夏普莱斯不对称环氧化反应
- 格式:docx
- 大小:37.03 KB
- 文档页数:3
有机催化的不对称氧化反应Sharpless不对称环氧化反应(Sharpless Epoxidation)
Sharpless不对称环氧化反应,是一种不对称选择的化学反应,可以用来从一级或者二级烯丙醇制备2,3-环氧醇。
该反应大约在1970年代开始得到系统研究,80年代后日臻成熟。
环氧化产物的立体化学是由反应中使用的手性酒石酸酯的非对映体(通常为酒石酸二乙酯或者酒石酸二异丙酯)决定的。
氧化试剂为过氧叔丁醇。
反应中使用一个催化剂可以形成产物的对映体选择性,该催化剂通过四异丙氧基钛和酒石酸二乙酯反应获得。
反应在存在3Å分子筛(3Å MS)的条件下只需5-10 mol%的催化剂量。
Sharpless不对称环氧化反应的成功取决于五大主要原因:
首先,环氧化合物能够简单的转化为二醇、氨基
醇或者醚,所以在天然产物的全合成当中形成手性的环氧化合物是非常重要的步骤。
第二,该反应能够和许多一级或者二级烯丙醇反应。
第三,夏普莱斯环氧化的产物通常具有超过90%的ee值(对映体过量)。
第四,通过夏普莱斯环氧化模型可以预测出产物的手性。
最后,夏普莱斯环氧化的反应试剂都是商业化的且非常廉价易得。
反应机理
用于环氧化的氧化剂是叔丁基氢过氧化物。
该反应由Ti(OiPr)4催化,Ti(OiPr)4通过氧原子结
合氢过氧化物,烯丙基醇基和不对称酒石酸酯配体(假设的过渡态如下所示)。
催化导论——不对称双羟基化反应学号:10110310班级:1011031姓名:戴明明摘要不对称双羟基化反应又名为夏普莱斯不对称双羟基化反应,是巴里·夏普莱斯在Upjohn双羟基化反应的基础上,于 1987 年发现的以金鸡纳碱衍生物催化的烯烃不对称双羟基化反应。
与sharpiess环氧化反应一样,该反应也是现代有机合成中最重要的反应之一。
原理不对称二羟基化反应(asymmetric dihydroxylation,AD)是一类重要的催化不对称反应[1],它不仅是许多手性药物,如紫杉醇C13侧链、美托洛尔、普萘洛尔、氨苄青霉素、昆虫激素和维生素D活性代谢物合成中的关键步骤[2],而且还为不对称催化反应中新型配体的合成提供了必需的手性砌块[3].研究该反应的核心问题之一是手性配体的设计与合成.迄今为止,文献已经报道了许多行之有效的配体,但是有些配体制备复杂、分离难度大、价格昂贵,因此设计合成简单,价廉和高效的手性配体仍然是目前的研究重点[4].本研究以天然金鸡纳生物碱奎宁和辛可宁为原料,将其结构中的活性基团羟基转换为碱性更强的氨基,与对氯苯甲酰氯反应得到新的手性配体1和2,考察这两种配体在AD反应中的催化活性及不对称诱导作用.典型的反应条件是四氧化锇(OsO4)和二氢奎宁(DHQ)或二氢奎尼丁(DHQD)的手性配体衍生物作为催化剂,以计量的铁氰化钾、N-甲基吗啉N-氧化物(NMO)或叔丁基过氧化氢作为再氧化剂,并加入其他添加剂如碳酸钾和甲磺酰胺等。
现实条件中常用非挥发性的锇酸盐K2OsO2(OH)4 代替OsO4。
[8][9] 市售的二羟化混合物试剂称为AD-mix,有 AD-mix α(含(DHQ)2-PHAL)和AD-mix β(含 (DHQD)2-PHAL)两种。
大多数烯烃在上述条件下,能都以高产率、高ee值生成光学活性的邻二醇,而且反应条件温和,无需低温、无水、无氧等条件。
DHQ 和DHQD 衍生物可分别用于一对对映异构邻二醇的合成,反应产物的立体构型可根据烯烃的结构,利用下图来进行预测。
神奇的手性现象与不对称催化不知道大家有没有注意到生活中的一个有趣现象,就是无论你怎么摆姿势,都无法将自己的左手和右手重合。
而当你拿一面镜子时就会发现,左手在镜子里的像刚好跟你的右手重合。
我们把这种有趣的现象就叫做手性,即一个物体不能跟自己的镜像重合,我们就说这个物体具有手性。
在自然界中手性现象广泛存在。
例如喇叭花的缠绕方向是手性的,把右旋的喇叭花强行左旋缠绕,它也会自动恢复右旋;动物中的海螺同样是右旋世家,出现左旋海螺的概率是百万分之一;同样,组成我们生命体基本单位的氨基酸同样具有手性,除了极少数生物体内存在右旋氨基酸外,组成地球生命体的几乎都是左旋氨基酸;另外供给人体能量的葡萄糖都是右旋的,绝大多数生物遗传的物质基础DNA也是以右旋方式相互缠绕成的双螺旋结构等等许多例子,由此可见手性是许多物体的一项重要特点。
在化学领域中,手性现象同样广泛存在,而有机分子的手性通常是由不对称碳引起的。
在一个有机分子中,碳原子通过共价键能与四个其它原子或基团相连。
当相连的四个原子或基团互不相同时,就会产生手性,我们称该有机分子为手性分子。
两个互为镜像的手性分子构成一对对映异构体。
互为对映异构体两个手性分子在原子组成上完全一致,许多宏观物理性质如熔点、沸点、溶解性等,甚至许多微观化学反应性能也完全相同。
我们通常是通过手性分子的光学特征对其识别。
例如,如果手性分子所配成的溶液能使平面偏振光按顺时针方向旋转,我们称这个对映体为右旋体,记作(+)或者D;相反能使平面偏振光按逆时针方向旋转的对映体,称之为左旋体,记作(-)或者L。
当等量的对映体分子混合在一起时,不会引起平面偏振光的旋转,我们称之为外消旋体。
手性分子的右旋体和左旋体在生物体内的生理生化性质有时差不多,有时却差别极大。
上世纪60年代前后,很多妊娠妇女通过服用沙利度胺(Thalidomide,反应停)来镇痛和止咳,治疗效果很好。
但是随即而来的是,不少妇女生下的婴儿都是短肢畸形的怪胎。
sharpless不对称环氧化机理
Sharpless不对称环氧化是一种重要的不对称催化反应,它可以用来合成复杂的有机分子。
Sharpless不对称环氧化机理是由美国化学家K. Barry Sharpless在1980年提出的,它是
一种催化反应,可以用来合成复杂的有机分子。
Sharpless不对称环氧化机理的基本原理是,在一个有机反应体系中,一种特定的催化剂(如铂催化剂)可以诱导一种不对称的环
氧化反应,从而产生一种不对称的有机分子。
Sharpless不对称环氧化机理的催化反应可以分为三个步骤:第一步是催化剂的活化,第
二步是环氧化反应,第三步是催化剂的去活化。
在第一步,催化剂(如铂)被活化,从而
使它能够与有机物质发生反应。
在第二步,催化剂诱导有机物质发生环氧化反应,从而产
生不对称的有机分子。
在第三步,催化剂被去活化,从而结束反应。
Sharpless不对称环氧化机理的优点是,它可以用来合成复杂的有机分子,而且反应的速
度很快,可以在短时间内完成反应。
此外,Sharpless不对称环氧化机理的反应产物具有
高度的不对称性,可以用来合成复杂的有机分子。
总之,Sharpless不对称环氧化机理是一种重要的不对称催化反应,它可以用来合成复杂
的有机分子,而且反应的速度很快,可以在短时间内完成反应,反应产物具有高度的不对
称性。
因此,Sharpless不对称环氧化机理在有机合成中具有重要的应用价值。
烯烃的不对称环氧化反应***** ********摘要本文主要论述了传统的烯烃环氧化反应的不足之处,并简述了Sharpless以及Jacobsen 等人在不对称环氧化反应发面的研究成果及其贡献。
并简要讨论了未来的研究方向。
关键词烯烃环氧化手性合成催化剂前言手性化合物具有十分重要的应用价值,然而其合成具有很大的难度。
因此,目前有机合成化学家们在手性合成这一领域展开了大量的研究工作,新的不对称合成反应和合成路线不断涌现。
在不对称合成中最具有挑战性的是不对称催化反应,它是利用催化剂的不对称中心来诱导产生产物的手性。
研究类容及讨论通常在没有手性催化剂的条件下,实验室中常用有机过酸作环氧化试剂。
环氧化反应是顺势加成,所以环氧化合物的构型与原料烯烃的构型保持一致。
因为环氧化反应可以在双键平面的任一侧进行,所以当平面两侧空阻相同,而产物的环碳原子为手性碳原子时,产物是一对外消旋体。
当平面两侧的空阻不同时,位阻小的反应快,如此便能得到以某种构型为主的混合产物。
因该方法只能用于大量合成空间位阻较小的产物,并不能满足手性合成的需求,因此化学工作者们作出了进一步探究。
其中最著名的是20世纪80年代初Sharpless发展的不对称环氧化。
在该反应中D-酒石酸二乙酯作为手性源控制环氧化只从双键平面的一边进行。
如果在反应中用L-酒石酸二乙酯,那么环氧化将从双建平面的另一边进行。
只需要催化剂量的光学纯酒石酸二乙酯就可以实现高度对映选择性的环氧化。
【1】图2. Sharpless不对称环氧化反应Sharpless的不对称环氧化适用于双键α位上含羟基的底物——烯丙醇类化合物。
20世纪90年代初,Jacobsen开发了一类含C2对称轴的手性配体,这些配体与Mn(Ⅲ)形成的络合物可以高度对映选择性地催化非烯丙醇类烯烃双键的环氧化。
该反应迅速得到了广泛应用。
图4. Jacobsen不对称环氧化反应反应最常用的氧化剂为亚碘酰苯(用于有机溶剂)或次氯酸钠水溶液(用于水介质)。
卡尔·巴里·夏普莱斯巴里·夏普莱斯在2001年因在不对称合成方面所取得的成绩,和美国科学家威廉·诺尔斯、日本科学家野依良治一起获得该年度的诺贝尔化学奖。
诺尔斯与野依良分享诺贝尔化学奖一半的奖金。
他是美国化学家,出生于美国宾西法尼亚州费城(美国公民)。
前麻省理工学院化学系正教授,现为美国斯克里普斯研究学院化学教授。
不同于大多数从事基础研究的学者,卡尔·巴里·夏普莱斯一直惟独钟情于实用化学。
由于他将石蜡的氧化看作是有机合成中用途最广、最有效和最可靠的转化类型,因此夏普莱斯专注于现有氧化反应范围的拓展,以求发现新的反应形式。
夏普莱斯最为人所知的是他发现了三个以他命名的反应,既催化不对称环氧化反应、二羟基化反应和氨羟化反应的一般方法。
2001年,夏普莱斯因在“手性催化氧化反应”方面的研究荣膺诺贝尔化学奖。
对他获得诺贝尔奖的评语称:“许多科学家已经发现夏普莱斯的环氧化反应(1980年与Tsutomu Katsuk共同发现)是过去几十年合成领域最重要的发现。
”获奖原因瑞典皇家科学院的新闻公报说,许多化合物的结构都是对映性的,好像人的左右手一样,这被称作手性。
而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。
这些药是消旋体,它的左旋与右旋共生在同一分子结构中。
在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的“反应停”惨剧,使人们认识到将消旋体药物拆分的重要性。
2001年的化学奖得主就是在这方面做出了重要贡献。
他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。
夏普莱斯的成就是开发出了用于氧化反应的手性催化剂。
科学研究催化不对称氧化反映在催化不对称氢化反应研究得如火如荼的时候,巴里·夏普莱斯教授却独辟蹊径,开创了催化不对称氧化反映的研究。
夏普莱斯不对称环氧化反应简介夏普莱斯不对称环氧化反应是一种重要的有机合成方法,可用于合成具有手性的环氧化合物。
该反应基于夏普莱斯不对称环氧化试剂,可以将不对称合成的试剂加入到不对称碳-碳双键上,形成手性环氧产物。
反应机理夏普莱斯不对称环氧化反应的反应机理相对复杂,但是可以简要概括为以下几个步骤:1.亲电试剂与底物发生亲电加成反应,生成一个带有正电荷的中间体;2.中间体与夏普莱斯不对称环氧化试剂发生破坏性竞争性解离,产生一个不稳定的碳离子中间体;3.手性辅助试剂与不稳定的碳离子中间体发生选择性的环氧化反应,形成手性环氧产物。
反应条件夏普莱斯不对称环氧化反应在实验中通常需要以下条件:1.适当的温度和压力:反应温度和压力对反应速率和选择性有很大影响,需要进行合理的优化;2.催化剂:夏普莱斯不对称环氧化反应需要使用适当的催化剂来促进反应的进行;3.溶剂选择:合适的溶剂可以提高反应效率和产物纯度;4.反应时间:反应时间需要根据具体的反应体系进行调整。
应用和意义夏普莱斯不对称环氧化反应具有广泛的应用和意义,主要体现在以下几个方面:1.合成手性化合物:夏普莱斯不对称环氧化反应可以合成具有手性的环氧化合物,这对于药物合成和半导体材料合成等领域具有重要意义;2.利用底物多样性:夏普莱斯不对称环氧化反应可以利用不同的底物合成多样的手性环氧化合物,为有机化学研究提供了更多的选择;3.提高反应效率:夏普莱斯不对称环氧化反应在反应条件的优化中,可以提高反应的效率和选择性,减少副反应的产生。
反应优化策略为了提高夏普莱斯不对称环氧化反应的效率和选择性,可以采取以下一些优化策略:优化催化剂选择不同的催化剂可以对反应的速率和选择性产生重要影响。
通过优化催化剂的选择和配体结构,可以提高反应的效率。
调节反应条件反应的温度和压力对于反应的速率和选择性有很大影响。
通过调节反应条件,可以找到适合的反应条件,提高反应效率。
优化底物结构通过优化底物结构,可以引入特定的官能团,改变反应的位置选择性和立体选择性,从而获得具有更优异性能的手性环氧化产物。
催化导论——不对称双羟基化反应摘要不对称双羟基化反应又名为夏普莱斯不对称双羟基化反应,是巴里·夏普莱斯在 Upjohn双羟基化反应的基础上,于 1987 年发现的以金鸡纳碱衍生物催化的烯烃不对称双羟基化反应。
与sharpiess环氧化反应一样,该反应也是现代有机合成中最重要的反应之一。
原理不对称二羟基化反应(asymmetric dihydroxylation,AD)是一类重要的催化不对称反应[1],它不仅是许多手性药物,如紫杉醇C13侧链、美托洛尔、普萘洛尔、氨苄青霉素、昆虫激素和维生素D活性代谢物合成中的关键步骤[2],而且还为不对称催化反应中新型配体的合成提供了必需的手性砌块[3].研究该反应的核心问题之一是手性配体的设计与合成.迄今为止,文献已经报道了许多行之有效的配体,但是有些配体制备复杂、分离难度大、价格昂贵,因此设计合成简单,价廉和高效的手性配体仍然是目前的研究重点[4].本研究以天然金鸡纳生物碱奎宁和辛可宁为原料,将其结构中的活性基团羟基转换为碱性更强的氨基,与对氯苯甲酰氯反应得到新的手性配体1和2,考察这两种配体在AD反应中的催化活性及不对称诱导作用.典型的反应条件是四氧化锇(OsO4)和二氢奎宁(DHQ)或二氢奎尼丁(DHQD)的手性配体衍生物作为催化剂,以计量的铁氰化钾、N-甲基吗啉N-氧化物(NMO)或叔丁基过氧化氢作为再氧化剂,并加入其他添加剂如碳酸钾和甲磺酰胺等。
现实条件中常用非挥发性的锇酸盐 K2OsO2(OH)4 代替OsO4。
[8][9] 市售的二羟化混合物试剂称为AD-mix,有 AD-mix α(含(DHQ)2-PHAL)和 AD-mix β(含 (DHQD)2-PHAL)两种。
大多数烯烃在上述条件下,能都以高产率、高ee值生成光学活性的邻二醇,而且反应条件温和,无需低温、无水、无氧等条件。
DHQ 和 DHQD 衍生物可分别用于一对对映异构邻二醇的合成,反应产物的立体构型可根据烯烃的结构,利用下图来进行预测。
夏普莱斯不对称环氧化反应
一、简介
夏普莱斯不对称环氧化反应(Sharpless Asymmetric Epoxidation,SAE)是一种通过手性催化剂促进的不对称环氧化反应。
该反应由美国化学家K. Barry Sharpless于1980年代初发明,被认为是合成手性分子的重要方法之一。
该反应可以用于合成具有生物活性的天然产物和药物分子。
二、反应机理
夏普莱斯不对称环氧化反应的催化剂通常是含有钼或钨等过渡金属离子的配合物。
以钼为例,其配合物通常是Mo(O2CCH3)4或Mo (O2CCH3)6等。
这些配合物可以与氢氧化钠和季铵盐(如TBHP)一起作为反应体系中的催化剂。
在反应中,烯丙醇首先被氧化成α-羟基醛,然后与季铵盐发生亲核加成生成间隔式亚胺中间体。
接着,在催化剂的作用下,亚胺中间体发生环氧化反应生成手性环氧体。
最后,通过水解得到手性1,2-二醇产物。
三、影响因素
1. 催化剂的选择:不同的过渡金属催化剂对反应的效果有所不同,Mo (O2CCH3)4和Mo(O2CCH3)6等配合物通常具有较好的催化活性。
2. 反应溶剂:反应中需要使用极性溶剂,如乙醇、二甲基甲酰胺等。
3. 温度:反应通常在0℃至-78℃的低温下进行。
4. 季铵盐用量:过多的季铵盐可能会导致副反应,而过少则会降低反应速率和产率。
四、优点与局限
夏普莱斯不对称环氧化反应具有以下优点:
1. 可以合成手性环氧体,是制备手性分子的有效方法之一。
2. 该反应操作简单、产率高、对环境友好。
然而,该反应也存在一些局限:
1. 该反应只适用于含有α,β-不饱和键的烯丙醇类化合物。
2. 反应体系中需要使用季铵盐等高价催化剂,成本较高。
五、总结
夏普莱斯不对称环氧化反应是一种通过手性催化剂促进的不对称环氧化反应,可以用于合成具有生物活性的天然产物和药物分子。
该反应具有操作简单、产率高、对环境友好等优点,但也存在一些局限。
随着化学合成技术的不断发展,夏普莱斯不对称环氧化反应在有机合成领域中仍具有广泛的应用前景。