七年级数学上册辅导资料
- 格式:docx
- 大小:15.77 KB
- 文档页数:8
七年级上册数学全册期末复习资料精典专题一有理数课本-中考-奥数一、单元典型题例1.有理数的分类易错题(1)π不是有理数;(2)0既不是正数,也不是负数;(3)-a是负数吗?2.有理数的大小比较3.利用绝对值的定义求值已知|a|=3,|b|=5,且a<b,求a-b的值4.逆用数学公式、法则若x+y<0,xy<0,x>y,则有()A x>0,y<0,x的绝对值较大;B x>0,y<0,y的绝对值较大;C x<0,y>0,x的绝对值较大;D x<0,y>0,y的绝对值较大.5.利用绝对值的非负性求值若|x-1|+|y+3|=0,求x+y的值6.有理数混合运算计算|-15|+15(-1)2013-52(-0.2)3二. 单元基础检测得分1.(济宁)在数轴上到原点距离等于2的点所表示的数为()A 2B -2C D不能确定2.若|a-2|+(b+3)2=0,则(a+b)2013的值为()A -1B 1CD 520133.下列说法:(1)绝对值等于与它本身的数是正数;(2)近似数2.34万精确到百分位;(3)-a+b与a-b 互为相反数;(4)一个数的倒数等于它的本身,这样的有理数有两个;(5)a2=(-a)2;(6)若|a|>b,则a2>b2,其中正确的个数有()A 2个 B 3个 C 4个 D 5个4.5.(盐城中考)6. 计算 -(-1)+32-21)(⨯+|-2|= 7.(永州)已知0=+bba a ,则ab ab 的值为 。
8. 2(-3)2-4×(-2)+10 9. (-30)×)1036531(--10 ])1(4[41)25.2(134--⨯⨯---11 若ab>0,a+b<0,且|a|=5,|b|=2,,则a 3+b 2的值是多少?12.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克? (2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)三、有理数的计算提高版例1.求和2012...3211...432113211211++++++++++++++例2.已知a 、b 、c 都不等于0,且||||||||abc abc c c b b a a +++的最大值为m ,最小值为n ,求2012(m+n+1)的值。
第一章 有理数 课题:1.1 正数和负数正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、—8、-47。
正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
【课堂练习】:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________. 2.已知下列各数:51-,432-,3。
14,+3065,0,—239; 则正数有_____________________;负数有____________________。
3.下列结论中正确的是 …………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个 B .3个C .4个D .5个【拓展训练】:1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。
我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________来分别表示它们.例 (1)一个月内,小明体重增加2kg ,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ (2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7。
新人教版七年级数学上册期末专题总复习资料人教版七年级数学上册期末专题总复资料类比归纳专题:有理数加、减、乘、除中的简便运算——灵活变形,举一反三类型一加减混合运算的技巧一、相反数相结合或同号结合1.计算:【方法2】515-3;1-(+6)-3+(-1.25)- 48/82.3+(-1.7)+6.2+(-2.2)-1.1.二、同分母或凑整结合2.计算:【方法2】6.82)+3.78+(-3.18)-3.78;311/-5 + (-9)/8 - 1.25.三、计算结果成规律的数相结合3.计算1+2-3-4+5+6-7-8+…+2013+2014-2015-2016的结果是()A。
B。
-1 C。
2016 D。
-20164.★阅读:因为一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,所以,当a≥时,|a|=a;当a<0时,|a|=-a.根据以上阅读完成下列问题:1)|3.14-π|=________;1/1-1/11+1/111-1/1111+…-1/2013+1/2014-1/2015-1/2016 2)计算:2/3-3/2+4/3-9/8+10/9类型二运用分配律解题的技巧一、正用分配律5.计算.131/2-4+8×(-24);39×(-14).二、逆用分配律666/(-3)-3×(-3)-6×3.6.计算:4×7/7.三、除法变乘法,再利用分配律122/6-7+3÷(-42).参考答案与解析1.解:(1)原式=1+(-1.25)-6+4/8= -4.75.2)原式=2.3+6.2-(-1.7-2.2-1.1)= 3.5.2.解:(1)原式=[(-6.82)+(-3.18)]+(3.78-3.78)= -10.2)原式=19+8/4-9/8-1.25= 3.3.D4.解:(1)π-3.14=π-3.14.2)原式=1-1/2-1/10= 3/5.5.解:(1)原式=-12+18-3=3.2)原式=2/3-3/2+4/3-9/8+10/9= 55/72.1.下列说法正确的是()A。
2.1.2有理数同步讲义基础知识按整数、分数的关系分类:按正数、负数与0的关系分类:例题例、在下列空格里打“√”,表示该数属于哪种类型的数:类型数有理数正整数负整数正分数负分数非负数+3﹣11 30.5﹣6【答案】见解析【分析】依据有理数的分类,按整数、分数的关系分类可得:有理数包含正整数、0、负整数,正分数、负分数;按正数、负数与0的关系分类可得:有理数包含正整数、正分数、0、负整数、负分数.【详解】解:+3属于有理数,正整数,非负数;﹣113属于有理数,负分数;0属于有理数,非负数;0.5属于有理数,正分数,非负数;﹣6属于有理数,负整数.类型有理数正整数负整数正分数负分数非负数【点睛】本题考查了有理数的分类,解题的关键是熟练掌握它们之间的区别,注意0是整数,但不是正数. 练习1.下列四个选项中的数,不是分数的是( )A .80%B C .213D .2272.在下列各数中,负分数有( )1-, 3.141559-,2,13-,13,0,12,5%-,34A .1个B .2个C .3个D .4个3.零一定是( ) A .整数B .负数C .正数D .奇数4.下列语句中正确的有 ( )① 所有整数都是正数;② 所有正数都是整数;③ 自然数都是正数;④ 分数是有理数;⑤ 在有理数中除了正数就是负数. A .1 个B .2 个C .3 个D .4 个5.下列各数中,属于正有理数的是( ) A .-0.1B .0C .-1D .26.在下列各数中,正数的个数有______个.( ) -6,0.1234,152-,0.3,0,19,15A .2B .3C .4D .57.下列各数中,既不是正数又不是负数的是( ) A .2B .1C .3-D .08.下列说法正确的是( )A .正数和负数统称为有理数B .正整数包括自然数和零C .零是最小的整数D .非负数包括零和正数9.在4-, 3.5-,0,4π,54%,1,23-中,负数有_______个,分数有_______个. 10.下列各数:﹣1,2π,1.01001…(每两个1之间依次多一个0),0,227,3.14,其中有理数有_____个.11.把下列各数分别填在相应的大括号里.13,3.1415,﹣31,﹣21%,13,0,﹣0.216,﹣2020整数:{ …}; 正整数:{ …}; 负分数:{ …}; 负整数:{ …}.12.将下列各数填入适当的括号内: 9-,227,0.314-,2020,0,338-,π-,66. (1)整数集合{______…}; (2)负分数集合{______…}; (3)非负整数集合{______…}.13.在数-23,5,23,0,4,35,5.2中,是整数的_____;非正数集合____14.有理数1.7,-17,0,257-,-0.001,92-,2003和-1中,负数有____________个,其中负整数有____________个,负分数有____________个. 15.把下列各数填在相应的集合内.15,12-,0.81,3-,8%;31-.,171,0,3.14 负数集合:{ } 分数集合:{ } 非负整数集合:{ } 16.把下列各数填入它所在的集合里:-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3①正数集合:{___________________________________…} ②负数集合:{___________________________________…} ③整数集合:{___________________________________…}④非正数集合:{_________________________________…}⑤非负整数集合:{_______________________________…}⑥有理数集合:{_________________________________…}练习参考答案1.B 【分析】根据有理数包括分数和整数,无理数一定不是分数判断即可. 【详解】故选:B . 【点睛】本题考查实数的分类,解题的关键是掌握无理数一定不是分数. 2.C 【分析】根据负分数的意义,可得答案. 【详解】解:负分数有: 3.141559-,13-,5%-,共3个,故选:C . 【点睛】本题考查了有理数,熟记有理数的分类是解题关键. 3.A 【分析】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数. 【详解】0是介于-1和1之间的整数,既不是正数也不是负数,0可以被2整除,所以0是一个特殊的偶数,只有A 选项符合. 故选:A . 【点睛】本题考查了零的相关知识,熟记并理解是解决本题的关键. 4.A 【分析】根据有理数的分类及相关概念可直接进行排除选项.解:①所有整数都是正数,错误,比如-1;②所有正数都是整数,错误,比如0.5;③自然数都是正数,错误,比如0;④分数是有理数,正确;⑤在有理数中除了正数就是负数,错误,还有零;∴正确的有一个;故选A.【点睛】本题主要考查有理数的分类,熟练掌握有理数的分类是解题的关键.5.D【分析】根据正有理数的定义即可得出答案.【详解】解:A. -0.1为负有理数,此选项不符合题意;B. 0即不是正数也不是负数,此选项不符合题意;C. -1为负有理数,此选项不符合题意;D. 2为正有理数,此选项符合题意.故选D.【点睛】本题考查了正有理数的定义,正确理解正有理数的概念是解答本题的关键.6.C【分析】根据大于0的数是正数可得结果.【详解】解:在-6,0.1234,152,0.3,0,19,15中,正数有:0.1234,0.3,19,15共4个,故选C.【点睛】本题考查了正数的定义,熟记概念是解题的关键,要注意0既不是正数也不是负数.7.D【分析】根据正数与负数的定义即可求出答案.解:0既不是正数又不是负数, 故选:D . 【点睛】本题考查正数与负数,解题的关键是正确理解正数与负数,本题属于基础题型. 8.D 【分析】按照有理数的分类进行选择. 【详解】解:A 、正数、负数和零统称为有理数;故本选项错误; B 、零既不是正整数,也不是负整数;故本选项错误; C 、零是最小是自然数,负整数比零小;故本选项错误; D 、非负数包括零和正数;故本选项正确; 故选:D . 【点睛】本题考查了有理数的分类、正数和负数;注意0是整数,但不是最小的整数. 9.2 2 【分析】根据负数及分数的定义进行解答即可. 【详解】解:4-, 3.5-,0,4π,54%,1,23-中, 负数有:4-,23-,共2个, 分数有: 3.5-,54%,共2个, 故答案为:2,2. 【点睛】本题考查的是有理数的概念,解答此题时要注意0既不是正数也不是负数,但0是有理数. 10.4. 【分析】根据有理数的定义逐一判断即可. 【详解】解:在所列实数中,有理数有﹣1、0、227、3.14,故答案为:4.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.11.13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020【分析】依题意,根据整数、正整数、负分数、负整数的定义把有关的数填入相应的集合即可.【详解】由题知:整数:{13,﹣31,0,﹣2020…};正整数:{13…};负分数:{﹣21%,﹣0.216…};负整数:{﹣31,﹣2020…}.故填:13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020.【点睛】本题考查对数的分类,难点在熟练的理解数分类之间依据;12.(1)9-,2020,0,66;(2)30.314,38--;(3)2020,0,66.【分析】根据整数、负分数、非负整数的意义,逐个进行判断即可.【详解】解:(1)整数有:9-,2020,0,66,故答案为:9-,2020,0,66;(2)负分数有:3 0.314,38--,故答案为:3 0.314,38--;(3)非负整数有:2020,0,66,故答案为:2020,0,66.【点睛】本题考查整数集合,负分数集合,非负整数集合,掌握有理数的分类是解题关键.13.-23,5,0,4,-23,0【分析】整数和分数统称为有理数,整数包含正整数、0、负整数;比0大的数是正数,非正数即0与负数,据此解题.【详解】解:在数-23,5,23,0,4,35,5.2中,整数的有:-23,5,0,4;非正数的有:-23,0,故答案为:-23,5,0,4;-23,0.【点睛】本题考查有理数的分类、带“非”字的有理数等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.5 2 3【分析】根据负数的定义(以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数)以及负整数、负分数的定义,求解即可求得答案.【详解】解:负数为:-17,257-,-0.001,92-,-1共5个;负整数有:-17,-1,共2个;负分数有:257-,-0.001,92-,共3个.故答案为:5,2,3.【点睛】此题考查了有理数的分类,注意掌握负数,负整数,负分数的定义.15.12-,3-,31-.;12-,0.81,8%,31-.,3.14;15,171,0【分析】根据负数、分数及非负整数的定义即可分别判断.【详解】15,12-,0.81,3-,8%;31-.,171,0,3.14负数集合:{12-,3-,31-.…}分数集合:{12-,0.81,8%,31-.,3.14…}非负整数集合:{15,171,0…}.【点睛】此题主要考查有理数的分类,解题的关键是熟知有理数的性质及分类方法.16.①正数集合:{7,2 015,0.618,3.14,+3…};②负数集合:{-2,23-,-1.732,-5,…};③整数集合:{-2,7,0,2 015,-5,+3…};④非正数集合:{-2,23-,0,-1.732,-5,…};⑤非负整数集合:{7,0,2 015,+3…};⑥有理数集合:{-2,7,2 3-,0,2 015,0.618,3.14,-1.732,-5,+3…}【分析】根据有理数的分类即可得出答案.【详解】解:①正数集合:{7,2 015,0.618,3.14,+3…}②负数集合:{-2,23-,-1.732,-5,…}③整数集合:{-2,7,0,2 015,-5,+3…}④非正数集合:{-2,23-,0,-1.732,-5,…}⑤非负整数集合:{7,0,2 015,+3…}⑥有理数集合:{-2,7,23-,0,2 015,0.618,3.14,-1.732,-5,+3…}【点睛】本题考查了有理数的分类,解题的关键是熟练掌握它们之间的区别,注意0是整数,但不是正数.。
数的整除(一)内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3例2己知五位数x 1234能被12整除, 求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X 能被3整除时,x=2,5,8 当末两位X 4能被4整除时,X =0,4,8 ∴X =8例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。
练习1.分解质因数:(写成质因数为底的幂的連乘积)①593 ② 1859 ③1287 ④3276 ⑤10101 ⑥10296 2.若四位数a 987能被3整除,那么 a=_______________ 3.若五位数3412X 能被11整除,那么 X =__________- 4.当 m=_________时,535m 能被25整除5.当 n=__________时,n 9610能被7整除 6.能被11整除的最小五位数是________,最大五位数是_________7.能被4整除的最大四位数是____________,能被8整除的最小四位数是_________8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9. 从1到100这100个自然数中,能同时被2和3整除的共_____个, 能被3整除但不是5的倍数的共______个。
最新人教版 七年级数学上册培优辅导讲义第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量.2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米 ⑵收人-50元 ⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量应该包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8%02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间15:00,纽约时问是_ ___【例2】在-227,π,0,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;(2)按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数,0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0,15,-12,-301,31.25,-18,100,1,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1,-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14,-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007. 【变式题组】01(湖北宜昌)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四个数是17=9+8…观察并猜想第六个数是 .02.(毕节)毕达哥拉斯学派发明了一种“馨折形”填数法,如图则?填____.03.(茂名)有一组数1,2,5,10,17,26…请 观察规律,则第8个数为__ __ .【例4】(2008年河北张家口)若1+m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫 互为相反数,本题m 2=2,m =4,则m 的相反数-4。
比零小的数一、知识要点:1、负数的认识2、会判断一个数是正数还是负数.3、有理数分类二、基础知识练习1、若飞机的高度为80m ,潜水艇的高度是-50m ,则飞机比潜水艇高多少米?2、数学兴趣小组测量校园周长,测得的数据是2503m ,2498m ,2502m ,2497m (1)求这4次测量的平均值(2)以“平均值”为基准,用正、负数表示出每一次测量的数值与平均值的差。
(3)请你想一想你还有什么更好的求上述四个数的平均值的方法。
把你的想法能与我们分享吗? 3、把下列各数填写在相应的集合里,正整数集合{ …};负整数集合{ …}; 正分数集合{ …};负分数集合{ …};4、填空(1)如果温度上升4℃,记作+4℃,那么下降7℃,记作____ (2)如果顺时针转300,记作-30°,那么逆时针转60°,记作_____ (3)成本提高-4%,实际表示______(4)向北走-100m 的实际意义是_____5、判断题。
(1)向南走-20米,表示向北走20米; ( ) (2)若前进3千米记作+3千米,则-5千米表示后退-5千米; ( ) (3)温度下降-3°C ,是零上3°C ; ( ) (4)有理数包括正数和负数两部分; ( ) (5)0是整数但不是正数; ( ) (6)31.25不是分数,所以不是有理数。
( ) 6、用“<”将它们连接起来: -3, 0, 1, -23, 1.5, +5, 621, -310.7、把下列各数填在相应的集合内. -3,7,-25,-0.86,0,227,0.7523,-2.3536.整数集合{ …}; 负数集合{ …}. 三、基础知识提高。
1.如果零上8℃记作8℃,那么零下5℃记作__________.2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________. 3.如果向西走6米记作-6米,那么向东走10米记作_________. 4.如果产量减少5%记作-5%,那么20%表示_________. 5.判断题:(1)一个整数不是正数就是负数. ( ) (2)最小的整数是零. ( ) (3)负数中没有最大的数. ( )+0.02㎏-0.03㎏ (4)自然数一定是正整数. ( ) (5)有理数包括正有理数、零和负有理数. ( )6.下列说法中正确的是……………………………………………………( ) A .有最小的正数; B .有最大的负数;C .有最小的整数; D .有最小的正整数7.零是 ……………………………………………………………………( ) A .最小的正数 B .最大的负数 C .最小的有理数 D .整数8.下列一组数:-8,2.6,-312,223,-5.7中负分数有………………( )A .1个B .2个C .3个D .4个10、一零件的长度在图纸上标为10±0.05(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少?最小不少于多少?实际生产时,测得一零件的长为9.9毫米,问此零件合格吗?1、观察下面一列数,根据规律写出横线上的数,;第2012个数是 。
3.3.3升幂排列与降幂排列根底知识1.把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列,常数项应放在最后面.2.注意:〔1〕重新排列多项式时,每一项一定要连同它的正负号一起移动;〔2〕含有两个或两个以上字母的多项式,常常按照其中某一字母的升幂排列或降幂排列。
例题例.把以下各多项式先按x 的降幂排列,再按x 的升幂排列. (1)243327x x x --+; (2)4423182x y xy x y -+-. 【答案】(1) 432273x x x -++-,234372x x x -++-;(2) 4324182x x y xy y -+-,4234182y xy x y x -+-+. 【解析】 【分析】(1)(2)都是先分清多项式的各项,然后按多项式降幂和升幂排列的定义排列即可得. 【详解】(1)按x 的降幂排列:432273x x x -++-, 按x 的升幂排列:234372x x x -++-; (2)按x 的降幂排列:4324182x x y xy y -+-, 按x 的升幂排列:4234182y xy x y x -+-+. 【点睛】此题考查了多项式的排列,熟练掌握升幂排列与降幂排列的定义是解题的关键. 练习1.多项式321x x x -++-按x 的升幂排列正确的选项是〔〕 A .231x x x -++ B .231x x x -++ C .231x x x --+D .321x x x -+-2.多项式3x 2﹣x 3+5x 4﹣7+23x ,将该多项式按降幂排列〔〕 A .3x 2﹣x 3+5x 4﹣7+23x B .5x 4+23x+3x 2﹣x 3﹣7 C .5x 4﹣x 3+3x 2+23x ﹣7D .﹣x 3+5x 4+3x 2﹣7+23x3.将多项式2323632a b b ab a +--按字母b 的降幂排列正确的选项是〔〕 A .3322326a b ab a b -+-+ B .3223326b ab a b a -+- C .3322362b a a b ab -+-D .3223623a a b ab b -+-+4.多项式342233x y xy x y x -++按y 的降幂排列是〔 〕 A .432233xy x x y x y +++ B .332243x x y x y xy ++- C .422333xy x y x y x -+++D .422333xy x y x y x ++-5.将多项式32243x xy x y x -++-按字母x 降幂排列,正确的选项是〔〕 A .43223-x x xy x y ++- B .2243-3xy x y x x +++- C .22343-xy x y x x -+++D .4322-3x x x y xy ++-6.把多项式27129x x +-按字母x 做降幂排列为___________________. 7.多项式322341x x x --++,按x 的升幂排列为__________________. 8.把多项式442239235x y xy x y -+-按y 的降幂排列:______________________ 9.把多项式3232243x x y y xy -+-按x 的升幂排列为__________________. 10.多项式23227245x y y x y -++-是________次_________项式,按y 得降幂徘列是___________________.11.将32233x y y 5x 4xy -++按以下要求重新排列: 〔1〕按x 降幂排列; 〔2〕按y 升幂排列.12.把多项式3m n 2﹣2m 2n 3+5﹣8m 3n 重新排列: 〔1〕按m 的降幂排列. 〔2〕按n 的升幂排列.13.多项式2234546357x y xy x y y y x ++-+,解答以下问题: 〔1〕把它按x 的升幂重新排列; 〔2〕把它按y 的降幂重新排列;参考答案1.C【分析】根据升幂排列的定义,将多项式的各项按照x的指数从小到大排列起来.【详解】解:按x的升幂排列为-x+x3+1-x2=1-x-x2+x3.应选:C.【点睛】此题考查了多项式,各项以和的形式组成多项式〔有时加号省略不写〕,所以在升幂或降幂排列时,各项要保持自己原有的符号.2.C【解析】【分析】将多项式的各项按x的次数由高到低依次排列,常数项排在最后.【详解】3x2-x3+5x4-7+23x按x的降幂排列是5x4-x3+3x2+23x-7.应选C.【点睛】此题考查了多项式的知识,一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.3.B【分析】按照字母b的次数由高到低进行排列得到答案.【详解】解:根据题意,2323b ab a b a-+-;326a b b ab a+--按字母b的降幂排列正确的选项是3223632应选:B.【点睛】此题考查了多项式:几个单项式的和叫多项式.多项式中每个单项式都是多项式的项,这些单项式的最高次数,就是这个多项式的次数.4.C【分析】先分别列出多项式中各项中的y 的次数,再按降幂排列即可. 【详解】解:∵多项式342233x y xy x y x -++中,y 的次数依次1,4,2,0,∴按y 的降幂排列是422333xy x y x y x -+++,应选:C . 【点睛】此题考查了多项式问题,把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列. 5.D 【分析】先分别列出多项式中各项的次数,再按要求排列即可. 【详解】解:多项式32243x xy x y x -++-中,x 的次数依次是:3、1、2、4、0, ∴按x 的降幂排列是:24323x y x x xy ++--; 应选择:D. 【点睛】此题考查多项式问题,把一个多项式按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,常数项应放在最前面.如果是降幂排列应按此字母的指数从大到小依次排列.6.21279x x -++ 【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列. 【详解】解:多项式27129x x +-的项为7x ,-12 x 2,9, 按字母x 降幂排列为21279x x -++, 故答案为:21279x x -++. 【点睛】此题考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 7.2312+43x x x -- 【分析】〔按照x 的指数从小到大的顺序把各项重新排列即可. 【详解】解:多项式322341x x x --++,按x 的升幂排列为231243x x x -+-. 故答案为:1-2x+4x 2-3x 3. 【点睛】此题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键. 8.423242539y x y xy x --++ 【分析】多项式的项的概念和降幂排列的概念,可知多项式的项为:49x ,42y -,23xy +,235x y -将各项按y 的指数由大到小排列为42y -,235x y -,23xy +,49x . 【详解】解:把多项式442239235x y xy x y -+-,按y 的指数降幂排列后为423242539y x y xy x --++.故答案是423242539y x y xy x --++.【点睛】此题考查了多项式的项的概念和降幂排列的概念.〔1〕多项式中的每个单项式叫做多项式的项;〔2〕一个多项式的各项按照某个字母指数从大到小或者从小到大的顺序排列,叫做降幂或升幂排列.在解题时要注意灵活运用. 9.3223342y xy x y x --+ 【分析】先分清多项式的各项,然后按多项式中x 的升幂排列的定义排列,即可. 【详解】多项式3232243x x y y xy -+-按x 的升幂排列为:3223342y xy x y x --+, 故答案是:3223342y xy x y x --+ 【点睛】此题考查了多项式的升序或降序排列.解题的关键是掌握多项式的升序或降序排列的方法,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号. 10.四四32222475y x y x y +-- 【分析】根据多形式的定义解答即可. 【详解】解:多项式23227245x y y x y -++-是四次四项式, 按y 得降幂徘列是32224y x y +275x y --. 故答案为:四,四,32222475y x y x y +--. 【点睛】此题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列. 11.〔1〕32323x y 5x 4xy y ++-;〔2〕23235x 3x y y 4xy +-+ 【分析】从升幂排列和降幂排列的定义解答即可. 【详解】解:〔1〕按x 降幂排列为32323x y 5x 4xy y ++-; 〔2〕按y 升幂排列为23235x 3x y y 4xy +-+. 【点睛】此题主要考查了升幂排列和降幂排列,掌握升幂排列和降幂排列的定义是解题的关键. 12.〔1〕﹣8m 3n ﹣2m 2n 3+3m n 2+5;〔2〕5﹣8m 3n +3m n 2﹣2m 2n 3. 【分析】〔1〕先判断多项式各项m 的次数,然后按m 的降幂进行排列即可; 〔2〕先判断多项式各项n 的次数,然后按n 的升幂进行排列即可. 【详解】解:〔1〕按m 的降幂排列为﹣8m 3n ﹣2m 2n 3+3m n 2+5. 〔2〕按n 的升幂排列为5﹣8m 3n +3m n 2﹣2m 2n 3. 【点睛】此题考查了多项式,解题时先要根据排列要求判断各项中字母的次数,并且注意在排列多项式各项时,要保持其原有的符号.13.(1)见解析;(2)见解析.【分析】〔1〕按字母x的升幂排列是指按字母x的指数从小到大依次排列;〔2〕按字母y的升幂排列指按字母y的指数从小到大依次排列.【详解】解:〔1〕按x的升幂排列为-7y5+xy3+3x2y2+5x4y+y4x6;〔2〕按y的降幂排列为5x4y+3x2y2+xy3+y4x6-7y5.【点睛】此题考查了多项式的有关定义,按某一个字母的升幂排列是指按此字母的指数从小到大依次排列,降幂正好相反,多项式的次数是“多项式中次数最高的项的次数〞.。
七年级数学上册辅导资料
七年级数学上册辅导资料
一、教材解读
知识点1有理数加减法统一成加法的意义
1.有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.
如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)
2.在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+3
3.和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.
例1把下列各式写成省略加号的和的形式.
(1)(-26)-(-7)+(-10)-(-3);
(2)(-30)-(-8)+(-12)-(-5).
分析:先统一成加法,再省略括号和加号.
解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.
(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-
12+5.
小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.
知识点2有理数的加减混合运算的加法和步骤
1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.
2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.
例2计算:(-47111)-(-5)+(-4)-(+3).8248
分析:加减混合运算应注意有条理按步骤进行,下面将具体作法及其根据写在每一步后面的括号里,以便你更好地归纳.
解:原式=(-47111)+(+5)+(-4)+(-3)(统一化成加法)8248
7111+5-4-3(省略加号)8248
7111=-4-4+5-3(加法交换律)8428
7111=(-4-4+3)+5(加法结合律)8482
7111=(-4+4+3)+5(加法法则)8482
11=-12+542
3=-6(加法法则).4=4
小结:把同号的数相结合相加,这样可以使计算简便.
二、典型题解析
(一)基本概念题
例1把下列各式写成省略加号的和的形式,并说出它们的两种读法.
(1)-2-(+3)-(-5)+(-4);
(2)(+8)-(-9)+(-12)+(+5).
分析:先把加减法统一成加法;再省略括号和加号.
解:(1)-2-(+3)-(-5)+(-4)=-2+(-3)+(+5)+(-4)=-2-3+5-4
读作:①负2,负3,正5,负4的和;②负2减3加5减4.
(2)(+8)-(-9)+(-12)+(+5)=(+8)+(+9)+(-12)+(+5)=8+9-12+5
学习是一个不断深入的过程,他需要我们对每天学习的新知识
点及时整理,接下来由为大提供了初一上册数学辅导练习,望大家好好阅读。
【解析】几个数相除,先化为乘法,再按几个数相乘的法则运算.【解答】(1)原式=-6×(-4)×(2)原式=(-
5115113
)×(-)×(-3)×(-)=××3×=;2105210520105841058432
(3)原式=(-)××(-)×(-)=-(×)=-.
31425331425363
1.某班举行知识竞赛,评分标准是:答对1道题加10分,答错
1道题扣10分,每个队的基本分为100分,有一个代表队答对了12道题,答错了5道题,请问这个队最后得多少分?
【解析】答对了12道题得120分,答错了5道题得-50分,每
个队的基本分为100分,这个队最后得100+12×10+5×(-
10)=170(分).
【答案】100+12×10+5×(-10)=170(分).2.求除以8和9都是余1的所有三位数的和.
【解答】可设三位数为n,它是除以8、9的商分别为x、y余1的数.则:n=8x+1;n=9y+1由此可知:三位数n减去1,就是8和9的公倍数,即为:144、216、288、360、432、504、576、648、720、792、864、936.
所以满足条件的所有三位数的和为:
144+216+288+360+432+504+576+648+720+792+864+936+1×12=72×(2+3+4+5+6+7+8+9+10+11+12+13)+1×12=72×(2+13)×6+12=6492
课时作业:
A等级
1.如果两个有理数的和是零,积也是零,那么这两个有理数()A.至少有一个为零,不必都是零B.两数都是零C.不必都是零,但两数互为相反数D.以上都不对
2.五个数相乘,积为负数,则其中负因数的个数为()
A.2
B.0
C.1
D.1,3,53.(-5)×(-5)÷(-5)×
1
=__________.5
4.已知a,b两数在数轴上对应的.点如图2-8-1所示,下列结论正确的是()
图2-8-1
A.a>b
B.ab<0c.b-a>0D.a+b>05.用“3
”、“
”定义新运算:对于任意实数a,b,都有a
2005)
(2004
b=a和a
b=b,例如3
2=3,
2=2,则(20062003)=________.
6.计算:
54
)×(-);1615126
(3)(-321)×(-1);(4)(-)×(-3);
9313
541
;(2)(-0.75)×(-1.2);(3)(-)×(-);31615
126
(4)(-321)×(-1);(5)(-)×(-3);(6)(-6.1)×0.
9313
读作:①8,正9,负12,正5的和;②8加9减12加5.
小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.
(二)基础知识应用题
例2从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:
(1)第50个整数是什么?
(2)你能巧妙地运用规律计算这50个整数的和吗?
分析:这是一道探究规律的问题,应注意的是,从-50起,后一个数比前一个数大2,若设这数的序号为n,则第n个数是2n-50.根据这个规律,第50个数是2×50-50=50.则50个数的和是:(-48)+(-46)+(-44)+…+(+44)+46+48+50=-48+48-46+46+…+(-
2)+2+0+50=50.
解:(1)50;(2)50.
小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.
(三)学科综合题
例3小彬和小丽在一起玩游戏,游戏规则是:
(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡
片上的数字;如果抽到红色卡片,那么减去卡片上的数字.
(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬
抽到了下面的4张卡片:红
2.
问:获胜的是谁?
解析:小彬的算式为-13,白?,红-5,白4,小丽抽到了下面的
4张卡片:白3.2,白-2.7,红-6,白-2213+(-)-(-5)+4;22
小丽的算式为3.2+(-2.7)-(-6)+(-2).
13+(-)-(-5)+422
1313=--+5+4=(--)+(5+4)2222答案:-
=-2+9=7.
3.2+(-2.7)-(-6)+(-2)
=3.2-2.7+6-2=(3.2+6)+(-2.7-2)
=9.2-4.7=4.5.
因为7>4.5,所以小丽获胜.
小结:认真分析,把实际问题转化为数学问题去解决.
(四)拓展创新题
例4埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,
1121113?来表示,用+?来表示等等,315547287
111111,.你能从中挑出10个,加上正负号,使它们现在有90个埃及分数:,,,,?,23459091他们一般只使用分子为1的分数,例如,用
的和等于-1吗?
分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运
用有理数的加减混合运算.
考试之前我们及时的总结,罗列,能够帮助我们梳理知识点,
有效应对考试,为大家整理了初一上学期数学辅导资料,欢迎大家
阅读。
有理数的大小比较法则:
比较有理数大小的方法:
数轴法:
1、在数轴上表示的两个数,右边的总比左边的数大。
2、正数都大于零,负数都小于零,正数大于负数。
绝对值法:
1、两个正数比较大小,绝对值大的数大;
2、两个负数比较大小,绝对值大的数反而小。
差值法:
设a、b为任意两有理数,两数做差,若a-b>0,则a>b;若a-
b<0则a
商值比较法:
设a、b为任意两有理数,两数做商,若a/b>1,则a>b;若a/b<1,则a
相信大家一定仔细阅读了由为大家整理的初一上学期数学辅导资料,希望大家在考试中都能取得好成绩。