法中错误的是( ).(A) A 与B 独立. (B) A 与B 独立. (C) ()((P AB P A P B =). (D) A 与B 一定互斥.解 因事件A 与B 独立, 故A B 与,A 与B 及A 与B 也相互独立. 因此本题应选(D).(3) 设事件A 与 B 相互独立, 且0<P (B )<1, 则下列说法错误的是( ).(A) . (B) (|)()P A B P A =()()()P AB P A P B =.(C) A 与B 一定互斥. (D).()()()()()P A B P A P B P A P B =+−U 解 因事件A 与B 独立, 故A B 与也相互独立, 于是(B)是正确的. 再由条件概率及一般加法概率公式可知(A)和(D)也是正确的. 从而本题应选(C).2. 设三事件A , B 和C 两两独立, 满足条件:,ABC =∅1()()()2P A P B P C ==<, 且9()16P A B C =U U ,求.()P A 解 根据一般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++−−−+U U . 由题设可知 A , B 和C 两两相互独立, ,ABC =∅ 1()()()2P A P B P C ==<,因此有 2()()()[()],()()0,P AB P AC P BC P A P ABC P ====∅= 从而 29()3()3[()]16P A B C P A P A =−=U U , 于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =. 3. 甲、乙两人各自向同一目标射击, 已知甲命中目标的概率为 0.7, 乙命中目标的概率为0.8. 求:(1) 甲、乙两人同时命中目标的概率;(2) 恰有一人命中目标的概率;(3) 目标被命中的概率.解 甲、乙两人各自向同一目标射击应看作相互独立事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==×= (2) ()()0.70.20.30.80.38;P AB P AB +=×+×=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+−=+−=U总 习 题 一1. 选择题:设是三个相互独立的随机事件, 且0(,,A B C )P C 1<<, 则在下列给定的四对事件中不相互独立的是( ).(A)A B U 与C . (B)AC 与C . (C) A B −与C . (D) AB 与C .解 由于A , B , C 是三个相互独立的随机事件, 故其中任意两个事件的和、差、交、并与另一个事件或其逆是相互独立的, 根据这一性质知(A), (C), (D)三项中的两事件是相互独立的, 因而均为干扰项, 只有选项(B)正确..2. 一批产品由95件正品和5件次品组成, 先后从中抽取两件, 第一次取出后不再放回.求: (1) 第一次抽得正品且第二次抽得次品的概率; (2) 抽得一件为正品, 一件为次品的概率.解 (1) 第一次抽得正品且第二次抽得次品的概率为9551910099396×=×. (1) 抽得一件为正品,一件为次品的概率为95559519.10099198×+×=× 3. 设有一箱同类型的产品是由三家工厂生产的. 已知其中有21的产品是第一家工厂生产的, 其它二厂各生产41. 又知第一、第二家工厂生产的产品中有2%是次品, 第三家工厂生产的产品中有4%是次品. 现从此箱中任取一件 产品, 求取到的是次品的概率.解 从此箱中任取一件产品, 必然是这三个厂中某一家工厂的产品. 设 A ={取到的产品是次品}, B i ={取到的产品属于第i 家工厂生产}, i =1, 2, 3. 由于B i B j =(i ≠j, i , j =1, 2, 3)且B ∅1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的一个划分. 又 P (B 1)=21, P (B 2) =41, P (B 3)=41, P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004, 由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221×+×+×=0.025. 4. 某厂自动生产设备在生产前须进行调整. 假定调整良好时, 合格品为90%; 如果调整不成功, 则合格品有30%. 若调整成功的概率为75%, 某日调整后试生产, 发现第一个产品合格. 问设备被调整好的概率是多少?解 设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|0.750.90.250.30.75P B P A P B A P A P B A =+=×+×=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ×====. 5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02, 而B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解 以D 表示事件“将信息A 传递出去”,以D 表示事件“将信息B 传递出去”,以R 表示事件“接收到信息A ”,以R 表示事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====. 由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
概率论与数理统计第一章复习题解答概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:( 1) 记录一个班一次数学考试的平均分数(设以百分制记分) 。
( 2)生产产品直到有10 件正品为止,记录生产产品的总件数。
( 3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2 件次品就停止检查,或检查了4 件产品就停止检查,记录检查的结果。
(4)在单位圆内任意取一点,记录它的坐标。
解:(1)设该班有n人,则该班总成绩的可能值是0, 1, 2,……,100n。
故随机试验的样本空间S= {i/n|i=0,1,2, ……,100n }。
(2)随机试验的样本空间S= {10,11,12,……}。
( 3)以0 表示检查到一个次品, 1 表示检查到一个正品,则随机试验的样本空间S={ 00, 0100, 0101, 0110, 0111, 100, 1010, 1011, 1100, 1101, 1110, 1111}。
(4)随机试验的样本空间S= {(x,y ) |x2+y2<1}。
2、设A, B, C为三个事件,用A, B, C的运算关系表示下列各事件:(1)A发生,B与C都不发生。
(2)A与B都发生,而C不发生。
(3)A, B, C中至少有一个发生。
(4)A, B, C都发生。
(5)A, B, C都不发生。
(6)A, B, C中不多于一个发生。
(7)A, B, C中不多于两个发生。
(8)A, B, C中至少有两个发生。
解:(1) A BC (2) AB C (3) AU BU C (4) ABC(5)A BC(6) ABC U A B C U A B C U A B C(7) S-ABC (8) ABCJ AB C U A B C U A BC3、(1)设A, B, C 为三个事件,且P (A) =P( B) =P( C) =1/4 , P (AB =P (BC =0,P (AC) =1/8,求A,B, C至少有一个发生的概率。
第一章 随机事件及其概率复习题一. 单选1. D2. A3. B4. C5. B6. D7. A8. B9. C 10. A. 二. 填空1. 0.9,2. 11(1)n p --, 3. 0.8, 4. 7/8, 5. 1/6, 6. 1/3, 7. 13/18, 1/2, 8. 0.863, 0.435, 9. 0.06, 10. 0.75. 三.计算与证明 1. 解: 6106610!()10104!P P A ==, 6668()0.810P B ==.2. 解:(1)4134411111(12)C P +=-=0.0372;(2)4124412!110.4271;12128!P P =-=-=(3)4132234444444666610.1004;0.1004.77C C C C P P +++=-===或3.解: ,0()()0,()0.ABC AB P ABC P AB P ABC ⊂∴≤≤=∴=则A ,B ,C 至少发生一个的概率为()()()()()()()()111115000.625.44416168P A B C P A P B P C P AB P BC P AC P ABC =++---+=++---+==A ,B ,C 全不发生的概率为3()()1()0.375.8P A B C P A B C P A B C =⋃⋃=-⋃⋃==4.解:设A 表示任意取出一个产品是次品,123,,B B B 分别表示取出一、二、三车间生产的产品,则(1)由全概率公式得112233()()(|)()(|)()(|)0.450.050.350.040.20.020.0405;P A P B P A B P B P A B P B P A B =++=⨯+⨯+⨯=(2) 由贝叶斯公式得 111()(|)0.450.05(|)0.556.()0.0405P B P A B P B A P A ⨯===5.解:设12,A A 分别表示第一、第二次取出的零件是一等品,12,B B 分别表示取出第一、第二箱中的零件,则 (1)由全概率公式得1111212()()(|)()(|)0.50.20.50.60.4;P A P B P A B P B P A B =+=⨯+⨯=21121122122111()()(|)()(|)(2)(|)()()11091817()2504930290.4856.0.4P A A P B P A A B P B P A A B P A A P A P A +==⨯⨯+⨯==6.证明:{()}()()()()P A B C P AC BC P AC P BC P ABC ⋃=⋃=+- =()()()()()()()P A P C P B P C P A P B P C +- =(()()())()()()P A P B P AB P C P A B P C =+-=⋃ 故 A B ⋃与C 独立.第二章随机变量及其分布复习题一 选择题1. B2. B3. C4. D5. C 二 填空题 1.22(),0,1,2,;!kP X k e k k -=== 0.592.27193. ,1,21π==B A2111,,21x R xπ∈+4.,65,61 分布律:X -1 1 2P 616221三 解答题1. 解: X 的分布律为 X 1 2 3 4 P643764196476412. 解: X 的分布律为 1(),1,2,3,.k P X k q p k -=== 3. 解:设X 表示两次调整之间生产的合格品数,则X 的分布律为1()(1),0,1,2,.k P X k p p k -==-=4. 解: X 的概率分布为55()0.250.75,0,1,2,3,4,5.k k k P X k C k -=== 设A 表示“5道选择题至少答对两题”,则()1(0)(1)0.3672.P A P X P X =-=-==5. 解:1)一天中必须有油船转走意味着“X .>3”242(3)0.143;!kk P X ek ∞-=>==∑(查泊松分布表)2) 设设备增加到一天能为y 艘油船服务,才能使到达港口的90%的油船可以得到服务.则21212()0.910.9!20.1,15 4.!kk y kk y P X y ek ey y k ∞-=+∞-=+≤≥⇒-≥⇒≤+≥⇒≥∑∑反查泊松分布表得6. 解:21)()()31()31(3131=+=+⇒>=<⎰⎰∞dx b ax dx b ax X P X P47,23=-=⇒b a7.170170170:1)()0.01()()0.99666170(2.33)0.99 2.33184.6X h h P X h P h h ---≥<⇒<=Φ≥-Φ≈⇒≥⇒≥解查表得2)(182)P X ≥=1821701()1(2)0.02,6--Φ=-Φ≈设A 表示“100个男子中与车门碰头人数不多于2个”676.002.098.002.098.098.0)(2982100991100100=++=C C A P .8. 解:(1) X 的分布函数为 1,02()11,02xx e x F x e x -⎧-∞<≤⎪⎪=⎨⎪-<<+∞⎪⎩011(2)(1)(0)2211(1)(0),22xxP Y P X e dx P Y P X e dx ∞--∞==>===-=≤==⎰⎰故Y 的概率分布律为 Y -1 1P 1/2 1/2Y 的分布函数为 0,11(),1121,1Y y F y y y <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩ 第三章 多维随机变量及其分布复习题1. 解:()1由X 和Y 相互独立可知()()(),P X i Y j P X i P Y j =====,i =1,2,3; 0j =,1,2.则X 和Y 的联合概率分布为YX0 1 212311218 124 16 14 11211218124()2()()313P X Y P X Y +≠=-+=()()()()11,22,13,0P X Y P X Y P X Y =-==+==+==111951124412248⎛⎫=-++=-=⎪⎝⎭. 2. 解:由二维联合概率分布律及其性质可知:0.40.11a b +++=,即0.5a b += ()*()00.4P X a ==+, ()1P Y =0.1a =+()()10,1P X Y P X Y +====()1,00.5P X Y a b +===+=则由随机事件{0}X =与{1}X Y +=相互独立可得: ()()()01P X X Y =⋂+=()1P Y ==0.1a =+()()01P X P X Y ==+=()()()0.40.50.4a a b a =++=+,即 0.10.5(0.4a a +=+可得:0.2a =,再有()*式得:0.3b =.3. 解:由题意可知(),X Y 的可能取值为()0,0,()0,1,()1,0,()1,1, 则(),X Y 的联合分布律为()0,0P X Y ==()()P A B P A B ==⋃()1P A B =-⋃()()()()1P A P B P AB =-+-1111211461233⎛⎫=-+-=-= ⎪⎝⎭()0,1P X Y ==()()()P AB P B P AB ==-11161212=-=()()()()1,0P X Y P A B P A P AB ====- ()()11,112P X Y P AB ====即YX0 1123 112161124. 解:由题意知Y 的密度函数为(),00,y Y e y f y -⎧>=⎨⎩其他,()12,X X 的可能取值为()0,0,()0,1,()1,0,()1,1,则()12,X X 的联合分布律为()()120,01,2P X X P Y Y ===≤≤()1P Y =≤111y e dy e --==-⎰()()()120,11,20P X X P Y Y P φ===≤>==()()()2121211,01,212y P X X P Y Y P Y e dy ee---===>≤=<≤==-⎰()()()21221,11,22yP X X P Y Y P Y e dy e +∞--===>>=>==⎰,即:2X1X0 1111e -- 012ee--- 2e-5. 解:()1由题意记区域G 的面积为()A G ,则()()1216A G x x dx =-=⎰,所以()()()6,,,0,,x y G f x y x y G∈⎧⎪=⎨∉⎪⎩()2 关于X的边缘密度函数为()()22666,01,0,x x X dy x x x f x f x y dy +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘密度函数为()()()66,01,0,yy Y dx y y y f y f x y dx +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他()3 不独立. 因为当01,01x y ≤≤≤≤时()()(),X Y fx y f x f y ≠.6. 解:()1关于X 的边缘密度函数为()()2012,01,0,x X dy x x f x f x y dy +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他关于Y 的边缘密度函数为()()1211,022,0,y Y y dx y f y f x y dx +∞-∞⎧=-<<⎪==⎨⎪⎩⎰⎰其他 ()2()112211,,22P X Y fx y dxdy -∞-∞⎛⎫<<=⎪⎝⎭⎰⎰111222002131(1).216y dy dx y dy ==-=⎰⎰⎰第四章 随机变量的数字特征复习题一 选择题B D B D C二 填空题1.18.4 2.1 3.0.9 4.6三 计算题 1.解:⎰+∞∞-dx x f )(=⎰20axdx +42()2621bx c dx a b c +=++=⎰242433222856()()()()6233233a b c E X xf x dx xaxdx x bx c dx xx x a b c +∞-∞==++=++=++=⎰⎰⎰P( 1<x<3)=⎰21axdx +⎰+32)(dx c bx =23a+25b+c=43∴11,,144a b c ==-=2解: E(Z)=21E(X)+31E(Y)=67, Cov(X,Y)= X YρDX DY =1,D(Z)=41D(X)+91D(Y)+31cov(X,Y)=3637Cov(X,Z)= cov(X,2X+3Y )= 21D(X)+31cov(X,Y)=65第七章 参数估计复习题1.解 似然函数为 12222221111()(,)2(2)nii i x x n ni ni i L f x e eσσσσπσπσ=--==∑===∏∏,取对数 221122ln ()ln(2)ln 2ln 22nniii i xxL n n n σπσπσσσ===--=---∑∑令2122ln ()022nii xd n L d σσσσ==-+=∑,解得2σ的极大似然估计值为221ˆxσ=.2.解 记12m in(,,...,)n n X X X X *=,此时θ的似然函数等价于1,()0,ni i x n n n e x L x θθθθ=-+**⎧∑⎪≤=⎨⎪>⎩所以只有当n x θ*≤时,才有可能使()L θ取到最大值.又()L θ对n x θ*≤的θ是增函数,故当n x θ*=取到其最大值.即()m ax ()n L x L θθ*>=所以θ的极大似然估计值为 12ˆmin(,,...,)n n x x x x θ*==.3.解 由于[,1]X U θθ+ ,故总体的期望为212E X θ+=,从而得到方程ˆ21,2X θ+= 解得 1ˆ2X θ=-.所以θ的矩估计量为 1ˆ2X θ=-.又111ˆ()()()222E E X E X E X θθ=-=-=-= ,故1ˆ2X θ=-是θ的无偏估计量.4.证明2221122111ˆ[()]()1(2)nniii i ni i i E E XE X nnEX EX nσμμμμ====-=-=-+∑∑∑2222211(2)ni nμσμμσ==+-+=∑故2ˆσ是2σ的无偏估计量。
第一章 概率论的基本理论前苏联数学家柯尔莫哥洛夫,1933年创立概率公理化体系。
⎧⎨⎩确定现象随机现象§1. 随机试验例:1E :抛一枚硬币,观察正反面出现情况; {}1,H T Ω=2E :将一枚硬币抛三次,观察正反面出现情况;{}2,,,,,,,HHH HHT HTH THH HTT THT TTH TTT Ω=3E :抛两颗色子,观察出现点数和; {}32,3,4,,12Ω=4E :在一批灯管中任取一只,测试它的寿命; {}40t t Ω=≥ 5E :将一尺之棰折成三段,观察各段长度;(){}5,,0,0,0,1x y z x y z x y z Ω=>>>++=特点:()()()123⎧⎪⎨⎪⎩试验可以在相同条件下重复进行;试验结果具有多种可能性,但能事先知道所有可能结果;进行试验前不能确定哪一结果出现。
满足上述特点的试验称之为随机试验,通过随机试验来研究随机现象。
§2. 样本空间 随机事件一、 样本空间随机试验E 的所有可能结果组成的集合,称为E 的样本空间。
样本空间通常用S 或Ω来表示。
(见上节)样本空间的元素——样本点。
二、 随机事件样本空间S 的子集——随机事件(事件),用,,A B C 表示;基本事件,必然事件,不可能事件。
事件A 发生⇔A 中有一样本点出现。
例1、 2E 2S1A :第一次出现H {}1,,,A H H H H H T H T H HT T = 2A :三个均出现T {}2A T T T =三、 事件间关系与事件的运算E S ,A B k A S ⊂1. A B ⊂ 事件B 包含事件A A 发生导致B 发生 A B =⇔A ⊂B 且B A ⊂。
2. A B ⋃1nk k A =1k k A ∞=3. A B A B ⋂1nk k A =1k k A ∞=4. A B A B -=5. A B ⋂=∅ ,A B 不相容,互斥6. A B S ⋃=且A B ⋂=∅——,A B 互逆,或对立事件 A B = A S A =- 算律同集合论例 设,,A B C 表示三个随机事件:○1 A 出现,,B C 都不出现 ABC ○2 ,A B 都出现,C 不出现 ABC ○3 三个事件均出现 ABC ○4 三个事件至少有一个出现 A B C ⋃⋃ ○5 三个事件均不出现 A B C ○6 不多于一个事件出现 ABC ABC ABC ABC 或AB BC AC○7 不多于两个事件出现 ABC ABC ABC ABC ABC ABC ABC or ABC ○8 三个事件至少有两个出现 ABC ABCABCABC○9 ,A B 至少有一个出现,C 不出现 ()A B C +⋅ ○10 ,,A B C 中恰好有两个出现 ABC ABC ABC§3. 频率与概率一、 排列、组合复习1. 不可重复排列(不放回) ()()()()!121!rn n A n n n n r n r =---+=-2. 可重复排列 (放回)n 个不同元素取r 个(未必不同)组成的排列种数 rn 3. 不可重复组合rnC n r ⎛⎫ ⎪⎝⎭4. 乘法原理、加法原理二、 频率1、E, n 次,A, A n()An n f A n=2、性质11121.0()12()13()()()()n n k n k n n n k f A f S A A f A A f A f A f A ≤≤⎧⎪=⎨⎪⎩=++……、、均不相容………… 例1, P8 例2, P9可见,n 逐渐增大-------()n f A 逐渐趋于一个常数-------------------频率稳定性-------- 统计规律性------- 概率(事件发生可能性的) -----------------概率定义三、 概率 Probability1. 定义: E S A E ⊂ 实数()P A 满足:()()()()()()()1210213,,,,,n i j P A P S A A A i j A A ⎧≥⎪⎪=⎨⎪≠⋅=∅⎪⎩非负性规范性设两两互不相容,即:时则()()()()1212nn P A A A P A P A P A =++++(可列可加性)则称P 为概率,()P A 为事件A 的概率。
概率论第一章知识点总结
概率论第一章主要介绍了以下几个知识点:
1. 随机试验:指具有以下三个特征的试验:可以进行多次独立重复;每次试验只有两个可能结果中的一个发生;每次试验发生的概率相同。
2. 样本空间:随机试验的所有可能结果构成的集合称为样本空间,通常用S表示。
3. 事件:样本空间的任意子集称为事件,通常用A、B等大写字母表示。
4. 概率:事件A发生的概率定义为P(A)=n(A)/n(S),其中n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
5. 概率的性质:对于任意事件A和B,有以下性质:
(1) 0 ≤ P(A) ≤ 1
(2) P(S) = 1
(3) P(A∪B) = P(A) + P(B) - P(A∩B)
(4) 若A和B互不相容(即A∩B=),则P(A∪B) = P(A) + P(B) 6. 条件概率:事件B在事件A发生的条件下发生的概率称为条件概率,记为P(B|A),计算公式为P(B|A) = P(A∩B) / P(A)。
7. 乘法公式:对于任意事件A1,A2,…,An,有P(A1∩A2∩…∩An) = P(A1)P(A2|A1)P(A3|A1∩A2)…P(An|A1∩A2∩…∩An-1)。
8. 全概率公式和贝叶斯公式:全概率公式和贝叶斯公式是基于条件概率的重要公式,用于计算复杂事件的概率。
其中全概率公式为:
P(B) = Σi=1,2,…,nP(Ai)P(B|Ai),贝叶斯公式为:P(Aj|B) = P(Aj)P(B|Aj)/Σi=1,2,…,nP(Ai)P(B|Ai)。
第一章随机事件及其概率习题一1 举出几个必然事件、不可能事件和随机事件的例子.解(1)设v10为10次射击命中次数,则{5<v10≤8=——随机事件,{v10≤10}——必然事件,{v10>10}——不可能事件;(2)掷一枚骰子试验中,{出现偶数点}——随机事件,{出现i点}(i=1,2,…,6)——随机事件,{出现点数小于7}——必然事件,{点数不小于7}——不可能事件;(3)盒中有2个白球,3个红球,从盒中随机取出3球,则{取出的3个球中含有红球}——必然事件,{取出的3个球中不含红球}——不可能事件.2 互不相容事件与对立事件的区别何在?说出下列各对事件的关系:(1)|x-a|<δ与x-a≥δ;(2)x>20与x≤20;(3)x>20与x<18;(4)x>20与x≤22;(5)20个产品全是合格产品与20个产品中只有一个废品;(6)20个产品全是合格产品与20个产品中至少有一个废品.解对立事件一定是互不相容事件,但互不相容事件不一定是对立事件.对立事件和互不相容事件的共同特点是事件间没有公共的样本点,但两个对立事件的并(和)等于样本空间,即若A与__A是两个对立事件,则A__A=Φ,A+__A=Ω;而两个互不相容事件的并(和)被样本空间所包含,即若A与B是两个互不相容事件,则AB=Φ,且A+B⊂Ω.(1)由于{x||x-a|<δ=∩{x|x-a≥δ}=Φ,且{x||x-a|<δ=∪{x|x-a≥δ}⊂R,所以事件|x-a|<δ与x-a≥δ是互不相容事件;(2)由于{x|x>20}∩{x|x≤20}=Φ,且{x|x>20}∪{x|x≤20}=R,所以事件x>20与x≤20是对立事件;(3)由于{x|x>20}∩{x|x<18}=Φ,且{x|x>20}∪{x|x<18}=R,所以事件x>20与x<18是互不相容事件;(4){x|x>20}∩{x|x≤22}≠Φ,所以事件x>20与x≤22是相容事件;(5)设事件A={20个产品全是合格品},事件B={20个产品中只有一个废品},显然AB=Φ,A+B⊂Ω={20个产品},所以A与B是互不相容事件;(6)设事件A={20个产品全是合格品},事件B={20个产品中至少有一个废品},显然AB=Φ,A+B=Ω={20个产品},所以A与B是对立事件.3 写出下列随机试验的样本空间.(1)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数;(2)生产产品直到得到10件正品,记录生产产品的总件数;(3)测量一汽车通过给定点的速度.解(1)将3只次品都取出,至少要抽取3次,而最多抽取10次即可,故所求样本空间Ω={3,4,…,9,10};(2)最理想的情形是开始生产的10件产品都是正品,故所求样本空间Ω={10,11,12,…};(3)若不考虑汽车的运动方向,则所求样本空间Ω={v|v>0}.若考虑汽车的运动方向,θ表示该运动方向与正东方向之间的夹角,则所求样本空间 Ω={(vcosθ,vsinθ)|v>0,0≤θ<2π=.4 事件A表示在三件被检验的仪器中至少有一件为废品,事件B表示所有的仪器为合格品,问事件(1)A∪B;(2)A∩B各表示什么意义?解(1)A∪B=Ω; (2)A∩B= .5 设A,B,C为三个随机事件,试将下列事件用A,B,C来表示:(1)仅仅A发生;(2)三个事件都发生;(3)至少有两个事件发生;(4)恰有一个事件发生;(5)没有一个事件发生;(6)不多于两个事件发生.解(1)A__B__ C;(2)ABC;(3)AB∪AC∪BC;(4)A__B__C∪__AB__C∪__A__BC;(5)__A__B__C;(6) AB__ C.7 袋内装有5个白球,3个黑球,从中任取两个球,求取出的两个球都是白球的概率. 解随机试验是从8个球中任取2个,样本空间所包含的样本点总数为n=C28.设事件A={取出两个球均为白球},此时,事件A包含的样本点数为k=C25,故P(A)= k / n = C25 / C28≈0.357.8 一批产品共200个,其中有6个废品,求:(1)这批产品的废品率;(2)任取3个恰有一个是废品的概率;(3)任取3个全是废品的概率.解随机试验是从200个产品中任取3个,样本空间所包含的样本点总数为n=C3200. 设事件A i={取出的3个产品中含有i个废品},i=1,3,事件B={这批产品的废品率}.若取出的3个产品中含有i个废品,则i个废品必须从6个废品中获得,3-i个合格品必须从194 个合格品中获得,从而事件A i所包含的样本点数为k i=C i6C3-i194 ,i=1,3.故P(B)= 6 / 200 =0.03,P(A1)=k1 / n=C16C2194/C3200≈0.086,P(A3)=k3 /n=C36/C3200≈0.000 02.9 两封信随机地向四个邮筒投寄,求第二个邮筒恰好投入一封信的概率.解将两封信随机地投入四个邮筒,共有4×4=16种投法,即n=16.设 A={第二个邮筒恰好投入一封信},此时,需将两封信中的一封放入第二个邮筒,共有2种放法,剩下的一封放入其他三个邮筒中的一个,共有3种放法,从而事件A包含的样本点数为k=2×3=6,故P(A)=k/n=6/16=3/ 8.10 在房间里有10个人,分别佩带着从1号到10号的纪念章,任意选3人记录其纪念章的号码.(1)求最小号码为5的概率;(2)求最大号码为5的概率.解设事件A={最小号码为5},事件B={最大号码为5},则P(A)=C25/C310=1/12,P(B)=C24 /C310=1/20.11 把10本书任意地放在书架上,求其中指定的三本书放在一起的概率.解设事件A={指定的三本书放在一起},将指定的三本书作为一个整体,10本书成为8本,故P(A)=k/n=A33A88/A1010≈0.067.12 甲、乙二人约定1点到2点之间在某处会面,约定先到者等候10分钟即离去.设想两个人各自随意地在1点到2点之间选一个时刻到达该处,问“甲乙二人能会面”这事件的概率是多少?解记事件A={两人能会面},以x,y分别表示两人到达时刻,则两人能会面的充要条件为|x-y|≤10, 即A={(x,y):|x-y|≤10}.这是一个几何概率问题,样本空间为Ω={(x,y):0≤x,y≤60},P(A)=L(A)/L(Ω)=602-502/602=11/36.13 在一间房里有四个人,问至少有两人的生日是在同一个月的概率是多少?解四个人在12个月中任一月出生的可能性是相等的,故基本事件的总数为124.设事件A={四个人生日均不在同一个月},则P(__A)=1-P(A)=1-A412/124=738/1728=41/96.14 设有10件样品,编以号码0~9,随机地抽取1件样品,以B表示“取到号码为偶数的样品”;A1表示“取到号码为1的样品”,A2表示“取到号码为2的样品”,A3表示“取到号码大于7的样品”,分别求A1,A2,A3的概率和A1,A2,A3对B的条件概率,并将条件概率与无条件概率做一比较.解由题设可知:P(A1)=1/10,P(A2)=1/10,P(A3)=2/10=1/5,P(A1|B)=0,P(A2|B)= 1/5,P(A3|B)= 1/5 .15 某人忘了电话号码的最后一个数字,因而随意拨号,不超过三次而接通所需要电话的概率是多少?如果已知最后一个数是奇数,那么此概率是多少?解(1)设A={三次中至少有一次接通}, __A={三次每次都不通},A i={第i次接通}(i=1,2,3).易知,__A=__A1__A2__A3,故P(__A1)=9/10, P(__A2__A1)=8/9,P(__A3|__A1__A2)=7/8,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 9/10×8/9×7/8=7/10.故P(A)=1- P(__A)=1-7/10=3/10.(2)若已知最后一个数字是奇数,从0到9有十个数,其中五个是奇数,则P(__A1)=4/5, P(__A2__A1)=3/4,P(__A3|__A1__A2)=2/3,从而,P(__A)= P(__A1) P(__A2__A1)P(__A3|__A1__A2)= 4/5×3/4×2/3=2/5.故P(A)=1- P(__A)=1-2/5=3/5.16 考察甲、乙两地出现春旱的情况,以A,B分别表示甲、乙两地出现春旱这一事件.根据以往气象记录知P(A)=0.2,P(B)=0.15,P(AB)=0.08,求 P(A|B),P(B|A)及P(A∪B).解由题设可知:P(A|B)=P(AB)/P(B)=0.08/0.15=8/15,P(B|A)=P(AB)/P(A=0.08/0.2=2/5,P(A∪B)=P(A)+P(B)-P(AB)=0.2+0.15-0.08=0.27.17 掷三个均匀骰子,已知第一粒骰子掷出幺点(事件B),问“掷出点数之和不小于10”这个事件A的条件概率是多少?解设事件B={第一粒骰子掷出幺点},事件A={掷出点数之和不小于10},由题设可知,若第一粒掷出幺点,第二粒可能掷出3、4、5、6点;若第二粒掷出3点,第三粒必掷出6点;第二粒掷出4点,第三粒可能为5、6点;第二粒掷出5点,第三粒可能掷出4、5、6点;第二粒掷出6点,第三粒可能掷出3、4、5、6点,则P(A|B)=P(AB)/P(B)=10/36=5/18.18 甲、乙二人射击,甲击中的概率为0 8,乙击中的概率为0 7,二人同时射击,并假定中靶与否是独立的,求:(1)中靶的概率;(2)甲中、乙不中的概率;(3)甲不中、乙中的概率.解设A、B分别表示甲中靶、乙中靶两事件,则事件A与B独立,又P(A)=0.8,P(B)=0.7,于是,所求概率为(1)P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)=0.8+0.7-0.7×0.8=0.94;(2)P(A__B)=P(A)P(__B)=0.8×(1-0.7)=0.24;(3)P(__AB)=P(__A)P(B)=(1-0.8)×0.7=0.14.19 从厂外打电话给这个工厂某一车间要由工厂的总机转进,若总机打通的概率为0.6,车间的分机占线的概率为0.3,假定二者是独立的,求从厂外向该车间打电话能打通的概率.解设A,B分别表示从厂外打电话总机打通、分机打通两事件,则事件A,B独立,又P(A)=0.6,P(B)=1-0.3=0.7,所求概率为P(AB)=P(A)P(B)=0.6×0.7=0.42.20 设事件A,B的概率均不为0,证明事件A与B独立及互不相容不会同时成立.证若P(A)>0,P(B)>0,则有(1)因A,B两事件相互独立,且P(A)>0,P(B)>0,有P(AB)=P(A)P(B)> 0,故AB≠Φ,即A、B不互不相容;(2)因AB=Φ,故P(AB)=P(Φ)=0,而P(A)>0,P(B)>0,故P(A)P(B)>0, 于是P(AB)≠P(A)P(B),即A与B不相互独立.21 有四个大小质地一样的球,分别在其上写有数字1,2,3和“1,2,3”,令A i={随机抽出一球,球上有数字i}(i=1,2,3).试证明A1,A2,A3两两独立而不相互独立.证由题设可知P(A1)=1/2,P(A2)=1/2,P(A3)=1/2,且P(A1A2)=1/4= 1/2×1/2,P(A1A3)=1/4= 1/2×1/2,P(A2A3)=1/4= 1/2×1/2 .以上等式说明A1,A2,A3两两独立.但P(A1A2A3)=1/4≠1/2×1/2×1/2=P(A1)P(A2)P(A3).可见事件A1A2A3不相互独立.22 加工某一零件共需四道工序,设第一、二、三、四道工序的次品率分别是2%,3%,5%,3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解设Ai={第i道工序出次品},i=1,2,3,4.又设A={零件为次品},则有A=A1∪A2∪A3∪A4.由题知,A1,A2,A3,A4相互独立,__A1 ,__A2 ,__A3 ,__A4也相互独立,于是P(A)=P(A1∪A2∪A3∪A4)=1-P(________________________4321AAAA⋃⋃⋃)=1-P(__A1__A2__A3__A4)=1-P(__A1)P(__A2)P(__A3)P(__A4)=1-0.98×0.97×0.95×0.97≈0.124.23 掷三枚均匀骰子,记B={至少有一枚骰子掷出1},A={三枚骰子掷出的点数中至少有两枚一样},问A,B是否独立?解考虑P(A|__B),若__B发生,则三枚骰子都不出现幺点,那么,它们都只有5种可能性(2,3,4,5,6),比不知__B发生时可能取的点数1,2,3,4,5,6少了一个.从5个数字取3个(可重复取),其中有两个一样的可能性,应比6个数字中取3个时,有两个一样的可能性要大些,即P(A)<P(A|__B).由此推出P(A)>P(A|B),故A,B不独立.24 一批玉米种子,其出芽率为0 9,现每穴种5粒,问“恰有3粒出芽”与“不大于4粒出芽”的概率是多少?解设A={恰有3粒出芽了},B={不大于4粒出芽}.把穴中每一粒种子是否发芽看作一次试验,而各粒种子发芽与否是互不影响的,所以5次试验是相互独立的,故P(A)=b3(5,0.9)=C35×0.93×(1-0.9)2=C35×0.93×0.12≈0.073,P(B)=1-b5(5,0.9)=1-C55×0.95×(1-0.9)0=1-0.95≈0.41.25 某一由9人组成的顾问小组,若每个顾问贡献正确意见的百分比是70 % ,现在该机构对某事件可行与否个别征求各位顾问意见,并按多数人意见作出决策,求作出正确决策的概率.解显然本问题是:如果9人中超过4人作出正确决策,则可对该事件可行与否作出正确决策,从而设事件A={作出正确决策},由题设知,n=9,p=0.7,q=0.3,于是bk(n,p)=bk(9,0.7)=Ck9×0.7k×0.39-k(k=5,6,7,8,9),所以5次试验是相互独立的,故P(A)=∑=95kCk9×0.7k×0.39-k≈0.901.26 电灯泡使用寿命在1 000小时以上的概率为0 2,求3个灯泡在使用1 000小时后,最多只有一个坏了的概率.解利用二项概型,有P n(k≤1)=b0(3,0.8)+b1(3,0.8)=C03×0.80×0.23+C13×0.81×0.22=0.104.27 用三台机床加工同一种零件,零件由各机床加工的概率分别为0.5,0.3,0.2,各机床加工的零件为合格品的概率分别等于0.94,0.9,0.95,求全部产品中的合格率.解设事件A、B、C分别表示三台机床加工的产品,事件E表示合格品.依题意,P(A)=0.5,P(B)=0.3,P(C)=0.2,P(E|A)=0.94,P(E|B)=0.9,P(E|C)=0.95,由全概率公式P(E)=P(A)P(E|A)+P(B)P(E|B)+P(C)P(E|C) =0.5×0.94+0.3×0.9+0.2×0.95=0.93.28 12个乒乓球中有9个新的,3个旧的,第一次比赛时,同时取出了3个,用完后放回去.第二次比赛时,又同时取出3个,求第二次取出3个球都是新球的概率.解以A i(i=0,1,2,3)表示事件“第一次比赛从盒中任取的3个球中有i个新球”.可知A0,A1,A2,A3是样本空间Ω的一个划分.以B表示事件“第二次取出的球都是新球”.则P(A0)=C33/C312=1/220,P(A1)=C19C23/C312=27/200,P(A2)=C29C13/C312=27/55,P(A3)=C39/C312=21/55,P(B|A0)=C39/C312=21/55,P(B|A1)=C38/C312=14/55,P(B|A2)=C37/C312=35/220,P(B|A3)=C36/C312=1/11.由全概率公式,得P(B)=∑=3iP(Ai)P(B|Ai)=1/220×21/55+27/220×14/55+27/55×35/220+21/55×1/11=1746/12100≈0.14629 发报台分别以概率0.6和0.4发出信号“·”和“-”.由于通信系统受到干扰,当发出信号“·”时,收报台以概率0 8及0 2收到信号“·”和“-”;当发出信号“-”时,收报台以概率0 9及0 1收到信号“-”和“·”.求:(1)收报台收到信号“·”的概率;(2)当收报台收到信号“·”时,发报台确系发出信号“·”的概率.解设事件B={收到信号“·”},A0={发出信号“·”},A1={发出信号“-”}.显然A0,A1构成一个完备事件组,且P(A0)=0.6,P(A1)=0.4,P(B|A0)=0.8,P(B|A1)=0.1.(1)应用全概率公式,有P(B)=∑=1iP(Ai)P(B|Ai)=0.6×0.8+0.4×0.1=0.52.(2)应用贝叶斯公式有P(A0|B)=P(A0)P(B|A0)/∑=1iP(Ai)P(B|Ai)=0.6×0.8/0.52≈0.923.30 设某种病菌在人口中的带菌率为0.83.当检查时,带菌者未必检出阳性反应,而不带菌者也可能呈阳性反应,假定P(阳性|带菌)=0.99,P(阴性|带菌)=0.01,P(阳性|不带菌)=0.05P(阴性|不带菌)=0.95.设某人检出阳性,问他“带菌”的概率是多少?解设A={某人检出阳性},B1={带菌},B2={不带菌}.由题设知P(B1)=0.83,P(B2)=1-0.83=0.17,P(A|B1)=0.99, P(A|B2)=0.05,故所求的概率为P(B1|A)=P(AB1)/P(A)=P(B1)P(A|B1)/∑=2jP(B j)P(A|B j)=(0.83×0.99)/(0.83×0.99+0.17×0.05)=0.8217/(0.0085+0.8217)≈0.9898.31 设有五个袋子,其中两个袋子(品种A1)每袋有两个白球和三个黑球,另外两个袋子(品种A2)每袋有一个白球和四个黑球,还有一个袋子(品种A3)中有四个白球和一个黑球,(1)从五个袋中任挑一袋,并从这袋中任取一球,此球为白球的概率;(2)从不同品种的三袋中任挑一袋,并由其中任取一球,结果是白球(事件B),问这球由三个品种的袋子中取出的概率各是多少?解(1)设事件B表示“取到白球”,A i表示“从五个袋中取到A i品种袋子”(i=1,2,3),故P(A1)=2/5, P(A2)=2/5,P(A3)=1/5,P(B|A1)=2/5,P(B|A2)=1/5,P(B|A3)=4/5,利用全概率公式,所求概率为P(B)=∑=31iP(A i)P(B|A i)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2/5×2/5+2/5×1/5+1/5×4/5=10/25=2/5 .(2)设事件B={取到白球},A i={从不同品种三袋中取到品种A i袋子} (i=1,2,3),根据题设,欲求下述三个条件概率P(B|A1),P(B|A1),P(B|A1). 于是P(A1)=1/3 ,P(A2)=1/3,P(A3)=1/3,P(B|A1)=2/5 ,P(B|A2)=1/5,P(B|A3)=4/5. 利用全概率公式,取到白球概率为P(B)=∑=31iP(A i)P(B|A i)=1/3×2/5+1/3×1/5+1/3×4/5=7/15.再由贝叶斯公式,有P(A1|B)=P(A1)P(B|A1)/∑=31iP(Ai)P(B|Ai)=(1/3×2/5)/7/15=2/7.P(A2|B)=P(A2)P(B|A2)/∑=31iP(Ai)P(B|Ai)=(1/3×1/5)/7/15=1/7.P(A3|B)=P(A3)P(B|A3)/∑=31iP(Ai)P(B|Ai)=(1/3×4/5)/7/15=4/7.。
第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。
2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。
二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。
(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。
2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。
1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。
2.基本事件:试验的每一可能的结果称为基本事件。
一个样本点w 组成的单点集{w}就是随机试验的基本事件。
3.必然事件:每次实验中必然发生的事件称为必然事件。
用Ω表示。
样本空间是必然事件。
4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。
1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。
2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。
3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。
4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。
5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。