高三理科数学期末试题及答案
- 格式:doc
- 大小:1.21 MB
- 文档页数:11
高三上册数学理科期末试题及答案第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置。
1.已知平面向量,,且,则实数的值为A.B.C.D.2.设集合,,若,则实数的值为A.B.C.D.3.已知直线平面,直线,则“”是“”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.定义:.若复数满足,则等于A.B.C.D.5.函数在处的切线方程是A.B.C.D.6.某程序框图如右图所示,现输入如下四个函数,则可以输出的函数是A.B.C.D.7.若函数的图象(部分)如图所示,则和的取值是A.B.C.D.8.若函数的零点与的零点之差的绝对值不超过,则可以是A.B.C.D.9.已知,若方程存在三个不等的实根,则的取值范围是A.B.C.D.10.已知集合,。
若存在实数使得成立,称点为“£”点,则“£”点在平面区域内的个数是A.0B.1C.2D.无数个第二卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡上.11.已知随机变量,若,则等于******.12.某几何体的三视图如下右图所示,则这个几何体的体积是******.13.已知抛物线的准线与双曲线相切,则双曲线的离心率******.14.在平面直角坐标系中,不等式组所表示的平面区域的面积是9,则实数的值为******.15.已知不等式,若对任意且,该不等式恒成立,则实数的取值范围是******.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且,.(Ⅰ)求与;(Ⅱ)证明:.17.(本小题满分13分)已知向量(Ⅰ)求的解析式;(Ⅱ)求由的图象、轴的正半轴及轴的正半轴三者围成图形的面积。
精心整理高三下册数学理科期末试卷及答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的5.右图的算法中,若输入A=192,B=22,输出的是()6.给出命题p:直线互相平行的充要条件是;命题q:若平面内不共线的三点到平面的距离相等,则∥。
对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或q”为假()∠=90°,||=1,则的值为()10.已知点,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,则P点的轨迹方程为()A.B.C.D.11.函数有且只有两个不同的零点,则b的值为(),则。
则此几何体的体积等于㎝3。
16.定义函数,其中表示不超过的整数,当时,设函数的值域为集合A,记A中的元素个数为,则的最小值为。
三、解答题:本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分).于。
男女998865074211151617名志㎝以上(㎝)(Ⅰ)如果用分层抽样的方法从“高个子”和“非高个子”*抽取5人,再从这5人中选2人,求至少有一人是“高个子”的概率?(II)若从所有“高个子”中选出3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.20.(本小题满分12分)在直角坐标系xoy上取两个定点,再取两个动点且=3.(Ⅰ)求直线与交点的轨迹的方程;(II)已知,设直线:与(I)中的轨迹交于、两点,直线、的倾斜23.(本小题满分10分)选修4-4坐标系与参数方程以平面直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)试分别将曲线Cl的极坐标方程和曲线C2的参数方程(t为参数)化为直角坐标方程和普通方程:(II)若红蚂蚁和黑蚂蚁分别在曲线Cl和曲线C2上爬行,求红蚂蚁和黑蚂蚁之间的距离(视蚂蚁为点).2012—2013学年度上学期期末考试网高三年级理科数学答案一、选择题:本大题共12小题,每小题5分,共60分,在每小………9分,故函数在区间上的值域为.………12分18.解:(Ⅰ)∵CD=,∴AC=,满足∴………2分又平面,故以CD为x轴,CA为y轴,以CE为z轴建立空间直角坐标系,其中C(0,0,0),D(1,0,0),A(0,,0),F(0,,)B(-1,,0) (4)分人,分用事件表示“至少有一名“高个子”被选中”,则它的对立事件表示“没有一名“高个子”被选中”,则.因此,至少有一人是“高个子”的概率是.…………6分(Ⅱ)依题意,的取值为.,,,.因此,的分布列如下:20.解:(Ⅰ)依题意知直线的方程为:①直线的方程为:②设是直线与交点,①×②得分(4,0).21(Ⅰ)证明:设则,则,即在处取到最小值,则,即原结论成立.………3分(Ⅱ)解:由得即,另,另,则单调递增,所以因为,所以,即单调递增,则的值为所以的取值范围为.………7分。
内蒙古阿拉善盟第一中学2022-2023学年高三上学期期末考试理科数学试题及答案解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.记集合{|||2}M x x =>,(){}2|ln 3N x y x x==-,则M N = ()A.{}32≤<x x B.{|3x x >或2}x <-C.{}20<≤x x D.{}32≤<-x x 2.已知复数1i z =+(i 是虚数单位),则izzz =+()A.31i 55+ B.11i 55+ C.31i55-+ D.11i 55-+3.命题“2≥∀a ,()2f x x ax =-是奇函数”的否定是()A.2≥∀a ,()2f x x ax =-是偶函数B.2≥∃a ,()2f x x ax =-不是奇函数C.2a ∀<,()2f x x ax =-是偶函数D.2a ∃<,()2f x x ax =-不是奇函数4.若()4sin 5πα+=-,则()cos 2πα-=()A.35B.35-C.725D.725-5.若双曲线2221x y m-=(0m >)的渐近线与圆22610x y y +-+=相切,则m =()A.4C.2D.6.端午节为每年农历五月初五,又称端阳节、午日节、五月节等.端午节是中国汉族人民纪念屈原的传统节日,以围绕才华横溢、遗世独立的楚国大夫屈原而展开,传播至华夏各地,民俗文化共享,屈原之名人尽皆知,追怀华夏民族的高洁情怀.小华的妈妈为小华煮了8个粽子,其中5个甜茶粽和3个艾香粽,小华随机取出两个,事件A “取到的两个为同一种馅”,事件B “取到的两个都是艾香粽”,则()|P B A =()A.35B.313C.58 D.13287.正方体1111ABCD A B C D -中,E 为1CC 的中点,则异面直线1B E 与1C D 所成角的余弦值为()A.1010B.1010-C.104D.104-8.某地锰矿石原有储量为a 万吨,计划每年的开采量为本年年初储量的m (01m <<,且m 为常数)倍,第n (*n ∈N )年开采后剩余储量为(1)na m -,按该计划使用10年时间开采到剩余储量为原有储量的一半.若开采到剩余储量为原有储量的70%,则需开采约(参考数107≈)()A.3年B.4年C.5年D.6年9.在平行四边形ABCD 中,4AB =,3AD =,13AE EB = ,2DF FC = ,且6BF CE ⋅=-,则平行四边形ABCD 的面积为()A.5B.5C.245D.12510.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,如图是该算法的程序框图,如果输入99a =,231b =,则输出的a 是()A.23 B.33C.37D.4211.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,π0ϕ-<<)的部分图象如图所示,下列说法中错误的是()A.函数()f x 的图象关于点2π,03⎛⎫- ⎪⎝⎭对称B.函数()f x 的图象关于直线11π12x =-对称C.函数()f x 在ππ,42⎡⎤⎢⎥⎣⎦上单调递增D.函数()f x 的图象向右平移π3个单位可得函数2sin2y x =-的图象12.若e 是自然对数的底数,()e ln x x m >+,则整数m 的最大值为()A.0B.1C.2D.3二、填空题:本题共4小题,每小题5分,共20分。
汕头市金山中学高三上学期期末考试高三理科数学试卷一﹑选择题(每小题5分,共40分)1.已知集合⎭⎬⎫⎩⎨⎧≥-=0)1(3x xx M ,{}R x x y y N ∈+==,132,则M ⋂N = A. ∅ B. {}1≥x x C. {}1>x x D. {}01<≥x x x 或 2.若)(x f 为奇函数且在+∞,0()上递增,又0)2(=f ,则0)()(>--xx f x f 的解集是A.)2,0()0,2(⋃-B.)2,0()2,(⋃-∞C.),2()0,2(+∞⋃-D.),2()2,(+∞⋃--∞3.已知向量a ,b 满足4,1==b a ,且2=⋅b a ,则a 与b 的夹角为A.6πB.4πC.3πD.2π4.已知2tan sin 3,0,cos()26ππαααα⋅=-<<-则的值是 A .0 B .32 C .1 D .125.在等差数列中,21232a a +=,则的值是A. 24B. 48C. 96D. 无法确定6.在O 点测量到远处有一物体在做匀速直线运动,开始时该物体位于P 点,一分钟后,其位置在Q,点且∠POQ =90°,再过二分钟后,该物体位于R 点,且∠QOR =60°,则tan 2∠OPQ 的值等于A .427B .239C .49D .以上均不正确7.已知函数()223a bx ax x x f +++=在1=x 处有极值为10,则()2f 的值等于A.9B.11C.18D. 11或188.已知x 1是方程2010lg =x x 的根,x 2是方程201010=⋅x x 的根,则x 1·x 2=A .22010B .C . 22011D .二﹑填空题(每小题5分,共30分)9.已知等比数列{}n a ,前n 项和为c S nn +=3,其中c 是常数,则数列通项=n a *** . ⒑ 若平面向量a ,b 满足1=+b a ,b a +平行于x 轴,)1,2(-=b ,则a = *** . ⒒如图中的三个直角三角形是一个体积为20cm 3的几何体的三视图,则h = *** cm .}{n a 1532a a +OM12π56πxy12.如图是函数在一个 周期内的图象,、分别是最大、最小值点,且,则= *** , A= *** . 13.设b 3是a -1和a +1的等比中项,则b a 3+的最大值是 *** .⒕已知函数)(x f 满足:),)(()()()(4,41)1(R y x y x f y x f y f x f f ∈-++==, 则=)2010(f *** .三、解答题(共80分)15. 在ABC ∆中,内角,,A B C 的对边分别为c b a ,,,3π=B, 4cos ,5A b ==。
安平中学2021-2021学年下学期期末考试高三数学试题〔理〕本套试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部,一共150分。
考试时间是是120分钟第一卷〔选择题〕一、选择题:本大题一一共12小题,每一小题5分,满分是60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 A. (1,)2π B. (1,)2π-C. (1,0)D. (1,π)【答案】B 【解析】【详解】由题圆2sin ρθ=-,那么可化为直角坐标系下的方程,22sin ρρθ=-,222x y y +=-,2220x y y ++=,圆心坐标为〔0,-1〕,那么极坐标为1,2π⎛⎫- ⎪⎝⎭,应选B.考点:直角坐标与极坐标的互化. 【此处有视频,请去附件查看】2.假设一直线的参数方程为0012x x t y y ⎧=+⎪⎪⎨⎪=⎪⎩〔t 为参数〕,那么此直线的倾斜角为〔〕A. 60︒B. 120︒C. 30D. 150︒【答案】B 【解析】 【分析】消去参数t 转为普通方程,求得直线的斜率,进而求得倾斜角.【详解】消去参数t 00y y ++,故斜率为120,应选B. 【点睛】本小题主要考察直线的参数方程转化为普通方程,考察直线的斜率和倾斜角,属于根底题.3.函数|1||2|y x x =++-的最小值及获得最小值时x 的值分别是〔〕 A. 1,[1,2]x ∈-B. 3,0C. 3,[1,2]x ∈-D. 2,[]1,2x ∈【答案】C 【解析】【分析】利用绝对值不等式,求得函数的最小值,并求得对应x 的值.【详解】依题意12123y x x x x =++-≥++-=,当且仅当()()120x x +-≥,即12x -≤≤时等号成立,应选C.【点睛】本小题主要考察绝对值不等式,以及绝对值不等式等号成立的条件,属于根底题.4.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取一样的长度单位,直线l 的参数方程是13x t y t =+⎧⎨=-⎩〔t 为参数〕,圆C 的极坐标方程是4cos ρθ=,那么直线l 被圆C 截得的弦长为〔 〕B.D.【答案】D 【解析】 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的间隔 d=直线l 被圆C 截得的弦长为=【点睛】(1)此题主要考察参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握程度和分析推理计算才能.(2) 求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =.5.假设不等式24ax +<的解集为()1,3-,那么实数a 等于〔〕 A. 8 B. 2C. -4D. -2【答案】D 【解析】 【分析】根据绝对值不等式的解法化简24ax +<,结合其解集的情况求得a 的值.【详解】由24ax +<得424,62ax ax -<+<-<<.当0a >时6123aa ⎧-=-⎪⎪⎨⎪=⎪⎩,无解.当0a <时,2163aa⎧=-⎪⎪⎨⎪-=⎪⎩,解得2a =-,应选D.【点睛】本小题主要考察绝对值不等式的解法,考察分类讨论的数学思想方法,属于根底题.1cos {2sin x y θθ=-+=+,〔θ为参数〕的对称中心〔 〕A. 在直线2y x =上B. 在直线2y x =-上C. 在直线1y x =-上D. 在直线1y x =+上【答案】B 【解析】试题分析:参数方程所表示的曲线为圆心在,半径为1的圆,其对称中心为,逐个代入选项可知,点满足,应选B.考点:圆的参数方程,圆的对称性,点与直线的位置关系,容易题. 【此处有视频,请去附件查看】7.“2a =〞是“关于x 的不等式1+2x x a ++<的解集非空〞的〔 〕 A. 充要条件 B. 必要不充分条件 C. 充分不必要条件 D. 既不充分又不必要条件【答案】C 【解析】试题分析:解:因为()1+2121x x x x ++≥+-+=, 所以由不等式1+2x x a ++<的解集非空得:1a >所以,“2a =〞是“关于x 的不等式1+2x x a ++<的解集非空〞的充分不必要条件, 应选C.考点:1、绝对值不等式的性质;2、充要条件.8.过椭圆C :2cos 3x y θθ=⎧⎪⎨=⎪⎩〔θ为参数〕的右焦点F 作直线l :交C 于M ,N 两点,MF m =,NF n =,那么11m n +的值是〔〕 A. 23B. 43C. 83D. 不能确定 【答案】B【分析】消去参数得到椭圆的普通方程,求得焦点坐标,写出直线l 的参数方程,代入椭圆的普通方程,写出韦达定理,由此求得11m n+的值. 【详解】消去参数得到椭圆的普通方程为22143x y +=,故焦点()1,0F ,设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩〔α为参数〕,代入椭圆方程并化简得()223sin 6cos 90t t αα++⋅-=.故1212226cos 9,03sin 3sin t t t t ααα+=-⋅=-<++〔12,t t 异号〕.故11m n m n mn ++=1212t t t t -===⋅43.应选B. 【点睛】本小题主要考察椭圆的参数方程化为普通方程,考察直线和椭圆的位置关系,考察利用直线参数的几何意义解题,考察化归与转化的数学思想方法,属于中档题.9.假设2a >,那么关于x 的不等式12x a -+>的解集为〔〕 A. {}3|x x a >- B. {}1|x x a >-C. ΦD. R【答案】D 【解析】 【分析】根据2a >求得2a -的取值范围,由此求得不等式的解集.【详解】原不等式可化为12x a ->-,由于2a >,故20a -<,根据绝对值的定义可知12x a ->-恒成立,故原不等式的解集为R .应选D.【点睛】本小题主要考察绝对值不等式的解法,考察不等式的运算,属于根底题.10.a ,b ,0c >,且1ab c ++=A. 3B.C. 18D. 9【答案】B【分析】先利用柯西不等式求得2的最大值,由此求得.【详解】由柯西不等式得:()2222222111⎡⎤≤++++⎢⎥⎣⎦()33318a b c=⨯+++=⎡⎤⎣⎦≤13a b c===时,等号成立,应选B.【点睛】本小题主要考察利用柯西不等式求最大值,属于根底题.11.点〔x,y〕满足曲线方程4{6xyθθ==〔θ为参数〕,那么yx的最小值是〔〕B.32D. 1【答案】D【解析】消去参数可得曲线的方程为:()()22462x y-+-=,其轨迹为圆,目的函数y yx x-=-表示圆上的点与坐标原点连线的斜率,如下图,数形结合可得:yx的最小值是1.此题选择D选项.点睛:(1)此题是线性规划的综合应用,考察的是非线性目的函数的最值的求法. (2)解决这类问题的关键是利用数形结合的思想方法,给目的函数赋于一定的几何意义.12.x 为实数,且|5||3|x x m -+-<有解,那么m 的取值范围是〔 〕 A. 1m B. m 1≥C. 2m >D. 2m ≥【答案】C 【解析】 【分析】求出|x ﹣5|+|x ﹣3|的最小值,只需m 大于最小值即可满足题意.【详解】53x x m -+-<有解,只需m 大于53x x -+-的最小值,532x x -+-≥,所以2m >,53x x m -+-<有解. 应选:C .【点睛】此题考察绝对值不等式的解法,考察计算才能,是根底题.第二卷〔非选择题〕二、填空题〔一共4题每一小题5分满分是20分〕 13.|a +b|<-c(a ,b ,c∈R ),给出以下不等式:①a<-b -c ;②a>-b +c ;③a<b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号). 【答案】①②④ 【解析】 【分析】先根据绝对值不等式的性质可得到c <a+b <﹣c ,进而可得到﹣b+c <a <﹣b ﹣c ,即可验证①②成立,③不成立,再结合|a+b|<﹣c ,与|a+b|≥|a|﹣|b|,可得到|a|﹣|b|<﹣c 即|a|<|b|﹣c 成立,进而可验证④成立,⑤不成立,从而可确定答案. 【详解】∵|a+b|<-c ,∴c<a +b <-c. ∴a<-b -c ,a >-b +c ,①②成立且③不成立. ∵|a|-|b|≤|a+b|<-c , ∴|a|<|b|-c ,④成立且⑤不成立.【点睛】此题主要考察不等式的根本性质.考察根底知识的综合运用.14.在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=与sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,那么曲线1C 和2C 交点的直角坐标为________. 【答案】()1,1 【解析】 【分析】联立两条曲线的极坐标方程,求得交点的极坐标,然后转化为直角坐标.【详解】由2sin cos sin 1ρθθρθ⎧=⎨=⎩,解得π4ρθ⎧=⎪⎨=⎪⎩,故ππcos 1,sin 144x y ρρ====,故交点的直角坐标为()1,1. 故答案为()1,1【点睛】本小题主要考察极坐标下两条曲线的交点坐标的求法,考察极坐标和直角坐标互化,属于根底题.15.不等式32x x +>-的解集是_____. 【答案】1|2x x ⎧⎫>-⎨⎬⎩⎭【解析】 【分析】利用两边平方的方法,求出不等式的解集.【详解】由32x x +>-两边平方并化简得105x >-,解得12x >-,故原不等式的解集为1|2x x ⎧⎫>-⎨⎬⎩⎭.故答案为1|2x x ⎧⎫>-⎨⎬⎩⎭【点睛】本小题主要考察含有绝对值的不等式的解法,属于根底题.16.238x y z ++=,那么222x y z ++获得最小值时,x ,y ,z 形成的点(,,)x y z =________.【答案】8124,,777⎛⎫ ⎪⎝⎭ 【解析】 【分析】利用柯西不等式求得222x y z ++的最小值,并求得此时,,x y z 的值.【详解】由于()()()22222222312364x y z x y z ++++≥++=,故222x y z ++6432147≥=.当且仅当8124,,777x y z ===时等号成立,故(,,)x y z =8124,,777⎛⎫⎪⎝⎭.故答案为8124,,777⎛⎫⎪⎝⎭【点睛】本小题主要考察利用柯西不等式求最值,并求等号成立的条件,属于根底题.三.解答题:〔解答题应写出必要的文字说明和演算步骤,17题10分,18-22每一小题12分〕17.在直角坐标系xOy 中,圆C 的参数方程为32cos 42sin x y αα=+⎧⎨=-+⎩〔α为参数〕.〔1〕以原点为极点、x 轴正半轴为极轴建立极坐标系,求圆C 的极坐标方程; 〔2〕()2,0A -,()0,2B ,圆C 上任意一点(),M x y ,求ABM 面积的最大值.【答案】〔1〕26cos 8sin 210ρρθρθ-++=〔2〕9+【解析】 【分析】〔1〕消去参数α,将圆C 的参数方程,转化为普通方程,利用cos ,sin x y ρθρθ==求得圆C 的极坐标方程.〔2〕利用圆的参数方程以及点到直线的间隔 公式,求得M 到直线AB 的间隔 ,由此求得三角形ABM 的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【详解】解:〔1〕圆C 的参数方程为32cos 42sin x y αα=+⎧⎨=-+⎩〔α为参数〕,所以其普通方程为()()22344x y -++=,所以圆C 的极坐标方程为26cos 8sin 210ρρθρθ-++=. 〔2〕点(),M x y 到直线AB :20x y -+=的间隔d =故ABM 的面积1|||2cos 2sin 9|924S AB d πααα⎛⎫=⨯⨯=-+=-+ ⎪⎝⎭,所以ABM 面积的最大值为9+【点睛】本小题主要考察参数方程转化为普通方程,考察直角坐标方程转化为转化为极坐标方程,考察利用参数的方法求三角形面积的最值,考察点到直线间隔 公式,属于中档题.18.设函数()31f x x x =+--.〔1〕解不等式()0f x ≥; 〔2〕假设()21f x x m +-≥对任意的实数x 均成立,求m 的取值范围.【答案】〔1〕{|1}x x ≥-〔2〕4m ≤【解析】【分析】〔1〕利用零点分段法去绝对值,分类讨论求得不等式()0f x ≥的解集.或者者用两边平方的方法求得不等式的解集.〔2〕利用绝对值不等,求得()21f x x +-的最小值,由此求得m 的取值范围.【详解】〔1〕解:()0f x ≥等价于31x x +≥-,当1x >时,31x x +≥-等价于31x x +≥-,即31≥-,不等式恒成立,故1x >; 当31x -≤≤时,31x x +≥-等价于31x x +≥-,解得1x ≥-,故11x -≤≤; 当3x <-时,31x x +≥-等价于31x x --≥-,即31-≥,无解.综上,原不等式的解集为{|1}x x ≥-.又解:()0f x ≥等价于31x x +≥-,即()()2231x x +≥-,化简得88x ≥-,解得1x ≥-,即原不等式的解集为{|1}x x ≥-.〔2〕()()21312131314f x x x x x x x x x +-=+--+-=++-≥+--=, 当且仅当()()310x x +-≤等号成立要使()21f x x m +-≥对任意的实数x 均成立,那么()min |21|f x x m ⎡⎤⎣⎦+-≥,所以4m ≤.【点睛】本小题主要考察分类讨论法解绝对值不等式,考察含有绝对值函数的最值的求法,考察恒成立问题的求解策略,属于中档题.19.在极坐标系中,曲线1C :2cos ρθ=和曲线2C :cos 3ρθ=,以极点O 为坐标原点,极轴为x 轴非负半轴建立平面直角坐标系.〔1〕求曲线1C 和曲线2C 的直角坐标方程; 〔2〕假设点P 是曲线1C 上一动点,过点P 作线段OP 的垂线交曲线2C 于点Q ,求线段PQ 长度的最小值.【答案】(1)1C 的直角坐标方程为22(1)1x y -+=,2C 的直角坐标方程为3x =.(2)【解析】【分析】〔1〕极坐标方程化为直角坐标方程可得1C 的直角坐标方程为()2211x y -+=,2C 的直角坐标方程为3x =.〔2〕由几何关系可得直线PQ 的参数方程为2x tcos y tsin θθ=+⎧⎨=⎩〔t 为参数〕,据此可得2AP cos θ=,1AQ cos θ=,结合均值不等式的结论可得当且仅当12cos cos θθ=时,线段PQ 长度获得最小值为【详解】〔1〕1C 的极坐标方程即22cos ρρθ=,那么其直角坐标方程为222x y x +=, 整理可得直角坐标方程为()2211x y -+=, 2C 的极坐标方程化为直角坐标方程可得其直角坐标方程为3x =.〔2〕设曲线1C 与x 轴异于原点的交点为A ,∵PQ OP ⊥,∴PQ 过点()2,0A ,设直线PQ 的参数方程为2x tcos y tsin θθ=+⎧⎨=⎩〔t 为参数〕, 代入1C 可得220t tcos θ+=,解得10t =或者22t cos θ=-, 可知22AP t cos θ==,代入2C 可得23tcos θ+=,解得1't cos θ=,可知1'AQ t cos θ==, 所以1222PQ AP AQ cos cos θθ=+=+≥, 当且仅当12cos cos θθ=时取等号, 所以线段PQ 长度的最小值为22.【点睛】直角坐标方程转为极坐标方程的关键是利用公式cos sin x y ρθρθ=⎧⎨=⎩,而极坐标方程转化为直角坐标方程的关键是利用公式222tan x y y x ρθ⎧=+⎪⎨=⎪⎩,后者也可以把极坐标方程变形尽量产生2ρ,cos ρθ,sin ρθ以便转化另一方面,当动点在圆锥曲线运动变化时,我们可以用一个参数θ来表示动点坐标,从而利用一元函数求与动点有关的最值问题.20.函数()1f x x x =+-.(1)假设()1f x m ≥-恒成立,务实数m 的最大值;(2)记(1)中的m 最大值为M ,正实数a ,满足22a b M +=,证明: 2a b ab +≥.【答案】(1)2;(2)详见解析.【解析】【分析】〔1〕根据绝对值三解不等式求出f 〔x 〕的最小值为1,从而得出|m ﹣1|≤1,得出m 的范围; 〔2〕两边平方,使用作差法证明.【详解】(1)由()210101211x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩ 得()1min f x =,要使()1f x m ≥-恒成立,只要11m ≥-,即02x ≤≤,实数m 的最大值为2;(2)由(1)知222a b +=,又222a b ab +≥故1ab ≤, ()2222222424a b a b a b ab a b +-=++-()()222242121ab a b ab ab =+-=--+,01ab <≤,()()()222421210a b a b ab ab ∴+-=--+≥2a b ab ∴+≥.【点睛】此题考察了绝对值不等式的解法,不等式的证明,属于中档题.21.曲线C :2cos ρθ=,直线l :23324x t y t =-⎧⎪⎨=+⎪⎩〔t 是参数〕. 〔1〕写出曲线C 的参数方程,直线l 的普通方程;〔2〕过曲线C 上任一点P 作与l 夹角为45︒的直线,交l 于点A ,求PA 的最大值与最小值.【答案】〔1〕1cos sin x y θθ=+⎧⎨=⎩(θ为参数);34120x y +-=〔2〕最大值为5,最小值为5【解析】【分析】〔1〕将2cos ρθ=两边乘以ρ,转化为直角坐标方程,配成圆的HY 方程后写出圆C 的参数方程.消去直线参数方程的参数t ,求得直线l 的普通方程.〔2〕利用圆的参数方程,设出曲线上任意一点P 的坐标,并求得P 到直线l 的间隔 d .将PA 转为sin 45d PA ==︒,根据三角函数最值的求法,求得PA 的最大值与最小值. 【详解】解:曲线C :2cos ρθ=,可得22cos ρρθ=,所以222x y x +=,即:22(1)1x y -+=,曲线C 的参数方程,1cos sin x y θθ=+⎧⎨=⎩,θ为参数. 直线l :23324x t y t =-⎧⎪⎨=+⎪⎩〔t 是参数〕. 消去参数t ,可得:34120x y +-=.〔2〕曲线C 上任意一点1co ()s ,sin P θθ+到l 的间隔 为1|3cos 4sin 9|5d θθ=+-.那么()9sin 45d PA θϕ===+-︒,其中ϕ为锐角,且3tan 4ϕ=. 当sin()1θφ+=-时,PA. 当sin()1θφ+=时,PA获得最小值,最小值为5. 【点睛】本小题主要考察极坐标方程转为直角坐标方程,考察参数方程和普通方程互化,考察点到直线的间隔 公式,考察三角函数最值的求法,考察化归与转化的数学思想方法,属于中档题.22.函数()1||2f x x x a -=-+,0a >〔1〕假设1a =时,求不等式()1f x >的解集;〔2〕假设()f x 的图象与x 轴围成的三角形面积小于6,求a 的取值范围.【答案】〔1〕2|23x x ⎧⎫-<<-⎨⎬⎩⎭〔2〕()0,2【解析】【分析】〔1〕利用零点分段法分类讨论的数学思想,求得不等式()1f x >的解集.〔2〕先用零点分段法去绝对值,将()f x 转化为分段函数的形式,求得()f x 的图象与x 轴三个交点的坐标,由此求得所围成三角形面积的表达式,根据面积小于6列不等式,解不等式求得a 的取值范围. 【详解】解:〔1〕当1a =时,()1f x >,化为:|1|2|1|10x x --+->,①, 当1x ≤-时,①式化为:20x +>,解得:21x -≤<-,当11x -<<时,①式化为:320x -->,解得213x -<<-, 当1x ≥时,①式化为:40x -->,无解,∴()1f x >的解集是2|23x x ⎧⎫-<<-⎨⎬⎩⎭; 〔2〕由题设可得:21,()312,112,1x a x a f x x a a x x a x ++<-⎧⎪=-+--≤≤⎨⎪--->⎩∴函数()f x 的图象与x 轴围成的三角形的三个顶点分别为:,(20)1A a --,,()1B a a +-,12,03a C -⎛⎫ ⎪⎝⎭, ∴21442(1)(1)233ABC a S a a +=⨯⨯+=+△, 由题设可得:22(1)63a +<,解得:02a <<, 故a 的范围是()0,2.【点睛】本小题主要考察零点分段法解绝对值不等式,考察三角形的面积公式和一元二次不等式的的解法,属于中档题.。
清华大学附属中学高三期末考试理科数学试题及答案数学(理科)试卷说明:本试卷分第І卷(选择题)和第П卷(非选择题)两部份。
满分160分。
考试时刻120分钟。
第І卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分。
一、已知甲、乙两个样本(样本容量一样大),若甲样本的方差是,乙样本的方差是,那么比较甲、乙两个样本的波动大小的结果是 ( ) A .甲样本的波动比乙大 B .乙样本的波动比甲大 C .甲、乙的波动一样大 D .无法比较 二、 “3x >”是“24x >”的 ( )A .必要不充分条件B .充分没必要要条件C .充分必要条件D .既不充分也没必要要条件 3、已知向量()()8,3,,2,6,5m a n b ==,若//m n ,则a b +的值为 ( ) A .0B .52C .8D .2124、复数z 知足方程224z i z i ++-=,z 对应点的轨迹是 ( )A .一条直线B .椭圆C .一个圆D .线段五、已知在平行六面体1111ABCD A B C D -中,14,3,5,90AB AD AA BAD ===∠=,1160BAA DAA ∠=∠=,则1AC 等于( )A .85B .85C .52D .50六、已知32()26f x x x m =-+(m 为常数),在[2,2]-上有最大值3,那么此函数 在[2,2]-上的最小值为 ( ) A .37- B . 29- C . 5- D . 11-7、已知椭圆22ax +y 2=1(a>1)的两个核心为F 1、F 2,P 为椭圆上一点,且∠F 1PF 2=60°,则|PF 1|·|PF 2|的值为 ( ) A .1B .31 C .34 D .32 八、函数322()f x x ax bx a =+++在1x =时有极值10,则a 的值为 ( )A .43a a ==-或B .4a =C .43a a =-=或D .3a =-九、已知点F 1、F 2别离是双曲线2222by a x -=1的左、右核心,过F 1且垂直于x 轴的直线与双曲线交于A 、B 两点,若△ABF 2为锐角三角形,则该双曲线的离心率e 的取值范围是 ( ) A .(1,+∞)B .(1,3)C .(2-1,1+2)D .(1,1+2)10、过抛物线x y =2的核心F 的直线m 的倾斜角m ,4πθ≥交抛物线于A 、B 两点,且A 点在x轴上方,则|FA|的取值范围是( )A .]221,41(+B .)1,41[C .]1,41(D .),21(+∞ 第П卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分。
实验2021-2021学年度上学期期末考试制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日高三理科数学试题第一卷选择题〔一共60分〕一、选择题〔一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个选项是符合题目要求的〕1.集合A=,B=,那么A B中元素的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,根据直线与圆的位置关系,即可求解集合中元素的个数,得到答案。
【详解】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又由圆与直线相交于两点,那么中有两个元素,应选C.【点睛】求集合的根本运算时,要认清集合元素的属性(是点集、数集或者其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2.,是虚数单位,假设,,那么〔〕A. 1或者B. 或者C.D.【答案】A【解析】由得,所以,应选A.【名师点睛】复数的一共轭复数是,据此结合条件,求得的方程即可.3.某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图复原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,那么AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.应选:.4.函数的最小正周期为〔〕A. B. C. D.【答案】C【解析】分析:根据正弦函数的周期公式直接求解即可.详解:由题函数的最小正周期应选C.点睛:此题考察正弦函数的周期,属根底题.5.展开式中x2的系数为A. 15B. 20C. 30D. 35【答案】C【解析】因为,那么展开式中含的项为,展开式中含的项为,故的系数为,选C.【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含的项一共有几项,进展相加即可.这类问题的易错点主要是未能分析清楚构成这一项的详细情况,尤其是两个二项展开式中的不同.6.椭圆的离心率是A. B. C. D.【答案】D【解析】【分析】根据椭圆的方程求得,得到,再利用离心率的定义,即可求解。
海淀区高三年级第二学期期末练习数 学 (理)参考答案及评分标准 .5说明: 合理答案均可酌情给分,但不得超过原题分数.第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分)题号 1 2 3 4 5 6 7 8 答案BADCABAD第Ⅱ卷(非选择题 共110分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) 9.1 10.< 11.2 ;10 12.48 13.2 14.;84.三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,由2446,10a a S +==,可得11246434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,………………………2分即1123235a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,………………………4分∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =.………………………5分 (Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅,………………………7分又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅, …………………9分 两式相减得2311(22222)2n n n n T n -+-=+++++-⋅………………………11分()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,………………………12分 ∴1(1)22n n T n +=-⋅+.………………………13分16.(本小题满分14分)(Ⅰ)证明:连结AC 交BD 于O ,连结OM , ABCD 底面为矩形,O AC ∴为中点,………… 1分M N PC 、为侧棱的三等分点, CM MN ∴=,//OM AN ∴ ,………… 3分,OM MBD AN MBD ⊂⊄平面平面,//AN MBD ∴平面.………… 4分 (Ⅱ)如图所示,以A 为原点,建立空间直角坐标系A xyz -,则(0,0,0)A ,(3,0,0)B ,(3,6,0)C ,(0,6,0)D ,(0,0,3)P ,(2,4,1)M ,(1,2,2)N , (1,2,2),(0,6,3)AN PD ==-,………………………5分025cos ,335AN PDAN PD AN PD⋅+∴<>===⨯,………………………7分∴异面直线AN 与PD 25.………………………8分 (Ⅲ)侧棱PA ABCD ⊥底面,(0,0,3)BCD AP ∴=平面的一个法向量为,………………………9分 设MBD 平面的法向量为(,,)x y z =m ,(3,6,0),(1,4,1)BD BM =-=-,并且,BD BM ⊥⊥m m ,PAB CD MNzyPADM NO36040x y x y z -+=⎧∴⎨-++=⎩,令1y =得2x =,2z =-, ∴MBD 平面的一个法向量为(2,1,2)=-m.………………………11分2cos ,3AP AP AP ⋅<>==-m m m,………………………13分由图可知二面角M BD C --的大小是锐角, ∴二面角M BD C --大小的余弦值为23..………………………14分17. (本小题满分13分)解:(Ⅰ)设“4人恰好选择了同一家公园”为事件A . (1)分每名志愿者都有3种选择,4名志愿者的选择共有43种等可能的情况 . …………………2分 事件A 所包含的等可能事件的个数为3,…………………3分 所以,()431327P A ==. 即:4人恰好选择了同一家公园的概率为127.………………5分(Ⅱ)设“一名志愿者选择甲公园”为事件C ,则()13P C =..………………………6分4人中选择甲公园的人数X 可看作4次重复试验中事件C 发生的次数,因此,随机变量X 服从二项分布.X 可取的值为0,1,2,3,4..………………………8分()4412()()33i i iP X i C -==, 0,1,2,3,4i =..………………………10分 X0 1 23 4 P1681 32812481 881 181.………………………12分X 的期望为()14433E X =⨯=..………………………13分18.(本小题满分13分)解法一:(Ⅰ)依题意得2()(2)e x f x x x =-,所以2()(2)e x f x x '=-, .………………………1分 令()0f x '=,得2x =±.………………………2分()f x ',()f x 随x 的变化情况入下表:x(,2)-∞-2-(2,2)-2(2,)+∞()f x ' - 0 + 0 -()f x极小值极大值………………………4分由上表可知,2x =()f x 的极小值点,2x ()f x 的极大值点.………………………5分(Ⅱ) 22()[(22)2]e ax f x ax a x a '=-+-+,.………………………6分由函数()f x 在区间(2,2)上单调递减可知:()0f x '≤对任意(2,2)x ∈恒成立,.………………………7分当0a =时,()2f x x '=-,显然()0f x '≤对任意(2,2)x ∈恒成立; .…………………8分当0a >时,()0f x '≤等价于22(22)20ax a x a ---≥,因为(2,2)x ∈,不等式22(22)20ax a x a ---≥等价于2222a x x a--≥,.………………………9分令2(),[2,2]g x x x x =-∈,则22()1g x x'=+,在[2,2]上显然有()0g x '>恒成立,所以函数()g x 在[2,2]单调递增, 所以()g x 在[2,2]上的最小值为(2)0g =,.………………………11分由于()0f x '≤对任意(2,2)x ∈恒成立等价于2222a x x a --≥对任意(2,2)x ∈恒成立,需且只需2min22()a g x a -≥,即2220a a-≥,解得11a -≤≤,因为0a >,所以01a <≤. 综合上述,若函数()f x 在区间(2,2)上单调递减,则实数a 的取值范围为01a ≤≤..………………………13分解法二:(Ⅰ)同解法一(Ⅱ)22()[(22)2]e ax f x ax a x a '=-+-+,.………………………6分由函数()f x 在区间(2,2)上单调递减可知:()0f x '≤对任意(2,2)x ∈恒成立, 即22(22)20ax a x a ---≥对任意(2,2)x ∈恒成立, (7)分当0a =时,()2f x x '=-,显然()0f x '≤对任意(2,2)x ∈恒成立;…………………8分当0a >时,令22()(22)2h x ax a x a =---,则函数()h x 图象的对称轴为21a x a-=,.………………………9分 若210a a-≤,即01a <≤时,函数()h x 在(0,)+∞单调递增,要使()0h x ≥对任意(2,2)x ∈恒成立,需且只需(2)0h ≥,解得11a -≤≤,所以01a <≤;..………………………11分若210a a->,即1a >时,由于函数()h x 的图象是连续不间断的,假如()0h x ≥对任意(2,2)x ∈恒成立,则有(2)0h ≥,解得11a -≤≤,与1a >矛盾,所以()0h x ≥不能对任意(2,2)x ∈恒成立.综合上述,若函数()f x 在区间(2,2)上单调递减,则实数a 的取值范围为01a ≤≤..………………………13分19.(本小题满分13分)解:(Ⅰ)由题意,抛物线2C 的方程为:24y x =,…………2分(Ⅱ)设直线AB 的方程为:(4),(0)y k x k k =-≠存在且. 联立2(4)4y k x y x=-⎧⎨=⎩,消去x ,得 24160ky y k --=,………………3分显然216640k ∆=+>,设1122(,),(,)A x y B x y ,则 124y y k += ①1216y y ⋅=- ②…………………4分 又12AM MB =,所以 1212y y =- ③…………………5分由①② ③消去12,y y ,得 22k =,故直线l 的方程为242,y x =-或242y x =-+ . (6)BM AF Py xO分(Ⅲ)设(,)P m n ,则OP 中点为(,)22m n, 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221nm k n k m ⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m k k n k ⎧=⎪⎪+⎨⎪=-⎪+⎩, (8)分将其代入抛物线方程,得:222288()411k k k k -=⋅++,所以,21k =. ………………………9分联立 2222(4)1y k x x y ab =-⎧⎪⎨+=⎪⎩,消去y ,得:2222222222()8160b a k x k a x a k a b +-+-=.………………………10分由2222222222(8)4()(16)0k a b a k a k a b ∆=--+-≥,得 242222216()(16)0a k b a k k b -+-≥,即222216a k b k +≥,…………………12分将21k =,221b a =-代入上式并化简,得 2217a ≥,所以34a ,即234a ≥ 因此,椭圆1C 34 ………………………13分20.(本小题满分14分) 解:(Ⅰ)由题意可得:1()cos ,[0,]f x x x π=∈ ,………………………1分 2()1,[0,]f x x π=∈.………………………2分(Ⅱ)21,[1,0)()0,[0,4]x x f x x ⎧∈-=⎨∈⎩,………………………3分 221,[1,1)(),[1,4]x f x x x ∈-⎧=⎨∈⎩,………………………4分22121,[1,0)()()1,[0,1),[1,4]x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩,………………………5分当[1,0]x ∈-时,21(1)x k x -≤+1k x ∴≥-,2k ≥; 当(0,1)x ∈时,1(1)k x ≤+11k x ∴≥+1k ∴≥; 当[1,4]x ∈时,2(1)x k x ≤+21x k x ∴≥+165k ∴≥.综上所述,165k ∴≥………………………6分即存在4k =,使得()f x 是[1,4]-上的4阶收缩函数.………………………7分(Ⅲ)()2()3632f x x x x x '=-+=--,令'()0f x =得0x =或2x =.函数()f x 的变化情况如下:令()0f x =,解得0x =或3.………………………8分ⅰ)2b ≤时,()f x 在[0,]b 上单调递增,因此,()322()3f x f x x x ==-+,()1()00f x f ==.因为32()3f x x x =-+是[0,]b 上的2阶收缩函数, 所以,①()()21()20f x f x x -≤-对[0,]x b ∈恒成立;②存在[]0,x b ∈,使得()()21()0f x f x x ->-成立.………………………9分①即:3232x x x -+≤对[0,]x b ∈恒成立, 由3232x x x -+≤,解得:01x ≤≤或2x ≥,要使3232x x x -+≤对[0,]x b ∈恒成立,需且只需01b <≤..………………………10分②即:存在[0,]x b ∈,使得()2310x x x -+<成立.由()2310x x x -+<得:0x <3535x -+<<, 所以,需且只需35b ->351b -<≤..………………………11分ⅱ)当2b >时,显然有3[0,]2b ∈,由于()f x 在[0,2]上单调递增,根据定义可得:2327()28f =,13()02f =, 可得 2133273()232282f f ⎛⎫-=>⨯= ⎪⎝⎭,此时,()()21()20f x f x x -≤-不成立..………………………13分351b -<≤.注:在ⅱ)中只要取区间(1,2)内的一个数来构例均可,这里用32只是因为简单而已.。
第一学期期末考试试卷高三数学(理科)考生须知1. 本试卷为闭卷考试;满分为150分;考试时间为120分钟.2. 本试卷共6页.各题答案均答在答题卡上.题号 一 二 三总分 15 16 17 18 19 20 分数第Ⅰ卷 选择题一、选择题:本大题共8个小题;每小题5分;共40分.在每小题给出的四个选项中;只有一项是符合题目要求的. 1.已知集合{}21M x x =∈≤Z ;{}12N x x =∈-<<R ;则MN =( )A . {}1,0,1-B .{}0,1C .{}1,0-D .{}12.已知复数1iz i=+;则复数z 的模为( ) A .22B 2C .12D .12+12i 3.一个几何体的三视图如右图所示(单位长度:cm ); 则此几何体的体积是( ) A .1123cm B .32243cm C .963cmD .2243cm4.从4名男同学和3名女同学中;任选3名同学参加体能测试; 则选出的3名同学中;既有男同学又有女同学的概率为( ) A .3512 B .3518 C .76 D .875.下列说法中;正确的是( ) A .命题“若22am bm <;则a b <”的逆命题是真命题B .命题“x R ∃∈;02>-x x ”的否定是:“x R ∀∈;02≤-x x ”O 2x1x yx12 m1NM MM A A (B )B A xyO图1图2图3C .命题“p 或q ”为真命题;则命题“p ”和命题“q ”均为真命题D .已知R x ∈;则“1x >”是“2x >”的充分不必要条件6.已知函数32()f x x bx cx =++的图象如图所示;则2221x x +等于( )A .32B .34 C .38D .3167.已知O 为坐标原点;点A ),(y x 与点B 关于x 轴对称;(0,1)j =;则满足不等式20OA j AB +⋅≤的点A 的集合用阴影表示为( )8.下图展示了一个由区间(0,1)到实数集R 的映射过程:区间(0,1)中的实数m 对应数轴上的点M (如图1);将线段AB 围成一个圆;使两端点A 、B 恰好重合(从A 到B 是逆时针;如图2);再将这个圆放在平面直角坐标系中;使其圆心在y 轴上;点A 的坐标为(0,1)(如图3);图3中直线AM 与x 轴交于点,0N n ;则m 的象就是n ;记作f m n .则下列命题中正确的是( ) A .114f ⎛⎫=⎪⎝⎭B .()f x 是奇函数C .()f x 在其定义域上单调递增D .()f x 的图象关于y 轴对称第Ⅱ卷 非选择题二、填空题:本大题共6个小题;每小题5分;共30分. 9.已知(,0)2πα∈-;3sin 5α=-;则cos()πα-= .10.阅读如图所示的程序框图;运行相应的程序;如果 输入100;则输出的结果为 ; 如果输入2-;则输出的结果为 .11.已知直线220x y -+=经过椭圆22221(0)x y a b a b+=>>的一个顶点和一个焦点;那么这个椭圆的方程为 ;离心率为_______.12.已知△ABC 的三边长分别为7AB =;5BC =; 6CA =;则AB BC ⋅的值为________. 13.120()x x dx -=⎰.14.已知函数399)(+=x x x f ;则(0)(1)f f += ;若112()()k S f f k k-=+31()()(2,k f f k k kk-+++≥∈Z);则1k S -= (用含有k 的代数式表示).三、解答题:本大题共6个小题;共80分.解答题应写出文字说明;证明过程或演算步骤. 15.(本小题满分13分)已知函数23cos sin sin 3)(2-+=x x x x f ()R x ∈. (Ⅰ)求)4(πf 的值;(Ⅱ)若)2,0(π∈x ;求)(x f 的最大值;(Ⅲ)在ABC ∆中;若B A <;21)()(==B f A f ;求ABBC 的值.16.(本小题满分13分)某地区举办科技创新大赛;有50件科技作品参赛;大赛组委会对这50件作品分别 从“创新性”和“实用性”两项进行评分;每项评分均按等级采用5分制;若设“创新性”得分为x ;“实用性”得分为y ;统计结果如下表:作品数量 yx实用性 1分2分 3分 4分 5分 创 新 性1分 1 3 1 0 1 2分 1 0 7 5 1 3分 2 10 9 34分 1 b6 0 a5分113(Ⅰ)求“创新性为4分且实用性为3分”的概率; (Ⅱ)若“实用性”得分的数学期望为16750;求a 、b 的值. 17.(本小题满分14分)已知直四棱柱ABCD A B C D ''''-;四边形ABCD 为正方形;'AA 22==AB ;E 为棱C C '的中点.(Ⅰ)求证:A E '⊥平面BDE ;(Ⅱ)设F 为AD 中点;G 为棱'BB 上一点;且14BG BB '=;求证:FG ∥平面BDE ; (Ⅲ)在(Ⅱ)的条件下求二面角G DE B --的余弦值.18.(本小题满分13分)已知椭圆C 中心在原点;焦点在x 轴上;焦距为2;短轴长为23 (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是椭圆的左、右顶点);且以MN 为直径的圆经过椭圆的右顶点A . 求证:直线l 过定点;并求出定点的坐标.19.(本小题满分13分) 已知函数ln ()()a xf x a R x+=∈. (Ⅰ)若4=a ;求曲线)(x f 在点))(,(e f e 处的切线方程; (Ⅱ)求)(x f 的极值;(Ⅲ)若函数)(x f 的图象与函数1)(=x g 的图象在区间],0(2e 上有公共点;求实数a 的取值范围.20.(本小题满分14分)如图111(,)P x y ;222(,)P x y ;;(,)n n n P x y ;12(0,)n y y y n N *<<<<∈是曲线2:3(0)C y x y =≥上的n 个点;点(,0)(1,2,3,,)i i A a i n =在x 轴的正半轴上;1i i i A A P -∆是正三角形(0A 是坐标原点) .(Ⅰ)求123,,a a a ;(Ⅱ)求出点n A (,0)(*)n a n N ∈的横坐标n a 关于n 的表达式; (Ⅲ)设12321111n n n n nb a a a a +++=++++;若对任意正整数n ;当[]1,1m ∈-时;不等式2126n t mt b -+>恒成立;求实数t 的取值范围.一学期期末考试试卷高三数学(理科)参考答案一、选择题:本大题共8个小题;每小题5分;共40分.题号 12345678答案B A BC B C C C二、填空题:本大题共6个小题;每小题5分;共30分.注:两空的题第1个空3分;第2个空2分.三、解答题:本大题共6个小题;共80分.解答题应写出文字说明;证明过程或演算步骤. 15.(本小题满分13分)解:(Ⅰ)234cos4sin4sin 3)4(2-+=ππππf 21=. ……………4分 (Ⅱ)2)2cos 1(3)(x x f -=+232sin 21-x x x 2cos 232sin 21-= )32sin(π-=x . ……………6分20π<<x ; 32323πππ<-<-∴x . ∴当232x ππ-=时;即125π=x 时;)(x f 的最大值为1. …………8分 (Ⅲ) )32sin()(π-=x x f ; 若x 是三角形的内角;则π<<x 0;∴35323π<π-<π-x .令21)(=x f ;得21)32sin(=π-x ;∴632π=π-x 或6532π=π-x ;题号91011121314答案 45- 2;32215x y +=;25519-13 1;12k -解得4π=x 或127π=x . ……………10分由已知;B A ,是△ABC 的内角;B A <且21)()(==B f A f ;∴4π=A ;127π=B ;∴6π=--π=B A C . ……………11分又由正弦定理;得221226sin 4sinsin sin ==ππ==C A AB BC . ……………13分16.(本小题满分13分)解:(Ⅰ)从表中可以看出;“创新性为4分且实用性为3分”的作品数量为6件;∴“创新性为4分且实用性为3分”的概率为60.1250=. …………4分 (Ⅱ)由表可知“实用性”得分y 有1分、2分、3分、4分、5分五个等级;且每个等级分别有5件;4b +件;15件;15件;8a +件. …………5分 ∴“实用性”得分y 的分布列为:y12345p550450b + 15501550850a + 又∵“实用性”得分的数学期望为16750; ∴541515816712345505050505050b a ++⨯+⨯+⨯+⨯+⨯=. ……………10分 ∵作品数量共有50件;∴3a b +=解得1a =;2b =. ……………………13分17.(本小题满分14分)解:(Ⅰ)∵四棱柱''''D C B A ABCD -为直四棱柱;∴ AC BD ⊥;A A BD '⊥;A A A AC =' ;∴ A ACE '⊥面BD . ∵ A ACE '⊂'面E A ; ∴ E A BD '⊥.∵ 51222=+='B A ;21122=+=BE ;3111222=++='E A ;∴ 222E A BE B A '+='. ∴ BE E A ⊥'.又∵ B BE BD = ;∴ BDE 面⊥'E A . ……………………4分(Ⅱ)以D 为原点;DA 为x 轴;DC 为y 轴;D D '为z 轴;建立空间直角坐标系.∴ )2,0,1(A ';)1,1,0(E ;)0,0,21(F ;)21,1,1(G . ∵ 由(Ⅰ)知:)11,1(--='E A 为面BDE 的法向量;)21,1,21(=FG ; ……………………6分 ∵ 021)1(11211=⨯-+⨯+⨯-='⋅E A FG . ∴ E A FG '⊥. 又∵FG ⊄面BDE ;∴ FG ∥面BDE . ……………………8分(Ⅲ) 设平面DEG 的法向量为),,(z y x n =;则 )1,1,0(=DE ;)21,1,1(=DG .∵ 0110=⨯+⨯+⨯=⋅z y x DE n ;即0=+z y . 02111=⨯+⨯+⨯=⋅z y x DG n ;即02=++zy x .令1=x ;解得:2-=y ;2=z ;∴ )2,2,1(-=n . ……………………12分 ∴ 935332)1()2(11)1(,cos -=⋅⨯-+-⨯+⨯-='⋅'>='<EA n E A n E A n . ∴ 二面角B DE G --的余弦值为935. ……………………14分 18.(本小题满分13分)解: (Ⅰ)设椭圆的长半轴为a ;短半轴长为b ;半焦距为c ;则22222,223,,c b a b c =⎧⎪=⎨⎪=+⎩解得 2,3,a b =⎧⎪⎨=⎪⎩ ∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ;得()2223484120k x kmx m +++-=. ………………… 6分 由题意△()()()22284344120km km=-+->;整理得:22340k m +-> ① ………………7分 设()()1122,,M x y N x y 、;则122834kmx x k+=-+; 212241234m x x k -=+ . ………………… 8分 由已知;AM AN ⊥; 且椭圆的右顶点为A (2,0); ∴()()1212220x x y y --+=.………………… 10分即 ()()()2212121240k x x km x x m ++-+++=;也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++; 整理得2271640m mk k ++=. 解得2m k =- 或 27km =-;均满足① ……………………… 11分 当2m k =-时;直线l 的方程为 2y kx k =-;过定点(2,0);不符合题意舍去;当27k m =-时;直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭;过定点2(,0)7;故直线l 过定点;且定点的坐标为2(,0)7. ……………………… 13分19.(本小题满分13分) 解:(Ⅰ) ∵4=a ; ∴x x x f 4ln )(+=且ee f 5)(=. ……………………… 1分 又∵22ln 3)4(ln )4(ln )(x xx x x x x x f --='+-'+=';∴223ln 4()e f e e e--'==-. ……………………… 3分∴)(x f 在点))(,(e f e 处的切线方程为:)(452e x ee y --=-; 即0942=-+e y e x . ……………………… 4分(Ⅱ))(x f 的定义域为),0(+∞;2)(ln 1)(xa x x f +-=';……………………… 5分 令0)(='x f 得ae x -=1.当),0(1ae x -∈时;0)(>'xf ;)(x f 是增函数;当),(1+∞∈-aex 时;0)(<'x f ;)(x f 是减函数; …………………… 7分∴)(x f 在ae x -=1处取得极大值;即11)()(--==a ae ef x f 极大值.……… 8分(Ⅲ)(i )当21e ea<-;即1->a 时;由(Ⅱ)知)(x f 在),0(1ae -上是增函数;在],(21e e a -上是减函数;∴当ae x -=1时;)(xf 取得最大值;即1max )(-=a e x f .又当ae x -=时;0)(=xf ;当],0(aex -∈时;0)(<x f ;当],(2e ex a-∈时;],0()(1-∈a e x f ;所以;)(x f 的图像与1)(=x g 的图像在],0(2e 上有公共点; 等价于11≥-a e;解得1≥a ;又因为1->a ;所以1≥a . ……………… 11分 (ii )当21e ea≥-;即1-≤a 时;)(x f 在],0(2e 上是增函数;∴)(x f 在],0(2e 上的最大值为222)(e ae f +=; ∴原问题等价于122≥+ea;解得22-≥e a ; 又∵1-≤a ∴无解综上;a 的取值范围是1≥a . ……………… 13分20.(本小题满分14分)解:(Ⅰ)1232,6,12a a a ===. …………………………… 3分(Ⅱ)依题意11(,0),(,0)n n n n A a A a --;则12n n n a a x -+=;n y =在正三角形1n n n P A A -中;有11||)n n n n n y A A a a --==-. 1)n n a a -=-. ………………………… 5分1n n a a -∴-=2211122()(2,*)n n n n n n a a a a a a n n N ---∴-+=+≥∈ ①;同理可得2211122()(*)n n n n n n a a a a a a n N +++-+=+∈ ②.②-①并变形得1111()(22)0(2,*)n n n n n a a a a a n n N +-+--+--=≥∈11n n a a +->;11220n n n a a a +-∴+--=11()()2(2,*)n n n n a a a a n n N +-∴---=≥∈ .∴数列{}1n n a a +-是以214a a -=为首项;公差为2的等差数列.12(1),(*)n n a a n n N +∴-=+∈ ;n a ∴12132431()()()()n n a a a a a a a a a -=+-+-+-++-; 2(123)n =++++2n n =+.(1)(*)n a n n n N ∴=+∈ …………… 8分 (Ⅲ)∵12321111(*)n n n n n b n N a a a a +++=++++∈; ∴1234221111(*)n n n n n b n N a a a a +++++=++++∈. 121221111n n n n n b b a a a ++++∴-=+-111(21)(22)(22)(23)(1)(2)n n n n n n =+-++++++ 22(221)(21)(22)(23)(2)n n n n n n -+-=++++. ∴当*n N ∈时;上式恒为负值;∴当*n N ∈时;1n n b b +<;∴数列{}n b 是递减数列.n b ∴的最大值为12116b a ==. ……………… 12分 若对任意正整数n ;当[]1,1m ∈-时;不等式2126n t mt b -+>恒成立; 则不等式211266t mt -+>在[]1,1m ∈-时恒成立; 即不等式220t mt ->在[]1,1m ∈-时恒成立.设2()2f m t mt =-;则(1)0f >且(1)0f ->;∴222020t t t t ⎧->⎪⎨+>⎪⎩ 解之;得 2t <-或2t >;即t 的取值范围是(,2)(2,)-∞-⋃+∞. …………………… 14分注:若有其它解法;请酌情给分.。
高三理科数学上册期末试卷及答案解析参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2,3,4},N={x|1A.{1}B.{2,3}C.{0,1}D.{2,3,4}【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,找出M与N的交集即可.【解答】解:由N中不等式变形得:log22=1解得:0∵M={0,1,2,3,4},MN={1},故选:A.2.已知aR,则|a﹣1|+|a|1是函数y=ax在R上为减函数的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】先求出不等式|a﹣1|+|a|1的解集,结合指数函数的性质判断充分必要性即可.【解答】解:a0时:|a﹣1|+|a|=1﹣a﹣a1,解得:a0,无解,0a1时:|a﹣1|+|a|=1﹣a+1=1,成立,a1时:|a﹣1|+|a|=2a﹣11,解得:a1,无解,故不等式的解集是a[0,1],若函数y=ax在R上为减函数,则a(0,1),故|a﹣1|+|a|1是函数y=ax在R上为减函数的必要不充分条件.3.已知向量=(2,3),=(﹣1,2),若﹣2 与非零向量m +n 共线,则等于()A.﹣2B.2C.﹣D.【考点】平面向量共线(平行)的坐标表示.【分析】先求出﹣2 和m +n ,再由向量共线的性质求解.【解答】解:∵向量=(2,3),=(﹣1,2),﹣2 =(2,3)﹣(﹣2,4)=(4,﹣1),m +n =(2m﹣n,3m+2n),∵ ﹣2 与非零向量m +n 共线,,解得14m=﹣7n,=﹣ .故选:C.4.如图是一个几何体的三视图,则这个几何体的表面积是()A.84B.C.D.【考点】由三视图求面积、体积.【分析】几何体为侧放的五棱柱,底面为正视图中的五边形,棱柱的高为4. 【解答】由三视图可知几何体为五棱柱,底面为正视图中的五边形,高为4. 所以五棱柱的表面积为(44﹣)2+(4+4+2+2+2 )4=76+48 .故选B.5.已知平面与平面交于直线l,且直线a,直线b,则下列命题错误的是()A.若,ab,且b与l不垂直,则alB.若,bl,则abC.若ab,bl,且a与l不平行,则D.若al,bl,则【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面平行或垂直以及平面和平面平行或者垂直的性质和判定定理进行判断即可.【解答】解:A.若,ab,且b与l不垂直,则al,正确B.若,bl,则b,∵a,ab,正确C.∵a与l不平行,a与l相交,∵ab,bl,b,则正确.D.若al,bl,不能得出,因为不满足面面垂直的条件,故D错误,故选:D6.已知函数f(x)=sin(2x+),其中为实数,若f(x)|f()|对xR恒成立,且f()f(),则f(x)的单调递增区间是()A.[k﹣,k+ ](kZ)B.[k,k+ ](kZ)C.[k+ ,k+ ](kZ)D.[k﹣,k](kZ)【考点】函数y=Asin(x+)的图象变换.【分析】由若对xR恒成立,结合函数最值的定义,我们易得f()等于函数的值或最小值,由此可以确定满足条件的初相角的值,结合,易求出满足条件的具体的值,然后根据正弦型函数单调区间的求法,即可得到答案.【解答】解:若对xR恒成立,则f()等于函数的值或最小值即2 +=k+ ,kZ则=k+ ,kZ又即sin0令k=﹣1,此时= ,满足条件令2x [2k﹣,2k+ ],kZ解得x故选C7.已知实数列{an}是等比数列,若a2a5a8=﹣8,则+ + ()A.有值B.有最小值C.有值D.有最小值【考点】等比数列的通项公式.【分析】先求出a5=﹣2,再由+ + =1+ + ,利用均值定理能求出+ + 有最小值 .【解答】解:∵数列{an}是等比数列,a2a5a8=﹣8,,解得a5=﹣2,+ + = + + =1+ + 1+2 =1+2 =1+2 = ,+ + 有最小值 .故选:D.8.已知F1,F2分别是双曲线C:﹣=1(a0,b0)的左、右焦点,其离心率为e,点B的坐标为(0,b),直线F1B与双曲线C的两条渐近线分别交于P、Q两点,线段PQ的垂直平分线与x轴,直线F1B的交点分别为M,R,若△RMF1与△PQF2的面积之比为e,则双曲线C的离心率为()A. B. C.2 D.【考点】双曲线的简单性质.【分析】分别求出P,Q,M的坐标,利用△RMF1与△PQF2的面积之比为e,|MF2|=|F1F2|=2c,可得3c=xM= ,即可得出结论.【解答】解:由题意,|OB|=b,|O F1|=c.kPQ= ,kMR=﹣ .直线PQ为:y= (x+c),与y= x.联立得:Q(,);与y=﹣x.联立得:P(,).PQ的中点为(,),直线MR为:y﹣=﹣(x﹣),令y=0得:xM= ,又△RMF1与△PQF2的面积之比为e,|MF2|=|F1F2|=2c,3c=xM= ,解之得:e2= ,e=故选:A.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知loga2=m,loga3=n,则a2m+n= 12 ,用m,n表示log46为. 【考点】对数的运算性质.【分析】利用指数、对数的性质、运算法则和换底公式求解.【解答】解:∵loga2=m,loga3=n,am=2,an=3,a2m+n=(am)2an=223=12,log46= = = .故答案为:12, .10.已知抛物线x2=4y的焦点F的坐标为(0,1),若M是抛物线上一点,|MF|=4,O为坐标原点,则MFO= 或.【考点】抛物线的简单性质.【分析】利用抛物线的方程与定义,即可得出结论.【解答】解:抛物线x2=4y的焦点在y轴上,且p=1,焦点坐标为(0,1);∵M是抛物线上一点,|MF|=4,M(2 ,3),M(2 ,3),kMF= = ,MFO=M(﹣2 ,3),kMF=﹣=﹣,MFO=故答案为:(0,1),或 .11.若函数f(x)= 为奇函数,则a= 0 ,f(g(﹣2))= ﹣25 .【考点】函数奇偶性的性质;函数的值.【分析】利用分段函数,结合函数的奇偶性,即可得出结论.【解答】解:由题意,a=f(0)=0.设x0,则﹣x0,f(﹣x)=x2﹣2x+1=﹣f(x),g(2x)=﹣x2+2x﹣1,g(﹣2)=﹣4,f(g(﹣2))=f(﹣4)=﹣16﹣8﹣1=﹣25.故答案为:0,﹣25.12.对于定义在R上的函数f(x),如果存在实数a,使得f(a+x)f(a﹣x)=1对任意实数xR恒成立,则称f(x)为关于a的倒函数.已知定义在R上的函数f (x)是关于0和1的倒函数,且当x[0,1]时,f(x)的取值范围为[1,2],则当x[1,2]时,f(x)的取值范围为[ ,1] ,当x[﹣2016,2016]时,f(x)的取值范围为[ ,2] .【考点】抽象函数及其应用.【分析】根据倒函数的定义,建立两个方程关系,根据方程关系判断函数的周期性,利用函数的周期性和函数的关系进行求解即可得到结论.【解答】解:若函数f(x)是关于0和1的倒函数,则f(x)f(﹣x)=1,则f(x)0,且f(1+x)f(1﹣x)=1,即f(2+x)f(﹣x)=1,即f(2+x)f(﹣x)=1=f(x)f(﹣x),则f(2+x)=f(x),即函数f(x)是周期为2的周期函数,若x[0,1],则﹣x[﹣1,0],2﹣x[1,2],此时1f(x)2∵f(x)f(﹣x)=1,f(﹣x)= [ ,1],∵f(﹣x)=f(2﹣x)[ ,1],当x[1,2]时,f(x)[ ,1].即一个周期内当x[0,2]时,f(x)[ ,2].当x[﹣2016,2016]时,f(x)[ ,2].故答案为:[ ,1],[ ,2].13.已知关于x的方程x2+ax+2b﹣2=0(a,bR)有两个相异实根,若其中一根在区间(0,1)内,另一根在区间(1,2)内,则的取值范围是. 【考点】一元二次方程的根的分布与系数的关系.【分析】由题意知,从而转化为线性规划问题求解即可.【解答】解:令f(x)=x2+ax+2b﹣2,由题意知,,作其表示的平面区域如下,,的几何意义是点A(1,4)与阴影内的点的连线的斜率,直线m过点B(﹣3,2),故km= = ;直线l过点C(﹣1,1),故kl= = ;结合图象可知,的取值范围是;故答案为: .14.若正数x,y满足x2+4y2+x+2y=1,则xy的值为.【考点】基本不等式.【分析】由题意和基本不等式可得1=x2+(2y)2+x+2y2x2y+2 ,解关于的一元二次不等式可得.【解答】解:∵正数x,y满足x2+4y2+x+2y=1,1=x2+4y2+x+2y=x2+(2y)2+x+2y2x2y+2 ,当且仅当x=2y时取等号.变形可得2()2+2 ﹣10,解得,结合0可得0 ,平方可得2xy()2= ,xy ,即xy的值为,故答案为:15.在△ABC中,BAC=10,ACB=30,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1,则在所有旋转过程中,直线B1C与直线AC1所成角的取值范围为[10,50] .【考点】异面直线及其所成的角.【分析】平移CB1到A处,由已知得B1CA=30,B1AC=150,0C1AC20,由此能求出直线B1C与直线AC1所成角的取值范围.【解答】解:∵在△ABC中,BAC=10,ACB=30,将直线BC绕AC旋转得到B1C,直线AC绕AB旋转得到AC1,如图,平移CB1到A处,B1C绕AC旋转,B1CA=30,B1AC=150,AC1绕AB旋转,0C1AC2CAB,0C1AC20,设直线B1C与直线AC1所成角为,则B1AC﹣C1ACB1AC+C1AC,∵130B1AC﹣C1AC150,150B1AC+C1AC170,1050或130170(舍).故答案为:[10,50].三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2 +sinA= . (Ⅰ)若满足条件的△ABC有且只有一个,求b的取值范围;(Ⅱ)当△ABC的周长取值时,求b的值.【考点】正弦定理;余弦定理.【分析】(Ⅰ)由条件利用三角恒等变换求得cosA 和sinA 的值,结合满足条件的△ABC有且只有一个可得a=bsinA 或ab,由此求得b的范围.(Ⅱ)△ABC的周长为a+b+c,利用余弦定理、基本不等式求得周长2+b+c 值为2+2 ,此时,b= =c.【解答】解:(Ⅰ)△ABC中,角A,B,C所对的边分别是a,b,c,且a=2,2cos2 +sinA= ,2 +sinA= ,即2 +sinA= ,cosA﹣sinA= ,平方可得sin2A= ,cosA+sinA= = ,求得cosA= ,sinA= (,),结合满足条件的△AB C有且只有一个,A(,). 且a=bsinA,即2= b,即b= ;或ab,即0(Ⅱ)由于△ABC的周长为a+b+c,由余弦定理可得22=b2+c2﹣2bc =(b+c)2﹣bc(b+c)2﹣= (b+c)2,b+c =2 ,当且仅当b=c时,取等号,此时,三角形的周长为2+b+c为2+2 ,故此时b= .17.如图,在多面体EF﹣ABCD中,ABCD,ABEF均为直角梯形,,DCEF为平行四边形,平面DCEF平面ABCD.(Ⅰ)求证:DF平面ABCD;(Ⅱ)若△ABD是等边三角形,且BF与平面DCEF所成角的正切值为,求二面角A﹣BF﹣C的平面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)推导出AB平面BCE,AB∥CD∥EF,从而CD平面BCE,进而CDCE,由CE∥DF,得CDDF,由此能证明DF平面ABCD.(Ⅱ)法1:过C作CHBE交BE于H,HKBF交BF于K,推导出HKC为C﹣BF﹣E的平面角,由此能求出二面角A﹣BF﹣C的平面角的余弦值.(Ⅱ)法2:以C为原点,CD,CB,CE所在直线为x,y,z轴,建立空间直角坐标系.不妨设CD=1,利用向量法能求出二面角A﹣BF﹣C的平面角的余弦值.【解答】证明:(Ⅰ)因为,所以AB平面BCE,又EF∥CD,所以EF∥平面ABCD,从而有AB∥CD∥EF,所以CD平面BCE,从而CDCE,又CE∥DF,所以CDDF,又平面DCEF平面ABCD,所以DF平面ABCD.解:(Ⅱ)解法1:过C作CHBE交BE于H,HKBF交BF于K,因为AB平面BCE,所以CHAB,从而CH平面ABEF,所以CHBF,从而BF平面CHK,所以BFKH即HKC为C﹣BF﹣E的平面角,与A﹣BF﹣C的平面角互补.因为BCDCEF,所以BF与平面DCEF所成角为BFC.由,所以2CB2=CD2+CE2,由△ABD是等边三角形,知CBD=30,所以令CD=a,所以, .所以, .所以二面角A﹣BF﹣C的平面角的余弦值为 .(Ⅱ)解法2:因为CB,CD,CE两两垂直,以C为原点,CD,CB,CE所在直线为x,y,z轴,如图建立空间直角坐标系.不妨设CD=1.因为BCDCEF,所以BF与平面DCEF所成角为BFC.由,所以2CB2=CD2+CE2,由△ABD是等边三角形,知CBD=30,所以,,平面ABF的一个法向量,平面CBF的一个法向量则,且取则 .二面角A﹣BF﹣C的平面角与的夹角互补.所以二面角A﹣BF﹣C的平面角的余弦值为 .18.已知函数f(x)=x2﹣1.(1)对于任意的1x2,不等式4m2|f(x)|+4f(m)|f(x﹣1)|恒成立,求实数m的取值范围;(2)若对任意实数x1[1,2].存在实数x2[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.【考点】函数恒成立问题;二次函数的性质.【分析】(1)由题意可得4m2(|x2﹣1|+1|4+|x2﹣2x|,由1x2,可得4m2 ,运用二次函数的最值的求法,可得右边函数的最小值,解不等式可得m的范围;(2)f(x)在[1,2]的值域为A,h(x)=|2f(x)﹣ax|的值域为B,由题意可得AB.分别求得函数f(x)和h(x)的值域,注意讨论对称轴和零点,与区间的关系,结合单调性即可得到值域B,解不等式可得a的范围.【解答】解:(1)对于任意的1x2,不等式4m2|f(x)|+4f(m)|f(x﹣1)|恒成立,即为4m2(|x2﹣1|+1|4+|x2﹣2x|,由1x2,可得4m2 ,由g(x)= =4(+ )2﹣,当x=2,即= 时,g(x)取得最小值,且为1,即有4m21,解得﹣m ;(2)对任意实数x1[1,2].存在实数x2[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,可设f(x)在[1,2]的值域为A,h(x)=|2f(x)﹣ax|的值域为B,可得AB.由f(x)在[1,2]递增,可得A=[0,3];当a0时,h(x)=|2x2﹣ax﹣2|=2x2﹣ax﹣2,(1x2),在[1,2]递增,可得B=[﹣a,6﹣2a],可得﹣a036﹣2a,不成立;当a=0时,h(x)=2x2﹣2,(1x2),在[1,2]递增,可得B=[0,6],可得0036,成立;当01(负的舍去),h(x)在[1,]递减,[ ,2]递增,即有h(x)的值域为[0,h(2)],即为[0,6﹣2a],由0036﹣2a,解得0当2即有h(x)的值域为[0,h(2)],即为[0,a],由003a,解得a=3;当3由2a﹣603a,无解,不成立;当4由2a﹣6032a,不成立;当6由a032a,不成立;当a8时,h(x)在[1,2]递增,可得B=[a,2a﹣6],AB不成立.综上可得,a的范围是0a 或a=3.19.已知F1,F2为椭圆的左、右焦点,F2在以为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.(Ⅰ)求椭圆C1的方程;(Ⅱ)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围. 【考点】椭圆的简单性质.【分析】(Ⅰ)圆C2的方程为,由此圆与x轴相切,求出a,b的值,由此能求出椭圆C1的方程.(Ⅱ)设l1:x=t(y﹣1),则l2:tx+y﹣1=0,与椭圆联立,得(t2+2)y2﹣2t2y+t2﹣4=0,由此利用弦长公式、点到直线距离公式,结合已知条件能求出△MAB面积的取值范围.【解答】(本题满分15分)解:(Ⅰ)圆C2的方程为,此圆与x轴相切,切点为,即a2﹣b2=2,且,又|QF1|+|QF2|=3+1=2a.a=2,b2=a2﹣c2=2椭圆C1的方程为 .(Ⅱ)当l1平行x轴的时候,l2与圆C2无公共点,从而△MAB不存在;设l1:x=t(y﹣1),则l2:tx+y﹣1=0.由,消去x得(t2+2)y2﹣2t2y+t2﹣4=0,则 .又圆心到l2的距离,得t21.又MPAB,QMCDM到AB的距离即Q到AB的距离,设为d2,即 .△MAB面积令则 .△MAB面积的取值范围为 .20.对任意正整数n,设an是方程x2+ =1的正根.求证:(1)an+1an;(2)+ ++ 1+ + ++ .【考点】数列的应用.【分析】(1)解方程可得an= ,再由分子有理化,结合,在nN*上递减,即可得证;(2)求出= ,分析法可得,累加并运用不等式的性质即可得证.【解答】解:(1)an是方程x2+ =1的正根,解得an= ,由分子有理化,可得an== ,由,在nN*上递减,可得an为递增数列,即为an+1an;(2)证明:由an= ,可得= ,由2n﹣11+4n2﹣4n1+4n2﹣4n0,显然成立,即有+ ++ 1+ + ++1+ + ++ .。
高三年级第一学期期末统一考试数学试卷(理工类)(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题:每小题5分:共40分.在每小题给出的四个选项中:选出符合题目要求的一项.1.已知集合{}|11M x x =-<<M N =A .{}|01x x ≤<B .{|01x x <<C .{}|0x x ≥D .{}|10x x -<≤2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的坐标为A .(1,1)B .(1,1)--C .(1,1)-D . (1,1)-3.执行如图所示的程序框图:则输出的i 值为A .3B .4C .5D .6第3题图4.在一段时间内有2000辆车通过高速公路上的某处:现随机抽取其中的200辆进行车速统计:统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h :试km/h )错误!估计2000辆车中:在这段时间内以正常速度通过该处的汽车约有A .30辆B .300辆C .170辆D .1700辆第4题图5.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6. 已知点)0,22(Q 及抛物线24x y =上一动点(,)P x y :则y PQ +的最小值是A .12B .1C . 2D . 3 7.某四棱锥的三视图如图所示:则该四棱锥的侧面积是A .27B .30C .32D .36第7题图8.设函数()f x 的定义域D :如果存在正实数m :使得对任意x D ∈:都有()()f x m f x +>:则称()f x 为D 上的“m 型增函数”.已知函数()f x 是定义在R 上的奇函数:且当0x >时:()f x x a a =--(a ∈R ).若()f x 为R 上的“20型增函数”:则实数a 的取值范围是 A .0a > B .5a < C.10a<D .20a <第二部分(非选择题 共110分)二、填空题:本大题共6小题:每小题5分:共30分.把答案填在答题卡上.侧视图俯视图9.函数2sin(2)16y x π=++的最小正周期是 :最小值是 .10.若x :y 满足约束条件2211x y x y y -⎧⎪+⎨⎪⎩≤,≥,≤,则z x y =+的最大值为 .11.在各项均为正数的等比数列n a 中:若22a :则132a a 的最小值是 .12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间:甲同学不与老师相邻:则不同站法种数为 .13.已知B A ,为圆9)()(:22=-+-n y m x C (,m n ∈R )上两个不同的点(C 为圆心):且满足||25CA CB +==AB .14.已知点O 在ABC ∆的内部:且有xOA yOB zOC ++=0:记,,AOB BOC AOC ∆∆∆的面积分别为AOB BOC AOC S S S ∆∆∆,,.若1x y z ===:则::AOB BOC AOC S S S ∆∆∆= :若2,3,4x y z ===:则::AOB BOC AOC S S S ∆∆∆= .三、解答题:本大题共6小题:共80分.解答应写出文字说明:演算步骤或证明过程. 15.(本小题满分13分)某中学高一年级共8个班:现从高一年级选10名同学组成社区服务小组:其中高一(1)班选取3名同学:其它各班各选取1名同学.现从这10名同学中随机选取3名同学:到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率:(Ⅱ)设X 为选出同学中高一(1)班同学的人数:求随机变量X 的分布列和数学期望.16.(本小题满分13分)如图:在ABC ∆中:点D 在BC 边上:7,42CAD AC π∠==:cos 10ADB ∠=-.(Ⅰ)求sin C ∠的值:(Ⅱ)若5,BD =求ABD ∆的面积.17.(本小题满分13分)如图:在四棱锥P ABCD -中:底面ABCD 是菱形:且60DAB ∠=︒.点E 是棱PC 的中点:平面ABE 与棱PD 交于点F .(Ⅰ)求证:AB ∥EF :(Ⅱ)若PA PD AD ==:且平面PAD ⊥平面ABCD : 求平面PAF 与平面AFE 所成的锐二面角的余弦值.18.(本小题满分14分)已知函数()ln f x ax x =+:其中a ∈R .(Ⅰ)若()f x 在区间[1,2]上为增函数:求a 的取值范 围:(Ⅱ)当e a =-时:(ⅰ)证明:()20f x +≤:19.(本小题满分14分)已知圆:O 221x y +=的切线l 与椭圆:C 2234x y +=相交于A :B 两点. (Ⅰ)求椭圆C 的离心率: (Ⅱ)求证:OA OB ⊥: (Ⅲ)求OAB ∆面积的最大值.20.(本小题满分13分) 已知有穷数列:*123,,,,(,3)k a a a a k k ∈≥N 的各项均为正数:且满足条件:①1k a a =:②11212(1,2,3,,1)n n n n a a n k a a +++=+=-.(Ⅰ)若13,2k a ==:求出这个数列: (Ⅱ)若4k =:求1a 的所有取值的集合: (Ⅲ)若k 是偶数:求1a 的最大值(用k 表示).数学答案(理工类) .1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空:第一空3分:第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A :则1203373731049().60C C C C P A C ⋅+⋅== 所以选出的3名同学来自班级的概率为4960. ……………………………5分 (Ⅱ)随机变量X 的所有可能值为0:1:2:3:则03373107(0)24C C P X C ⋅===: 123731021(1)40C C P X C ⋅===: 21373107(2)40C C P X C ⋅===:30373101(3)120C C P X C ⋅===. 所以随机变量X 的分布列是随机变量X 的数学期望721719()012324404012010E X =⨯+⨯+⨯+⨯=. …………………………13分 16.(本小题满分13分) 解:(Ⅰ)因为cos 10ADB ∠=-:所以sin 10ADB ∠=. 又因为4CAD π∠=:所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45=. ………………………7分 (Ⅱ)在ACD ∆中:由ADCAC C AD ∠=∠sin sin:得74sin sin AC C AD ADC ⋅⋅∠===∠.所以11sin 572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………13分 17.(本小题满分13分)(Ⅰ)证明:因为底面ABCD 是菱形:所以AB ∥CD . 又因为AB ⊄面PCD :CD ⊂面PCD :所以AB ∥面PCD . 又因为,,,A B E F 四点共面:且平面ABEF平面PCD EF =:所以AB ∥EF . ………………………5分 (Ⅱ)取AD 中点G :连接,PG GB .因为PA PD =:所以PG AD ⊥. 又因为平面PAD ⊥平面ABCD : 且平面PAD平面ABCD AD =:所以PG ⊥平面ABCD .所以PG GB ⊥. 在菱形ABCD 中:因为AB AD =: 60DAB ∠=︒:G 是AD 中点: 所以AD GB ⊥.如图:建立空间直角坐标系G xyz -.设2PA PD AD a ===: 则(0,0,0),(,0,0)G A a :,0),(2,0),(,0,0),)B C a D a P --.又因为AB ∥EF :点E 是棱PC 中点:所以点F 是棱PD中点.所以(,,)22E a -:(2a F -.所以3(2a AF =-:(,2a EF =.设平面AFE 的法向量为(,,)x y z =n :则有0,0.AF EF ⎧⋅=⎪⎨⋅=⎪⎩n n所以,.z y x ⎧=⎪⎨=⎪⎩令3x =:则平面AFE 的一个法向量为=n .因为BG ⊥平面PAD :所以(0,,0)GB =是平面PAF 的一个法向量.因为cos ,39GB <GB >GB⋅===⋅n n n所以平面PAF 与平面AFE . ……………………13分 18.(本小题满分14分)解:函数()f x 定义域),0(+∞∈x :1()f x a x'=+.(Ⅰ)因为()f x 在区间[1,2]上为增函数:所以()0f x '≥在[1,2]x ∈上恒成立: 即1()0f x a x '=+≥:1a x≥-在[1,2]x ∈上恒成立: 则1.2a ≥- ………………………………………………………4分(Ⅱ)当e a =-时:() e ln f x x x =-+:e 1()x f x x-+'=. (ⅰ)令0)(='x f :得1ex =. 令()0f x '>:得1(0,)e x ∈:所以函数)(x f 在1(0,)e 单调递增.令()0f x '<:得1(,)e x ∈+∞:所以函数)(x f 在1(,)e +∞单调递减.所以:max 111()()e ln 2e e ef x f ==-⋅+=-.所以()20f x +≤成立. …………………………………………………9分 (ⅱ)由(ⅰ)知: max ()2f x =-: 所以2|)(|≥x f . 设ln 3(),(0,).2x g x x x =+∈+∞所以2ln 1)(xx x g -='. 令0)(='x g :得e x =.令()0g x '>:得(0,e)x ∈:所以函数)(x g 在(0,e)单调递增: 令()0g x '<:得(e,)x ∈+∞:所以函数)(x g 在(e,)+∞单调递减:所以:max lne 313()(e)2e 2e 2g x g ==+=+<: 即2)(<x g . 所以)(|)(|x g x f > :即>|)(|x f ln 32x x +.所以:方程=|)(|x f ln 32x x +没有实数解. ……………………………14分 19.(本小题满分14分) 解:(Ⅰ)由题意可知24a =:243b =:所以22283c a b =-=.所以3c e a ==.所以椭圆C的离心率为3. …………………………3分 (Ⅱ)若切线l 的斜率不存在:则:1l x =±.在223144x y +=中令1x =得1y =±. 不妨设(1,1),(1,1)A B -:则110OA OB ⋅=-=.所以OA OB ⊥. 同理:当:1l x =-时:也有OA OB ⊥. 若切线l 的斜率存在:设:l y kx m =+1=:即221k m +=.由2234y kx m x y =+⎧⎨+=⎩:得222(31)6340k x kmx m +++-=.显然0∆>. 设11(,)A x y :22(,)B x y :则122631kmx x k +=-+:21223431m x x k -=+.所以2212121212()()()y y kx m kx m k x x km x x m =++=+++. 所以1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+ 22244431m k k --=+2224(1)44031k k k +--==+. 所以OA OB ⊥.综上所述:总有OA OB ⊥成立. ………………………………………………9分(Ⅲ)因为直线AB 与圆O 相切:则圆O 半径即为OAB ∆的高: 当l 的斜率不存在时:由(Ⅱ)可知2AB =.则1OAB S ∆=.当l 的斜率存在时:由(Ⅱ)可知:AB ===223131k k ==++231k =+. 所以2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++ 24222164164164419613396k k k k k=+⋅=+≤+=++++(当且仅当k =时:等号成立).所以AB ≤.此时:max (S )OAB ∆=.综上所述:当且仅当3k =±时:OAB ∆面积的最大值为3.…………………14分 20.(本小题满分13分)解:(Ⅰ)因为13,2k a ==:由①知32a =: 由②知:21211223a a a a +=+=:整理得:2222310a a -+=.解得:21a =或212a =. 当21a =时:不满足2323212a a a a +=+:舍去: 所以:这个数列为12,,22. …………………………………………………3分 (Ⅱ)若4k =:由①知4a =1a . 因为11212(1,2,3)n n n n a a n a a +++=+=:所以111(2)(1)0n n n n a a a a ++--=.所以112n n a a +=或11(1,2,3)n na n a +==. 如果由1a 计算4a 没有用到或者恰用了2次11n na a +=:显然不满足条件: 所以由1a 计算4a 只能恰好1次或者3次用到11n na a +=:共有下面4种情况: (1)若211a a =:3212a a =:4312a a =:则41114a a a ==:解得112a =: (2)若2112a a =:321a a =:4312a a =:则4111a a a ==:解得11a =:(3)若2112a a =:3212a a =:431a a =:则4114a a a ==:解得12a =:(4)若211a a =:321a a =:431a a =:则4111a a a ==:解得11a =: 综上:1a 的所有取值的集合为1{,1,2}2. ………………………………………………8分 (Ⅲ)依题意:设*2,,m 2k m m =∈≥N .由(II )知:112n n a a +=或11(1,2,3,21)n n a n m a +==-.假设从1a 到2m a 恰用了i 次递推关系11n n a a +=:用了21m i --次递推关系112n n a a +=: 则有(1)211()2itm a a -=⋅,其中21,t m i t ≤--∈Z . 当i 是偶数时:0t ≠:2111()2tm a a a =⋅=无正数解:不满足条件: 当i 是奇数时:由12111(),21222t m a a a t m i m -=⋅=≤--≤-得22211()22t m a -=≤:所以112m a -≤.又当1i =时:若213221222211111,,,,222m m m m a a a a a a a a ---====: 有222111()2m m a a --=⋅:222112m m a a a -==:即112m a -=.所以:1a 的最大值是12m -.即1212k a -=.…………………………………13分。