公务员考试数字推理题规律
- 格式:doc
- 大小:61.00 KB
- 文档页数:7
09山西公务员行测数字推理快速解题四种思路在日常的复习备考中,考生的主要任务不是看自己做了多少道题,而是熟悉各种题型,明晰解题思路,总结解题技巧,提高解题速度,提升应试能力。
在此过程中,形成适合自己的便捷有效的解题技巧应该是重中之重。
因此,总结并掌握一定的解题思路对我们复习数量关系模块有很大帮助。
通过对历年真题的分析总结,我们可以总结出数字推理以下四种解题思路:一、从题干数列里看规律通过分析数列中所给数字的多少,根据数字大小变化的趋势,分析数列是不是常用的数列,如加法数列、减法数列、乘法数列、除法数列、分数数列、小数数列、等差数列、等比数列、平方数列、立方数列、开方数列、偶数数列、奇数数列、质数数列、合数数列,或者是复合数列、混合数列、隔项数列、分组数列等。
为了解题方便,可以借助于题后答案所提供的信息,或是数列本身的变化趋势,初步确定是哪一种数列,然后调整思路进行解题。
具体方法如下:(1)先考察前面相邻的两三个数字之间的关系,在大脑中假设出一种符合这个数字关系的规律,如将相邻的两个数相加或相减,相乘或相除之后,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者从中间向两边推导也是较为有效的。
例:150,75,50,37.5,30,()A. 20B. 22.5C. 25D. 27.5——『2009年北京市公务员录用考试真题』【答案:C】前项除以后项后得到:2;3\2;4\3;5\4;(),分子是2,3,4,5,(6 ),分母是1,2,3,4,(5 ),所以()与前一项30的倍数是6/5;则()×6/5=30,()=25。
(2)观察数列特点,如果数列所给数字比较多,数列比较长,超过5个或6个,就要考虑数列是不是隔项数列、分组数列、多级数列或常规数列的变式。
数字推理规律总结数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。
在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。
但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答。
第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。
这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案数字推理题的一些经验1)等差,等比这种最简单的不用多说,深一点就是在等差,等比上再加、减一个数列,如24,70,208,622,规律为a*3-2=b2)深一点模式,各数之间的差有规律,如1、2、5、10、17。
公务员考试之数字推理类(解题规律总结)本文包括以下两部分:一、数量关系测验类(一)、考点分析(二)、解题技巧及规律总结(三)、题型分析二、数学题快速获得答案方法之-----十字相乘法一、数量关系测验类(一)、考点分析数量关系测验主要是测验考生对数量关系的理解与计算的能力,体现了一个人抽象思维的发展水平。
在行政职业能力测验中,数量关系测验主要是从数字推理和数学运算两个角度来考查考生对数量关系的理解能力和反应速度。
数量关系测验含有速度与难度的双重性质。
在速度方面,要求考生反应灵活活,思维敏捷;在难度方面,其所涉及的数学知识或原理都不超过小学与初中水平,甚至多数是小学水平。
如果时间充足,获得正确答案是不成问题的。
但在一定的时间限制下,要求考生答题既快又准,这样,个人之间的能力差异就显现出来了。
可见,该测验难点并不在于数字与计算上,而在于对规律与方法的发现和把握上,它实际测查的是个人的抽象思维能力。
因此,解答数量关系测验题不仅要求考生具有数字的直觉能力,还需要具有判断、分析、推理、运算等能力。
1.数字推理数字推理题给出一个数列,但其中缺少一项,要求考生仔细观察这个数列各数字之间的关系,找出其中的排列规律,然后从4个供选择的答案中选出自己认为最合适、合理的一个,来填补空缺项,使之符合原数列的排列规律。
在解答数字推理题时,需要注意的是以下两点:一是反应要快;二是掌握恰当的方法和规律。
一般而言,先考察前面相邻的两三个数字之间的关系,在关脑中假设出一种符合这个数字关系的规律,并迅速将这种假设应用到下一个数字与前一个数字之间的关系上,如果得到验证,就说明假设的规律是正确的,由此可以直接推出答案;如果假设被否定,就马上改变思路,提出另一种数量规律的假设。
另外,有时从后往前推,或者“中间开花”向两边推也是较为有效的。
两个数列规律有时交替排列在一列数字中,是数字推理测验中一种较为常见的形式。
只有当你把这一列数字判断为单数项与双数项交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经是80%了。
一、数学运算题明显借鉴于国考此次数学运算部分的几道题目都能从国考中找到影子,下面举例说明:1、2009×20082008-2008×20092009=?A.0B.1C.2D.3【答案】A【解析】本题是一道计算题,因为选项中尾数不同,可采用尾数法进行计算。
2009×20082008尾数为2,2008×20092009尾数也为2,所以差的尾数一定为0,所以选择A 选项。
【注】本题同时也是在考察一个经典分解,即20082008=2008×10001,20092009=2009×10001,若考生事先知道这个分解,那么也能迅速的得到答案为A。
事实上2004年国考就出现过一道相同的题目2002×20032003-2003×20022002的值是( )A.-60B.0C.60D.80【答案】B2、某数学竞赛共160人入决赛,决赛共4题。
作对第一题的有136人,作对第二题的有125人,作对第三题的有118人,作对第4题的有104人,那么在决赛中至少几个人是满分?( )A.3B.4C.5D.6【答案】A【解析】本题是一道推理类题目。
1-4题分别错了24、35、42、56道,加起来为157。
题目问“至少几个人是满分”,所以我们应该让更多的人作错题,而这157道错题最多分给157个人,剩下的3个人必然是满分。
所以至少3个人是满分。
因此选择A选项。
在2008年国考中也出现过一道相似的题共有100个人参加某公司的招聘考试,考试的内容共有5道题,1-5题分别有80人、92人、86人、78人、74人答对。
答对3道和3道以上的人员能通过考试,请问至少有多少人能通过这次考试( )A.30B.55C.70D.74【答案】C3、某店一日进了6桶油,分别重15、16、18、19、20、31千克。
上午卖2桶,下午卖3桶,下午卖的钱正好是上午的2倍,则剩下的一桶油重多少千克?A.15B.16C.18D.20【答案】D【解析】本题也是一道推理类题目。
公务员考试口诀1数字推理经首看和差递增补一级二级要分清二阶都无规律在三阶隐藏逻辑深自然奇偶质数列常见数列要先行倍数等比最常见平方立方搅头昏前项后项有规律隔项亦有指明灯如无明显规律在加减常数走大运空号在后最前推空号在前走后门空号在中推两边多个空号莫忘邻2病句辨析经辨析病句要认真,雾里看花莫慌神;基础知识先到位,再察病源记类型。
语序颠倒结构乱,搭配失调意不明;成分残缺或累赘,逻辑荒唐理不真。
辨识从来有标准,合符规范当乎心。
或凭语感漫审读,多年经验不可轻;或将枝干勤疏理,删繁就简看得清;或造样句多类比,伪装识破现原形;或推事理查判断,偶向逻辑求救兵。
见到长句莫心急,定状叠加有章程;见到短句莫大意,赘语多从此处生;见到“是”“否”找对应,小心双提与单承;见到“无”“不”快相乘,多重否定迷宫深。
语修逻上功夫到,确保辨句不失分.3数学运算经数字计算是开头,凑整拆补巧开门尾数计算最简单,N次方变化牢记清提取公因或分解,代换公式齐上阵比较大小方法多,作差作比取中间比例问题是必考,增加下降找对象工程问题无难点,关键概念要摸清工作量可视为一,解题公式要清醒行程问题涉追及,相遇也是主题型两者要看速度差与和,分别乘时间等路程交通工具是轮船,莫忘水速是中心植树常考三角板,封闭敞开两类型方阵问题难说清,公式记住保证行和差倍数是常识,年龄差不变是窍门销售价格含两种,利润对应是成本几何问题考公式,基本知识要运行公倍数题不值提,容斥原理要弄明行测心算优笔算,考试时间比较紧代入排除是方法,数学运算要认真4图形判断经图形推理有三种,规律要靠记类型笔画相同或增减,顺时逆时理要明图形个数要数好,交点个数要识清图形重叠求同异,图形旋转莫发晕平面还原立体难,标注数字要用勤判断主要靠审题,各种关系要分清推理部分并不难,克服头晕向前行5阅读理解经阅读理解最费时,理解词语考水平文意主旨是概括,开头结尾两头审片段阅读考记性,带题去读肯定行多用排除和代入,节省时间榜题名.6申论方法经素材角度庞而杂,审读材料要看清.关键词语要打记,反映问题要弄明.概括素材起手式,尽量简洁表中心.提出对策靠套路,主题提炼考水平.脱离素材不得分,对策要有针对性.各种要素考虑全,下笔时候要炼形.空口白话不要提,对策要有操作性.宣传口号不要现,考官最烦此类银(人)文章有血也有肉,全靠积累功夫深.论述之中引经典,名人谚语道理明.开篇不要太赘述,直奔主题开山门.论据必要扣论点,东拉西扯搅水浑.申论复习看范文,平时注意看新闻.碰到问题要思考,滴水不漏得高分.。
公务员考试数字推理题解题技巧大全公务员考试是一项重要的选拔机制,而数字推理题是其中的一项难点。
在数字推理题中,考生需要通过数字、图表等信息,寻找一定的规律和推理思路,从而解决问题。
为了帮助考生顺利应对数字推理题,本文将为大家介绍一些解题技巧和思路。
一、理解题目和数据在做数字推理题时,首先需要认真阅读题目和给出的数据,了解题目的背景和要求。
在阅读中要注意对数据进行分类和总结,分析数字间的关系和规律。
二、寻找常见数字规律数字推理题中存在着许多常见的数字规律,例如:相邻数的关系、乘法和除法关系、平方、倒数等规律。
若能找出这些规律,便能够轻松解决此类推理题。
三、寻找图形规律数字推理题中,常常会配有一些图形数据。
对于这些图形,我们可以通过寻找它们的共性和特点,来发现其中的规律。
例如,周期性图形的规律常常是循环或对称性;封闭型图形的规律常常是不变性或连通性。
通过这些规律,我们可以迅速地推断出答案。
四、确定类型和答案数字推理题大致可以分为数列和图形两类。
对于数列题,我们可以看其中的差值和倍数规律,以及数列的加和、中位数、众数等;对于图形题,我们可以寻找变化和相似性规律,以及图形的方向、角度、面积和比例等。
同时,我们也可以先推断出答案,然后再用已有的数据进行验证,验证结果。
五、注意隐形陷阱在数字推理题中,经常会隐藏着一些陷阱,这些陷阱可能会导致我们犯错。
例如,数据中可能存在重复数字、相同数字或相同图形,这就需要我们仔细分辨;同时也要注意看清题目要求,不要遗漏信息或多读信息。
总之,数字推理题是公务员考试中的难点之一,但是只要我们掌握题目信息,查找数字和图形规律,注意隐形陷阱,便能够较为轻松地应对此类题目。
希望以上简单的技巧和思路能够对大家在公务员考试中取得好成绩有所帮助。
一.题型:●等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前 3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数.题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B.【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C.这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目.顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,...显然,括号内的数字应填13.在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式.●等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A.这也是一种最基本的排列方式,等比数列.其特点为相邻两个数字之间的商是一个常数.该题中后项与前项相除得数均为3,故括号内的数字应填243.【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C.该题难度较大,可以视为等比数列的一个变形.题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180.这种规律对于没有类似实践经验的应试者往往很难想到.我们在这里作为例题专门加以强调.该题是1997 年中央国家机关录用大学毕业生考试的原题.【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B.这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2 倍减2 之后得到后一项.故括号内的数字应为50×2-2=98.●等差与等比混合式【例题6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题.其中奇数项是以5 为首项、等差为5 的等差数列,偶数项是以4 为首项、等比为2 的等比数列.这样一来答案就可以容易得知是C.这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型.●求和相加式与求差相减式【例题7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C.观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173.在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律.【例题8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5 与第二项3 的差等于第三项2,第四项又是第二项和第三项之差..所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C.●求积相乘式与求商相除式【例题9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10 等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D.【例题10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C.●求平方数及其变式【例题11】1,4,9,(),25,36A 10B 14C 20D 16【解答】答案为D.这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1 的平方,第二个数字是2 的平方,第三个数字是3 的平方,第五和第六个数字分别是5、6 的平方,所以第四个数字必定是4 的平方.对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的.【例题12】66,83,102,123,()A 144B 145C 146D 147【解答】答案为C.这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12 的平方再加2,得146.这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了.●求立方数及其变式【例题13】1,8,27,()A 36B 64C 72 D81【解答】答案为B.各项分别是1,2,3,4 的立方,故括号内应填的数字是64.【例题14】0,6,24,60,120,()A 186B 210C 220D 226【解答】答案为B.这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1 的立方减1,第二个数是2 的立方减2,第三个数是3的立方减3,第四个数是4 的立方减4,依此类推,空格处应为6 的立方减6,即210.●双重数列【例题15】257,178,259,173,261,168,263,()A 275B 279C 164D 163【解答】答案为D.通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,...也就是说,奇数项的都是大数,而偶数项的都是小数.可以判断,这是两项数列交替排列在一起而形成的一种排列方式.在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找.我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式.而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163.顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化.两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式.只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了.●简单有理化式二、解题技巧数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助.1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止.2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算.3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导.4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证.常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减.(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128.(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5.(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63.(6)加法规律:前两个数之和等于第三个数,如例题23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1.(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50.(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列.如:1 2 6 15 31()相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56.公务员考试数字推理题汇总1、15,18,54,(),210A 106B 107C 123D 1121、答案是C能被3 整除嘛2、1988 的1989 次方+1989 的1988 的次方.. 个位数是多少呢?2、答:应该也是找规律的吧,1988 的4 次个位就是6,六的任何次数都是六,所以,1988 的1999 次数个位和1988的一次相等,也就是8后面那个相同的方法个位是1忘说一句了,6 乘8 个位也是83、1/2,1/3,2/3,6/3,( ),54/36A 9/12,B 18/3 ,C 18/6 ,D 18/363、C (1/3)/(1/2)=2/3 以此类推4、4,3,2,0,1,-3,( )A -6 ,B -2 ,C 1/2 ,D 04、c 两个数列4,2,1-〉1/2(依次除以2);3,0,-35、16,718,9110,()A 10110,B 11112,C 11102,D 101115、答案是11112从左往右数第一位数分别是:5、7、9、11从左往右数第二位数都是:1从左往右数第三位数分别是:6、8、10、126、3/2,9/4,25/8,( )A 65/16,B 41/8,C 49/16,D 57/86、思路:原数列可化为1 又1/2, 2 又1/4, 3 又1/8.故答案为4 又1/16 = 65/167、5,( ),39,60,105.A.10B.14C.25D.307、答案B.5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+58、8754896×48933=()A.428303315966B.428403225876C.428430329557D.4284033259688、答直接末尾相乘,几得8,选D.9、今天是星期二,55×50 天之后().A.星期一B.星期二C.星期三D.星期四9 、解题思路:从55 是7 的倍数减1,50 是7 的倍数加1,快速推出少1 天.如果用55×50÷7=396 余6,也可推出答案,但较费时10、一段布料,正好做12 套儿童服装或9 套成人服装,已知做3 套成人服装比做2 套儿童服装多用布6 米,这段布有多长?A 24B 36 C54 D 4810、思路:设儿童为x,成人为y,则列出等式12X=9Y 2X=3Y-6得出,x=3,则布为3*12=36,选B11、有一桶水第一次倒出其中的6 分之一,第二次倒出3 分之一,最后倒出4 分之一,此时连水带桶有20 千克,桶重为5 千克,,问桶中最初有多少千克水?A 50B 80C 100D 3611、答5/6*2/3*3/4X=15 得出,x=36 答案为D12、甲数比乙数大25%,则乙数比甲数小()A 20%B 30%C 25%D 33%12、已X,甲1.25X ,结果就是0.25/1.25=20% 答案为A13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3 倍,每个隔10 分钟有一辆公交车超过一个行人.每个隔20 分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10B 8C 6 D413、B14、某校转来6 名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法?A 18B 24C 36D 4614、无答案公布sorry 大家来给些答案吧15、某人把60000 元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%.如果这个人一年的总投资收益为4200 元,那么他用了多少钱买债券?A. 45000B. 15000C. 6000D. 480015、0.06x+0.1y=4200 , x+y=60000, 即可解出.答案为B16、一粮站原有粮食272 吨,上午存粮增加25%,下午存粮减少20%,则此时的存粮为( )吨.A. 340B. 292C. 272D. 26816、272*1.25*0.8=272 答案为C17、3 2 5\3 3\2 ( )A.7/5 B.5/6 C.3/5 D.3/417、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/518、1\7 1\26 1\63 1\124 ( )18、依次为2^3-1,3^3-1,..,得出6^3-119、-2 ,-1,1,5 ()29(2000 年题)A.17B.15C.13D.1119、依次为2^3-1,3^3-1,..,得出6^3-120、5 9 15 17 ( )A 21B 24C 32D 3420、思路:5 和15 差10,9 和17 差8,那15 和( ?)差65+10=15 9+8=17 15+6=2121、81301512(){江苏的真题}A10B8C13D1421、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为132222、3,2,53,32,( )A 75B 5 6C 35D 3422、思路:小公的讲解2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2 和3 组成的),53,32(这是第二段,由2、3、5 组成的)75,53,32(这是第三段,由2、3、5、7 组成的),117,75,53,32()这是由2、3、5、7、11 组成的)不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7 就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A 符合这两个规律,所以才选A2,3,5,后面接什么?按题干的规律,只有接7 才是成为一个常见的数列:质数列,如果看BCD 接4 和6 的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4 怎么会在5 的后面?也不对)质数列就是由质数组成的从2 开始递增的数列23、2,3,28,65,( )A 214B 83C 414D 31423、无思路!暂定思路为:2*65+3*28=214,24、0 ,1,3 ,8 ,21,( ) ,14424、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3.得出?=55.25、2,15,7,40,77,( )A96 ,B126,C138,,D15625、这题有点变态,不讲了,看了没有好处26、4,4,6,12,(),9026、答案30.4/4=1,6/12=1/2,?/90=1/327、56,79,129,202 ()A、331B、269C、304D、33327、不知道思路,经过讨论:79-56=23 129-79=50 202-129=73因为23+50=73,所以下一项和差必定为50+73=123-202=123,得出?=325,无此选项!28、2,3,6,9,17,()A 19B 27C 33D 4528、三个相加成数列,3 个相加为11,18,32,7 的级差则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27.29、5,6,6,9,(),90A 12,B 15,C 18,D 2129、答案为C思路:5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=1830、16 17 18 20 ()A21B22C23D2430、思路:22、23 结果未定,等待大家答复!31、9、12、21、48、()31、答案为1299+3=12 ,12+3 平方=21 ,21+3 立方=4832、172、84、40、18、()32、答案为7172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7答案分成三部分:。
公务员考试行测数量关系知识点公务员考试中的行政职业能力测验(简称行测)是众多考生需要攻克的难关,而其中的数量关系部分更是让许多人感到头疼。
数量关系主要考查考生对数学运算和数学思维的运用能力,涵盖了众多知识点和题型。
接下来,我们就详细梳理一下这部分的重要知识点。
一、数字推理数字推理是数量关系中的常见题型,要求考生通过分析给定的数字序列,找出其中的规律并推测出下一个数字。
1、等差数列这是最基础的规律之一。
相邻两项的差值相等,例如:1,3,5,7,9,差值均为 2。
2、等比数列相邻两项的比值相等。
比如:2,4,8,16,32,比值均为 2。
3、多次方数列数字是某个数的平方、立方或多次方。
例如:1,4,9,16,25 分别是 1、2、3、4、5 的平方。
4、组合数列数列由两个或多个简单数列组合而成,需要分别分析不同部分的规律。
5、递推数列通过前面若干项的运算得到下一项,如前两项相加等于第三项等。
二、数学运算数学运算包含了各种各样的实际问题和数学模型。
1、行程问题涉及速度、时间和路程之间的关系。
如相遇问题、追及问题等。
相遇问题:路程=速度和×相遇时间。
追及问题:路程差=速度差×追及时间。
2、工程问题工作总量=工作效率×工作时间。
常考的有合作完工问题,根据各自工作效率和合作方式来计算完成工作的时间。
3、利润问题涉及成本、售价、利润、利润率等概念。
利润=售价成本,利润率=利润÷成本×100% 。
4、排列组合问题排列是有顺序的,组合是无顺序的。
例如从 5 个人中选 3 个人排成一排,这是排列;从 5 个人中选 3 个人组成一组,这是组合。
5、概率问题计算某个事件发生的可能性大小。
古典概率:概率=有利事件数÷总事件数。
6、容斥原理用于解决集合之间的重叠问题。
两集合容斥:总数= A + B 既 A 又 B +既非 A 又非 B 。
三、解题方法1、方程法这是最基本也是最常用的方法。
公务员考试行测数字推理必知的30个规律公务员考试中,数字推理是一个非常重要的考试科目。
数字推理是指通过对数字、图形、文字等信息的分析和推理,得出正确的结论。
在数字推理中,有很多规律需要掌握。
本文将介绍公务员考试行测数字推理必知的30个规律。
一、数字规律1. 数字序列规律数字序列规律是指在一组数字中,数字之间的关系所遵循的规律。
常见的数字序列规律有等差数列、等比数列、斐波那契数列等。
2. 数字排列规律数字排列规律是指在一组数字中,数字的排列顺序所遵循的规律。
常见的数字排列规律有逆序、顺序、交替等。
3. 数字替换规律数字替换规律是指在一组数字中,数字被替换成其他数字的规律。
常见的数字替换规律有加减乘除、平方、开方等。
4. 数字组合规律数字组合规律是指在一组数字中,数字之间的组合所遵循的规律。
常见的数字组合规律有排列组合、加减乘除等。
二、图形规律图形旋转规律是指在一组图形中,图形的旋转方向和角度所遵循的规律。
常见的图形旋转规律有顺时针旋转、逆时针旋转等。
6. 图形翻转规律图形翻转规律是指在一组图形中,图形的翻转方向和方式所遵循的规律。
常见的图形翻转规律有水平翻转、垂直翻转等。
7. 图形平移规律图形平移规律是指在一组图形中,图形的平移方向和距离所遵循的规律。
常见的图形平移规律有水平平移、垂直平移等。
8. 图形缩放规律图形缩放规律是指在一组图形中,图形的缩放比例所遵循的规律。
常见的图形缩放规律有放大、缩小等。
9. 图形填充规律图形填充规律是指在一组图形中,图形的填充方式和颜色所遵循的规律。
常见的图形填充规律有交替填充、渐变填充等。
三、文字规律10. 文字替换规律文字替换规律是指在一组文字中,文字被替换成其他文字的规律。
常见的文字替换规律有字母替换、数字替换等。
文字排列规律是指在一组文字中,文字的排列顺序所遵循的规律。
常见的文字排列规律有逆序、顺序、交替等。
12. 文字组合规律文字组合规律是指在一组文字中,文字之间的组合所遵循的规律。
公务员考试行测数字推理做题技巧很多考生无论是在国考行测题目中还是在省考行测题目中都会选择放弃数量关系以及资料分析的题目,然而在数量关系中的数字推理题目,考生只要掌握了正确的做题顺序和基本的解题思路,就会很容易的在极短的时间和用很少的精力解出3-4数字推理题目。
下面公务员考试研究中心就为广大考生介绍数字推理题目的基本做题技巧。
一、特征明显的数列(一)分数数列什么是分数数列?当一个数列中大部分数为分数时这个数列就是分数数列。
在数字推理题目中,考生一眼就可以看出,整个5道数字推理题目中是否有分数数列。
如果有分数数列,那么首先的方法就是反约分法,反约分的突破口就是整个数列中与数列变化趋势不符的分数。
如果题目中有几分之一的分数,首先想到负幂次。
如果数列中有少数分数,想到的解题方法就是多级数列的做商或递推数列的做商。
例:1/3,4/7,7/11,2/3,13/19( )A. 16/23B. 16/21C. 18/21D.17/21解析:首先,此数列很明显是一个分数数列,然后观察数列的特征,考生可以发现2/3与整个数列的增长趋势不符,那么2/3就是做这道题的突破口,利用反约分,分子分母同乘以4,分子数列为:1,4,7,8,13;分母数列为:3,7,11,12,19两个数列都没有明显的推理关系。
那么2/3的分子和分母再同乘以5,则分子数列为:1,4,7,10,13;分母数列为:3,7,11,15,19,考生可以看出分子数列是以公差为3的等差数列,则分子数列的下一项为16,同样,考生也可以看出分母数列是以公差为4的等差数列,则分母数列的下一项为23,因此下一项的分数为16/23,选A项。
(二)多重数列多重数列的特征相对于其它数列也是比较明显的,其显著特征就是数列包含的项比较多,一般包括选项在内能达到8项或者数列中有两个括号。
多级数列的主要方法有两种,第一种事交叉,第二种是分组。
例:3,3,4,5,7,7,11,9,( ),( )A.13,11B.16,12C.18,11D.17,13解析:这个数列题目中有两个括号,考生很容易判断这个数列是多重数列。
备考规律⼀:等差数列及其变式 【例题】7,11,15,( )A .19B .20C .22D. 25 【答案】A选项 【解析】这是⼀个典型的等差数列,即后⾯的数字与前⾯数字之间的差等于⼀个常数。
题中第⼆个数字为11,第⼀个数字为7,两者的差为4,由观察得知第三个与第⼆个数字之间也满⾜此规律,那么在此基础上对未知的⼀项进⾏推理,即15+4=19,第四项应该是19,即答案为A。
(⼀)等差数列的变形⼀: 【例题】7,11,16,22,( )A.28B.29C.32D.33 【答案】B选项 【解析】这是⼀个典型的等差数列的变形,即后⾯的数字与前⾯数字之间的差是存在⼀定的规律的,这个规律是⼀种等差的规律。
题中第⼆个数字为11,第⼀个数字为7,两者的差为4,由观察得知第三个与第⼆个数字之间的差值是5;第四个与第三个数字之间的差值是6。
假设第五个与第四个数字之间的差值是X, 我们发现数值之间的差值分别为4,5,6,X。
很明显数值之间的差值形成了⼀个新的等差数列,由此可以推出X=7,则第五个数为22+7=29。
即答案为B选项。
(⼆)等差数列的变形⼆: 【例题】7,11,13,14,( )A.15B.14.5C.16D.17 【答案】B选项 【解析】这也是⼀个典型的等差数列的变形,即后⾯的数字与前⾯数字之间的差是存在⼀定的规律的,但这个规律是⼀种等⽐的规律。
题中第⼆个数字为11,第⼀个数字为7,两者的差为4,由观察得知第三个与第⼆个数字之间的差值是2;第四个与第三个数字之间的差值是1。
假设第五个与第四个数字之间的差值是X。
我们发现数值之间的差值分别为4,2,1,X。
很明显数值之间的差值形成了⼀个新的等差数列,由此可以推出X=0.5,则第五个数为14+0.5=14.5。
即答案为B选项。
(三)等差数列的变形三: 【例题】7,11,6,12,( )A.5B.4C.16D.15 【答案】A选项 【解析】这也是⼀个典型的等差数列的变形,即后⾯的数字与前⾯数字之间的差是存在⼀定的规律的,但这个规律是⼀种正负号进⾏交叉变换的规律。
行测数字推理题技巧数字推理题是公务员考试中常见的题型之一,包含数字序列、数字关系、数字分类等多种形式。
数字推理题不仅考察了考生的数学能力,更重要的是考察了考生的逻辑思维和推理能力。
本文将从四个方面为大家介绍数字推理题的技巧和方法。
一、数字序列题数字序列题是指给出一组数字序列,要求考生根据规律推断出下一个数字或者缺失的数字。
数字序列题考察的是考生的数学能力和逻辑推理能力。
下面介绍一些数字序列题的常见规律和解题方法。
1.等差数列等差数列是指每一项与前一项之差相等的数列,例如1、3、5、7、9……。
在等差数列中,每一项与前一项之差都相等,这个差值称为公差。
在数字序列题中,等差数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公差,然后根据公差推断出下一项或者缺失的项。
2.等比数列等比数列是指每一项与前一项之比相等的数列,例如1、2、4、8、16……。
在等比数列中,每一项与前一项之比都相等,这个比值称为公比。
在数字序列题中,等比数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是求出公比,然后根据公比推断出下一项或者缺失的项。
3.斐波那契数列斐波那契数列是指第一项和第二项都为1,从第三项开始,每一项都是前两项之和的数列,例如1、1、2、3、5、8……。
在斐波那契数列中,每一项都是前两项之和,这个规律称为递推关系。
在数字序列题中,斐波那契数列的规律通常是给出前几项,要求考生推断出下一项或者缺失的项。
解题方法是根据递推关系推断出下一项或者缺失的项。
二、数字关系题数字关系题是指给出一组数字之间的关系,要求考生根据这些关系推断出其他数字之间的关系。
数字关系题考察的是考生的逻辑推理能力和数学能力。
下面介绍一些数字关系题的常见关系和解题方法。
1.加减乘除加减乘除是数字关系题中最为常见的关系,例如1+2=3,2-1=1,2×3=6,6÷2=3等。
在数字关系题中,加减乘除的规律通常是给出部分数字和运算符号,要求考生推断出其他数字和运算符号。
公务员考试数字推理、数量关系解题技巧——附2007北京社招行测数量关系真题及详解第一部分:数字推理题的解题技巧数字推理考察的是数字之间的联系,对运算能力的要求并不高。
所以,文科的朋友不必担心数学知识不够用或是以前学的不好。
只要经过足够的练习,这部分是可以拿高分的,至少不会拖你的后腿。
一、解题前的准备1.熟记各种数字的运算关系。
如各种数字的平方、立方以及它们的邻居,做到看到某个数字就有感觉。
这是迅速准确解好数字推理题材的前提。
常见的需记住的数字关系如下:(1)平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144 13-169,14-196,15-225,16-256,17-289,18-324,19-361,20-400(2)立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000(3)质数关系:2,3,5,7,11,13,17,19,23,29......(4)开方关系:4-2,9-3,16-4......以上四种,特别是前两种关系,每次考试必有。
所以,对这些平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
当看到这些数字时,立刻就能想到平方立方的可能性。
熟悉这些数字,对解题有很大的帮助,有时候,一个数字就能提供你一个正确的解题思路。
如 216 ,125,64()如果上述关系烂熟于胸,一眼就可看出答案但一般考试题不会如此弱智,实际可能会这样 215,124,63,()或是217,124,65,()即是以它们的邻居(加减1),这也不难,一般这种题5秒内搞定。
2.熟练掌握各种简单运算,一般加减乘除大家都会,值得注意的是带根号的运算。
根号运算掌握简单规律则可,也不难。
3.对中等难度以下的题,建议大家练习使用心算,可以节省不少时间,在考试时有很大效果。
公务员⾏测:数字推理解题技巧 公务员考试《⾏政职业能⼒测验》数量关系中数字推理题是给出⼀数列,但其中缺少⼀项,要求仔细观察数列,找出其中的排列规律,然后从四个供选择的选项中选出你认为最合适、合理的⼀项,来填补空缺项,使之符合原数列的排列规律。
公务员考试中有个别地⽅及个别题还出现了图形形式的数字推理题,我们也应当有所了解。
总的来说,解答数字推理题有以下四⼤技巧: (1)快速扫描已给出的⼏个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,⼤胆提出假设,并迅速将这种假设延伸到下⾯的数,如果能得到验证,即说明找出规律,问题即迎刃⽽解,如果假设被否定,⽴即改变思考⾓度,提出另外⼀种假设,直到找出规律为⽌。
(2)推导规律时,往往需要简单计算,为节省时间,尽量⽤⼼算,少⽤笔算或不⽤笔算。
(3)空缺项在最后的,从前往后推;空缺项在最前的,从后往前推;空缺项在中间的,可以两边同时推导。
(4)若⼀时难以找出规律,可⽤常见的规律来“对号⼊座”加以验证。
常见规律为奇、偶数规律,等差,等⽐,⼆级等差,⼆级等⽐,递推规律;幂次数,混合型规律等等。
下⽂将通过历年公务员考试真题来阐述各类解题技巧的运⽤。
上海市公务员考试《⾏政职业能⼒测验》数量关系——数字推理练习 1.8,6,2,-6,()[2009年上海市公务员考试⾏政职业能⼒测验真题-1题] A.-8 B.-10 C.-20 D.-22 【答案】D 【解析】⼆级等⽐数列。
2. 【答案】C 【解析】原数列可化为:。
【注释】这是⼀道带根号的题⽬,⼀般带根号的题⽬都⽐较简单,我们不要被根号所迷惑。
3.(), A.-1 D.1 【答案】C 【解析】原数列可化为() 4.0,6,6,20,(),42 [2009年上海市公务员考试⾏政职业能⼒测验真题-4题] A.20 B.21 C.26 D.28 【答案】A 【解析】原数列可化为12-1,22+2,32-3,42+4,(52-5),62+6。
数字推理思路整理纯手打,自我整理,如有错误,请自我辨认,本人不负责。
一、熟记各种数字特性平方关系:2-4,3-9,4-16,5-25,6-36,7-49,8-64,9-81,10-100,11-121,12-144,13-169,14-196,15-225,16-256,17-289,18-324,19-361立方关系:2-8,3-27,4-64,5-125,6-216,7-343,8-512,9-729,10-1000质数关系:2,3,5,7,11,13,17,19,23,29……对平方立方后的数字,及这些数字的邻居(如,64,63,65等)要有足够的敏感。
当看到这些数字时,立刻就能想到平方立方的可能性。
215,124,63,()或是217,124,65,()即是以它们的邻居(加减1)。
1.数列有特征:①数字多拆开看。
②有特殊熟悉数字(例如64 或49),转化成幂次。
③能除尽就除。
④分数可能是除,也可能是分数数列,则上下看、左右看、反约分。
2.没特征:①两两做差。
②做和。
③圈三数(为了看变化趋势)。
④因式分解(提出一串简单数字)。
⑤变态数列(靠人品)。
做题思路:第一思路:先做差适用情况:当数推一个方向递增或递减,且幅度变化不大时。
看一次做差或二次做差后,看数字规律有没有特点,如等差,等比,质数、合数、循环反复、平方、立方等规律。
1、34、41、46、56、64、()、88解析:做1次差7、5、10、8、(13)(11)做2次差-2、5、-2、(5),(-2)可以考虑到循环反复数列,根据规律推出5,然后倒推上去,答案77 2、52,-56,-92,-104,()解析:一次做差:-108、36、-12、(4)观察得出倍数为-1/3的等比,所以后面的应该为4,X-(-104)=4,X=-100。
浙江很喜欢考1/3,2/3这样的等比,留心这样等比的数字特性第二思路:幂次数列——平方、立方、乘除+修正项适用情况:变化幅度大的,有明显的平方、立方关系的数,有奇偶且数值差距大一、平方+修正项1、145、120、101、80、65、()解析:数字有明显的平方特性,145=122+1 ,120=112-1,以此类推,答案72-1=48二、立方+修正项2、3、10、29、()、127解析:做差没规律,考虑平方、立方。
数字推理八大解题方法【真题精析】例1.2,5,8,11,14,( )A.15 B.16 C.17 D.18[答案]C[解析]数列特征明显单调且倍数关系不明显,优先采用逐差法。
差值数列是常数列。
如图所示,因此,选C。
【真题精析】例1、(2006·国考A类)102,96,108,84,132,( )A.36 B.64 C.70 D.72[答案]A[解析]数列特征明显不单调,但相邻两项差值的绝对值呈递增趋势,尝试采用逐差法。
差值数列是公比为-2的等比数列。
如图所示,因此,选A。
【真题精析】例1.(2009·江西)160,80,40,20,( )A.B.1 C.10 D.5[答案]C[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是常数列。
如图所示,因此,选C【真题精析】例1、2,5,13,35,97,( )A.214 B.275 C.312 D.336[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是数值为2的常数列,余数数列是J2-I:h为3的等比数列。
如图所示,因此,选B。
【真题精析】例1、(2009·福建)7,21,14,21,63,( ),63A.35 B.42 C.40 D.56[答案]B[解析]数列特征明显单调且倍数关系明显,优先采用逐商法。
商值数列是以为周期的周期数列。
如图所示,因此,选B。
种规律,其中,商值数列和余数数列即可以是常见的基础数列,也可以是基础数列的变形。
【真题精析】例1.8,8,12,24,60,( )A.90 B.120 C.180 D.240[答案]C[解析]逐商法,做商后商值数列是公差为0.5的等差数列。
【真题精析】例1. -3,3,0,3,3,( )A.6 B.7 C.8 D.9[答案]A[解析]数列特征:(1)单调关系不明显;(2)倍数关系不明显;(3)数字差别幅度不大。
优先采用加和法。
【真题精析】例1、(2008·湖北B类)2,3,5,10,20,( )A.30 B.35 C 40 D.45[答案]C[解析]数列特征明显单调且倍数关系不明显,优先做差后得到结果选项中不存在;则考虑数列特征:(1)倍数关系不明显;(2)数字差别幅度不大,采用加和法。
公务员数字推理题解析技巧与答题思路数字推理题是公务员考试中常见的一类题型,要求考生根据给定的数字序列或规律,推断出下一个数字或者填入适当的数字。
下面将介绍一些解析技巧和答题思路,帮助考生在这类题目中取得更好的成绩。
一、观察规律在解答数字推理题时,首先需要观察数字序列中的规律或者模式。
这些规律可能涉及数字间的运算、排列顺序、数字之间的关系等。
通过观察规律,可以帮助我们找到解题的突破口。
例如,给定数字序列:2, 4, 6, 8, 10,问下一个数字是多少?观察可知,该序列是一个等差数列,公差为2。
因此,下一个数字应该是12。
二、数学运算数学运算在数字推理题中经常出现,包括四则运算、平方、开方、乘方等。
对于这类题目,考生需要善用数学知识,灵活运用各种运算法则。
例如,给定数字序列:1, 3, 6, 10, 15,问下一个数字是多少?观察可知,该序列是一个递增的自然数序列。
进一步观察可知,每一项是前一项加上一个自然数。
这表明每一项与自然数之间存在着一种关系,即前一项加上当前自然数等于当前项。
因此,下一个数字应该是15加上下一个自然数,即20。
三、几何图形有些数字推理题中给出的数字序列可能是几何图形中的数字。
考生需要观察图形的形状、结构以及数字之间的关系,从而找到规律。
例如,给定数字序列:1, 4, 9, 16, 25,问下一个数字是多少?观察可知,该序列是平方数的序列,每一项都是前一项的平方。
因此,下一个数字应该是36。
四、逻辑推理逻辑推理是数字推理题中经常遇到的一种情况。
通过观察数字序列中的逻辑关系,可以帮助我们推断出下一个数字的值。
例如,给定数字序列:1, 3, 6, 10, 15,问下一个数字是多少?观察可知,该序列中的每一项可以通过将前一项加上一定的数字得到。
进一步观察可知,每一项与与它的位置数相等的数之和等于当前项。
因此,下一个数字应该是15加上下一个位置数,即21。
五、试错法在解答数字推理题时,有时候需要进行试错。
一.题型:●等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前 3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数.题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B.【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C.这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目.顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,...显然,括号内的数字应填13.在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式.●等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A.这也是一种最基本的排列方式,等比数列.其特点为相邻两个数字之间的商是一个常数.该题中后项与前项相除得数均为3,故括号内的数字应填243.【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C.该题难度较大,可以视为等比数列的一个变形.题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1.5,2,2.5,3,因此括号内的数字应为60×3=180.这种规律对于没有类似实践经验的应试者往往很难想到.我们在这里作为例题专门加以强调.该题是1997 年中央国家机关录用大学毕业生考试的原题.【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B.这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2 倍减2 之后得到后一项.故括号内的数字应为50×2-2=98.●等差与等比混合式【例题6】5,4,10,8,15,16,(),()A 20,18B 18,32C 20,32D 18,32【解答】此题是一道典型的等差、等比数列的混合题.其中奇数项是以5 为首项、等差为5 的等差数列,偶数项是以4 为首项、等比为2 的等比数列.这样一来答案就可以容易得知是C.这种题型的灵活度高,可以随意地拆加或重新组合,可以说是在等比和等差数列当中的最有难度的一种题型.●求和相加式与求差相减式【例题7】34,35,69,104,()A 138B 139C 173D 179【解答】答案为C.观察数字的前三项,发现有这样一个规律,第一项与第二项相加等于第三项,34+35=69,这种假想的规律迅速在下一个数字中进行检验,35+69=104,得到了验证,说明假设的规律正确,以此规律得到该题的正确答案为173.在数字推理测验中,前两项或几项的和等于后一项是数字排列的又一重要规律.【例题8】5,3,2,1,1,()A -3B -2C 0D 2【解答】这题与上题同属一个类型,有点不同的是上题是相加形式的,而这题属于相减形式,即第一项5 与第二项3 的差等于第三项2,第四项又是第二项和第三项之差..所以,第四项和第五项之差就是未知项,即1-1=0,故答案为C.●求积相乘式与求商相除式【例题9】2,5,10,50,()A 100B 200C 250D 500【解答】这是一道相乘形式的题,由观察可知这个数列中的第三项10 等于第一、第二项之积,第四项则是第二、第三两项之积,可知未知项应该是第三、第四项之积,故答案应为D.【例题10】100,50,2,25,()A 1B 3C 2/25D 2/5【解答】这个数列则是相除形式的数列,即后一项是前两项之比,所以未知项应该是2/25,即选C.●求平方数及其变式【例题11】1,4,9,(),25,36A 10B 14C 20D 16【解答】答案为D.这是一道比较简单的试题,直觉力强的考生马上就可以作出这样的反应,第一个数字是1 的平方,第二个数字是2 的平方,第三个数字是3 的平方,第五和第六个数字分别是5、6 的平方,所以第四个数字必定是4 的平方.对于这类问题,要想迅速作出反应,熟练掌握一些数字的平方得数是很有必要的.【例题12】66,83,102,123,()A 144B 145C 146D 147【解答】答案为C.这是一道平方型数列的变式,其规律是8,9,10,11,的平方后再加2,故括号内的数字应为12 的平方再加2,得146.这种在平方数列基础上加减乘除一个常数或有规律的数列,初看起来显得理不出头绪,不知从哪里下手,但只要把握住平方规律,问题就可以划繁为简了.●求立方数及其变式【例题13】1,8,27,()A 36B 64C 72 D81【解答】答案为B.各项分别是1,2,3,4 的立方,故括号内应填的数字是64.【例题14】0,6,24,60,120,()A 186B 210C 220D 226【解答】答案为B.这也是一道比较有难度的题目,但如果你能想到它是立方型的变式,问题也就解决了一半,至少找到了解决问题的突破口,这道题的规律是:第一个数是1 的立方减1,第二个数是2 的立方减2,第三个数是3的立方减3,第四个数是4 的立方减4,依此类推,空格处应为6 的立方减6,即210.●双重数列【例题15】257,178,259,173,261,168,263,()A 275B 279C 164D 163【解答】答案为D.通过考察数字排列的特征,我们会发现,第一个数较大,第二个数较小,第三个数较大,第四个数较小,...也就是说,奇数项的都是大数,而偶数项的都是小数.可以判断,这是两项数列交替排列在一起而形成的一种排列方式.在这类题目中,规律不能在邻项之间寻找,而必须在隔项中寻找.我们可以看到,奇数项是257,259,261,263,是一种等差数列的排列方式.而偶数项是178,173,168,(),也是一个等差数列,所以括号中的数应为168-5=163.顺便说一下,该题中的两个数列都是以等差数列的规律排列,但也有一些题目中两个数列是按不同规律排列的,不过题目的实质没有变化.两个数列交替排列在一列数字中,也是数字推理测验中一种较常见的形式.只有当你把这一列数字判断为多组数列交替排列在一起时,才算找到了正确解答这道题的方向,你的成功就已经80%了.●简单有理化式二、解题技巧数字推理题的解题方法数字推理题难度较大,但并非无规律可循,了解和掌握一定的方法和技巧,对解答数字推理问题大有帮助.1 快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系,大胆提出假设,并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止.2 推导规律时,往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算.3 空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导.4 若自己一时难以找出规律,可用常见的规律来“对号入座”,加以验证.常见的排列规律有:(1)奇偶数规律:各个数都是奇数(单数)或偶数(双数);(2)等差:相邻数之间的差值相等,整个数字序列依次递增或递减.(3)等比:相邻数之间的比值相等,整个数字序列依次递增或递减;如:2 4 8 16 32 64()这是一个“公比”为2(即相邻数之间的比值为2)的等比数列,空缺项应为128.(4)二级等差:相邻数之间的差或比构成了一个等差数列;如:4 2 2 3 6 15相邻数之间的比是一个等差数列,依次为:0.5、1、1.5、2、2.5.(5)二级等比数列:相邻数之间的差或比构成一个等比数理;如:0 1 3 7 15 31()相邻数之间的差是一个等比数列,依次为1、2、4、8、16,空缺项应为63.(6)加法规律:前两个数之和等于第三个数,如例题23;(7)减法规律:前两个数之差等于第三个数;如:5 3 2 1 1 0 1()相邻数之差等于第三个数,空缺项应为-1.(8)乘法(除法)规律:前两个数之乘积(或相除)等于第三个数;(9)完全平方数:数列中蕴含着一个完全平方数序列,或明显、或隐含;如:2 3 10 15 26 35()1*1+1=2, 2*2-1=3,3*3+1=10,4*4-1=15......空缺项应为50.(10)混合型规律:由以上基本规律组合而成,可以是二级、三级的基本规律,也可能是两个规律的数列交叉组合成一个数列.如:1 2 6 15 31()相邻数之间的差是完全平方序列,依次为1、4、9、16,空缺项应为31+25=56.公务员考试数字推理题汇总1、15,18,54,(),210A 106B 107C 123D 1121、答案是C能被3 整除嘛2、1988 的1989 次方+1989 的1988 的次方.. 个位数是多少呢?2、答:应该也是找规律的吧,1988 的4 次个位就是6,六的任何次数都是六,所以,1988 的1999 次数个位和1988的一次相等,也就是8后面那个相同的方法个位是1忘说一句了,6 乘8 个位也是83、1/2,1/3,2/3,6/3,( ),54/36A 9/12,B 18/3 ,C 18/6 ,D 18/363、C (1/3)/(1/2)=2/3 以此类推4、4,3,2,0,1,-3,( )A -6 ,B -2 ,C 1/2 ,D 04、c 两个数列4,2,1-〉1/2(依次除以2);3,0,-35、16,718,9110,()A 10110,B 11112,C 11102,D 101115、答案是11112从左往右数第一位数分别是:5、7、9、11从左往右数第二位数都是:1从左往右数第三位数分别是:6、8、10、126、3/2,9/4,25/8,( )A 65/16,B 41/8,C 49/16,D 57/86、思路:原数列可化为1 又1/2, 2 又1/4, 3 又1/8.故答案为4 又1/16 = 65/167、5,( ),39,60,105.A.10B.14C.25D.307、答案B.5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+58、8754896×48933=()A.428303315966B.428403225876C.428430329557D.4284033259688、答直接末尾相乘,几得8,选D.9、今天是星期二,55×50 天之后().A.星期一B.星期二C.星期三D.星期四9 、解题思路:从55 是7 的倍数减1,50 是7 的倍数加1,快速推出少1 天.如果用55×50÷7=396 余6,也可推出答案,但较费时10、一段布料,正好做12 套儿童服装或9 套成人服装,已知做3 套成人服装比做2 套儿童服装多用布6 米,这段布有多长?A 24B 36 C54 D 4810、思路:设儿童为x,成人为y,则列出等式12X=9Y 2X=3Y-6得出,x=3,则布为3*12=36,选B11、有一桶水第一次倒出其中的6 分之一,第二次倒出3 分之一,最后倒出4 分之一,此时连水带桶有20 千克,桶重为5 千克,,问桶中最初有多少千克水?A 50B 80C 100D 3611、答5/6*2/3*3/4X=15 得出,x=36 答案为D12、甲数比乙数大25%,则乙数比甲数小()A 20%B 30%C 25%D 33%12、已X,甲1.25X ,结果就是0.25/1.25=20% 答案为A13、一条街上,一个骑车人和一个步行人相向而行,骑车人的速度是步行人的3 倍,每个隔10 分钟有一辆公交车超过一个行人.每个隔20 分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A 10B 8C 6 D413、B14、某校转来6 名新生,校长要把他们安排在三个班,每班两人,有多少中安排方法?A 18B 24C 36D 4614、无答案公布sorry 大家来给些答案吧15、某人把60000 元投资于股票和债券,其中股票的年回报率为6%,债券的年回报率为10%.如果这个人一年的总投资收益为4200 元,那么他用了多少钱买债券?A. 45000B. 15000C. 6000D. 480015、0.06x+0.1y=4200 , x+y=60000, 即可解出.答案为B16、一粮站原有粮食272 吨,上午存粮增加25%,下午存粮减少20%,则此时的存粮为( )吨.A. 340B. 292C. 272D. 26816、272*1.25*0.8=272 答案为C17、3 2 5\3 3\2 ( )A.7/5 B.5/6 C.3/5 D.3/417、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/518、1\7 1\26 1\63 1\124 ( )18、依次为2^3-1,3^3-1,..,得出6^3-119、-2 ,-1,1,5 ()29(2000 年题)A.17B.15C.13D.1119、依次为2^3-1,3^3-1,..,得出6^3-120、5 9 15 17 ( )A 21B 24C 32D 3420、思路:5 和15 差10,9 和17 差8,那15 和( ?)差65+10=15 9+8=17 15+6=2121、81301512(){江苏的真题}A10B8C13D1421、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为132222、3,2,53,32,( )A 75B 5 6C 35D 3422、思路:小公的讲解2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2 和3 组成的),53,32(这是第二段,由2、3、5 组成的)75,53,32(这是第三段,由2、3、5、7 组成的),117,75,53,32()这是由2、3、5、7、11 组成的)不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7 就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A 符合这两个规律,所以才选A2,3,5,后面接什么?按题干的规律,只有接7 才是成为一个常见的数列:质数列,如果看BCD 接4 和6 的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4 怎么会在5 的后面?也不对)质数列就是由质数组成的从2 开始递增的数列23、2,3,28,65,( )A 214B 83C 414D 31423、无思路!暂定思路为:2*65+3*28=214,24、0 ,1,3 ,8 ,21,( ) ,14424、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3.得出?=55.25、2,15,7,40,77,( )A96 ,B126,C138,,D15625、这题有点变态,不讲了,看了没有好处26、4,4,6,12,(),9026、答案30.4/4=1,6/12=1/2,?/90=1/327、56,79,129,202 ()A、331B、269C、304D、33327、不知道思路,经过讨论:79-56=23 129-79=50 202-129=73因为23+50=73,所以下一项和差必定为50+73=123-202=123,得出?=325,无此选项!28、2,3,6,9,17,()A 19B 27C 33D 4528、三个相加成数列,3 个相加为11,18,32,7 的级差则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27.29、5,6,6,9,(),90A 12,B 15,C 18,D 2129、答案为C思路:5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=1830、16 17 18 20 ()A21B22C23D2430、思路:22、23 结果未定,等待大家答复!31、9、12、21、48、()31、答案为1299+3=12 ,12+3 平方=21 ,21+3 立方=4832、172、84、40、18、()32、答案为7172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7答案分成三部分:。