半导体物理复习资料
- 格式:docx
- 大小:58.08 KB
- 文档页数:10
1. 粒子能量λνhch E ==2. 德布罗意波长ph =λ 3. 能量与动量的关系 2mE P =2mP E 2=4. 波数λπ2k =,相速度Tλμ=5. 边界条件1)(2-=⎰∞∞dx x ω6. 无限深势阱中电子的能量2223n 2ma n h E E π==(n 为电子的能级,a 为势阱的宽度)7. //内力的作用a m F ⨯=8. 电子的有效质量*222m 1k d E d h 1= (价带顶(空穴)m *<0,导带底(电子)m *>0)9. 状态密度函数E h m E 32/3)2(4)(gπ=10. 导带中的电子有效状态密度c n c E E hm E g -=32/3*)2(4)(π11. 价带中的电子有效状态密度E E h v -=32/3*p v )2m (4)E (g π12. 概率密度函数)kTE -E (exp 11)E ()()(N FF +==f E g E (E F 为费米能级)13. T=300K ,kT=0.0259eV0.0259V ekT= 本征半导体14. 热平衡时电子浓度为⎰=dE )E (f )E (g n Fc或]kT)(exp[n 0F c c E E N --= (N c 为导带有效状态密度,n 0<N c )15. 热平衡时空穴浓度为])(exp[p 0kTE E N vF v --=16. 本征载流-子浓度i p =i n ,E Fi 为本征费米能级 17. 本征费米能级相对禁带中央的位置)m m kTln(43E -E *n*pmidFi = (若**p m n m =,mid F E E =; 若**p m n m >,mid F E E >; 若**p m n m <,mid F E E <;) 推导非本征半导体18. 热平衡时电子浓度为]kT )(exp[n Fi F i 0E E N -=19. 热平衡时空穴浓度为])(exp[p Fi F i 0kTE E N --=20. 热平衡状态下的半导体002i n p n =补偿半导体(指在同一区域内同时含有施主和受主杂质原子的半导体a N >d N ,n 型补偿半导体a N <d N ,p 型补偿半导体 a N =d N ,完全补偿半导体)21. //电子浓度(N 型)220)2(2n i ad ad n N N N N +-+-=22. //空穴浓度(P 型)220)2(2p i da da n N N N N +-+-=23. E F 随掺杂浓度和温度的变化随着掺杂浓度的提高,n 型半导体的费米能级逐渐向导带靠近,p 型半导体逐渐向价带靠近;随着温度的升高,n i 增加,费米能级趋近于本征费米能级。
一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge 和 GaAs 的能带结构。
在 1.1 节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在 1.3 节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。
(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。
为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。
二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。
答案:半导体材料具有介于导体和绝缘体之间的导电特性。
与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。
与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。
2. 什么是本征半导体?请举例说明。
答案:本征半导体是指不掺杂任何杂质的半导体材料。
例如,纯净的硅(Si)和锗(Ge)就是本征半导体。
3. 简述P型半导体和N型半导体的形成原理。
答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。
施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。
这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。
N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。
受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。
这样就使得半导体中存在了大量的自由电子,形成了N型半导体。
4. 简述PN结的形成原理及特性。
答案:PN结是由P型半导体和N型半导体的结合所形成。
P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。
PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。
三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。
答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。
第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯ 倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
复习题:半导体物理学引言:半导体物理学是研究半导体材料的电学和光学性质的科学学科。
半导体材料由于其特殊的能带结构,介于导体和绝缘体之间。
在半导体物理学中,我们研究电子行为、能带理论、掺杂效应和半导体器件等方面的内容。
本文将通过一系列复习题来回顾半导体物理学的相关知识。
一、电子行为:1. 什么是载流子?在半导体中有哪两种类型的载流子?在半导体中,带有电荷的粒子称为载流子。
一种是带负电荷的电子,另一种是带正电荷的空穴。
2. 什么是能带?能带理论是用来描述什么的?能带是指具有一定能量范围的电子能级分布。
能带理论用于描述电子在半导体中的分布和运动行为。
3. 什么是禁带宽度?它对半导体的导电性质有什么影响?禁带宽度是指能带中能量差最小的范围,该范围内的能级没有允许态。
禁带宽度决定了半导体的导电性能。
能带中存在禁带宽度时,半导体表现出绝缘体的性质;当禁带宽度足够小的时候,允许电子状态穿越禁带,半导体表现出导体的性质。
二、掺杂效应:1. 什么是掺杂?常见的掺杂元素有哪些?掺杂是指向纯净的半导体中引入少量杂质元素,以改变半导体的导电性质。
常见的掺杂元素有磷、锑、硼等。
2. 控制掺杂浓度的方法有哪些?掺杂浓度可以通过掺杂杂质元素的量来控制。
掺杂浓度越高,半导体的导电性越强。
3. P型和N型半导体有什么区别?P型半导体是指通过掺杂三价元素使半导体中存在过剩的空穴,空穴是主要的载流子。
N型半导体是指通过掺杂五价元素使半导体中存在过剩的电子,电子是主要的载流子。
三、半导体器件:1. 什么是PN结?它的主要作用是什么?PN结是由P型半导体和N型半导体组成的结构。
PN结的主要作用是将半导体材料的导电性质从P型区域传导到N型区域,形成电子流和空穴流。
2. 什么是二极管?它的特点是什么?二极管是PN结的一种常见应用。
它具有单向导电性,允许电流从P区域流向N区域,而阻止电流从N区域流向P区域。
3. 什么是晶体管?它的工作原理是怎样的?晶体管是由三个掺杂不同类型的半导体构成的器件。
半导体物理导论复习资料半导体物理导论复习资料半导体物理是现代电子学的基础,理解半导体物理的原理对于电子工程师和科学家来说至关重要。
本文将回顾半导体物理的一些重要概念和原理,帮助读者复习和加深对这一领域的理解。
1. 半导体的基本特性半导体是介于导体和绝缘体之间的材料,具有一些独特的物理特性。
首先,半导体的电导率介于导体和绝缘体之间,这意味着它既可以传导电流,又可以阻止电流的流动。
其次,半导体的电导率可以通过控制外界条件(如温度、施加电场等)来调节,这使得半导体具有可调控性和可变性。
2. 禁带和载流子半导体中的电子和空穴是半导体中的两种载流子。
禁带是指半导体中的能带结构,它将电子的能级分成导带和价带。
导带是电子能量较高的能级,而价带是电子能量较低的能级。
禁带宽度是导带和价带之间的能量差,决定了半导体的导电性能。
3. pn结和二极管pn结是由n型半导体和p型半导体结合而成的。
n型半导体中的电子浓度较高,p型半导体中的空穴浓度较高。
当两者结合时,电子和空穴会发生复合,形成一个耗尽层。
耗尽层中没有可自由移动的载流子,因此形成了一个电势垒。
这个电势垒可以阻止电流的流动,从而实现了二极管的整流功能。
4. 势垒高度和反向击穿势垒高度是指pn结中电势垒的高度,它决定了二极管的导电性能。
当外加电压使势垒高度增加时,二极管的导电性能会减弱。
反向击穿是指当外加电压超过一定值时,势垒高度会被突破,电流会快速增加。
这种现象可以用来制作稳压二极管和击穿二极管等电子元件。
5. MOSFET和CMOS技术MOSFET是金属-氧化物-半导体场效应晶体管的缩写,是现代集成电路中最常用的晶体管结构。
MOSFET的导电性能可以通过调节栅极电压来控制,因此具有高度可调控性和低功耗特性。
CMOS技术是一种基于MOSFET的集成电路制造技术,被广泛应用于数字电路和微处理器的制造。
6. 光电效应和光电器件光电效应是指当光照射到半导体材料上时,会激发出电子和空穴,产生电流。
半导体物理知识点及重点习题总结半导体物理是现代电子学中的重要领域,涉及到半导体材料的电学、热学和光学等性质,以及半导体器件的工作原理和应用。
本文将对半导体物理的一些重要知识点进行总结,并附带相应的重点习题,以帮助读者更好地理解和掌握相关知识。
一、半导体材料的基本性质1. 半导体材料的能带结构半导体材料的能带结构决定了其电学性质。
一般而言,半导体材料具有禁带宽度,可以分为导带(能量较高)和价带(能量较低)。
能量在禁带内的电子处于被限制的状态,称为束缚态,能量在导带中的电子可以自由移动,称为自由态。
2. 掺杂和杂质掺杂是将少量的杂质原子引入纯净的半导体材料中,以改变其导电性质。
掺入价带原子的称为施主杂质,掺入导带原子的称为受主杂质。
施主杂质会增加导电子数,受主杂质会增加载流子数。
3. P型和N型半导体掺入施主杂质的半导体为P型半导体,施主杂质的电子可轻易地跳出束缚态进入导带,形成载流子。
掺入受主杂质的半导体为N型半导体,受主杂质的空穴可轻易地跳出束缚态进入价带,形成载流子。
二、PN结和二极管1. PN结的形成和特性PN结是P型和N型半导体的结合部分,形成的原因是P型半导体中的空穴与N型半导体中的电子发生复合。
PN结具有整流作用,使得电流在正向偏置时能够通过,而在反向偏置时被阻止。
2. 二极管的工作原理二极管是基于PN结的器件,正向偏置时,在PN结处形成正电压,使得电子流能够通过。
反向偏置时,PN结处形成反电压,使得电流无法通过。
3. 二极管的应用二极管广泛用于整流电路、电压稳压器、振荡器和开关等领域。
三、晶体管和放大器1. 晶体管的结构和工作原理晶体管是一种三端器件,由三个掺杂不同的半导体构成。
其中,NPN型晶体管由N型掺杂的基区夹在两个P型掺杂的发射极和集电极之间构成。
PNP型晶体管的结构与之类似。
晶体管的工作原理基于控制发射极和集电极之间电流的能力。
2. 放大器和放大倍数晶体管可以作为放大器来放大电信号。
半导体物理复习资料一.填空题1.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射和晶格震动散射。
2.纯净半导体Si中掺杂Ⅴ族元素,当杂质电离时释放电子。
这种杂质称施主杂质;相应的半导体称N型半导体。
3.当半导体中载流子浓度的分布不均匀时,载流子将做扩散运动;在半导体存在外加电压情况下,载流子将做漂移运动。
4.n0p0=n i2标志着半导体处于热平衡状态,当半导体掺入的杂质含量改变时,乘积n0p0是否改变?不改变;当温度变化时,n0p0改变否?改变。
5.硅的导带极小值位于布里渊区<100>方向上,根据晶体对称性共有6个等价能谷。
6.n型硅掺As后,费米能级向E C或上移动,在室外温度下进一步升高温度,费米能级向E i或下移动。
7.半导体中的陷阱中心使其中光电导灵敏度增加,并使其光电导衰减规律衰减时间延长。
8.若用氢取代磷化镓中的部分磷,结果是禁带宽度E g增大;若用砷的话,结果是禁带宽度E g减小。
9.已知硅的E g为1.12Ev,则本征吸收的波长限为1.11微米;Ge的E g为0.67eV,则本征吸收的波长限为1.85微米。
10.复合中心的作用是促进电子和空穴的复合,起有效复合中心的杂质能级必须位于E1或禁带中心线,而对电子和空穴的俘获系数r n或r p必须满足r n=r p。
11.有效陷阱中心位置靠近E F或费米能级。
12.计算半导体中载流子浓度时,不能使用玻尔兹曼统计代替费米统计的判定条件E c-E F≤2k0T以及E F-E V≤2k0T,这种半导体被称为简并半导体。
13.PN结电容可分为扩散电容和势垒电容两种。
14.纯净半导体Si中掺杂Ⅲ族元素的杂质,当杂质电离时在Si晶体的共价键中产生了一个空穴,这种杂质称受主杂质;相应的半导体称P型半导体。
15.半导体产生光吸收的方式本征、激子、杂质、晶格振动、半导体吸收光子后产生载流子,在均匀半导体中是电导率增加,可制成光敏电阻;在存在自建电场的半导体中产生光生伏特,可制成光电池;光生载流子发生辐射复合时,伴随着发射光子,这就是半导体的发光现象,利用这种现象可制成发光管。
掌握熟悉了解第一章半导体物理基础一、能带理论1、能带的形成、结构:导带、价带、禁带•当原子结合成晶体时,原子最外层的价电子实际上是被晶体中所有原子所共有,称为共有化。
•共有化导致电子的能量状态发生变化,产生了密集能级组成的准连续能带---能级分裂•价带:绝对0度条件下被电子填充的能量最高的能带;结合成共价键的电子填充的能带。
•导带:绝对0度条件下未被电子填充的能量最低的能带2、导体、半导体、绝缘体的能带结构特点•禁带的宽度区别了绝缘体和半导体;而禁带的有无是导体和半导体、绝缘体之间的区别;绝缘体是相对的,不存在绝对的绝缘体。
3、导电的前提:不满带的存在二、掺杂半导体1、两种掺杂半导体的能级结构。
2、杂质补偿的概念三、载流子统计分布1、费米函数、费米能级:公式1-7-9和1-7-10,及其简化公式1-7-11和1-7-122、质量作用定律,只用于本征半导体:公式1-7-273、用费米能级表示的载流子浓度:公式1-7-28和1-7-294、杂质饱和电离的概念(本征激发)5、杂质半导体费米能级的位置:公式1-7-33和1-7-37。
意义(图1-13,费米能级随着掺杂浓度和温度的变化)。
6、杂质补充半导体的费米能级四、载流子的运输1、(1.8节)载流子的运动模式:散射-漂移-散射。
平均弛豫时间的概念2、迁移率,物理意义:公式1-9-4和1-9-5(迁移率与电子自由运动时间和有效质量有关),迁移率与温度和杂质浓度的关系3、电导率,是迁移率的函数:公式1-9-10和1-9-114、在外电场和载流子浓度梯度同时存在的条件下,载流子运输公式:1-9-24~1-9-275、费米势:公式1-10-5:电势与费米能级的转换6、以静电势表示的载流子浓度1-10-6和1-10-7或1-10-9和1-10-107、爱因斯坦关系:反映了扩散系数和迁移率的关系。
在非热平衡状态下也成立。
公式1-10-11和1-10-12 五、非平衡载流子1、概念:平衡与非平衡(能带间的载流子跃迁);过剩载流子2、大注入和小注入3、产生率、复合率、净复合率4、非平衡载流子的寿命:从撤销外力,到非平衡载流子消失。
第一章 半导体中的电子状态§ 锗和硅的晶体结构特征 金刚石结构的基本特征§ 半导体中的电子状态和能带 电子共有化运动概念绝缘体、半导体和导体的能带特征。
几种常用半导体的禁带宽度; 本征激发的概念§ 半导体中电子的运动 有效质量导带底和价带顶附近的E(k)~k 关系()()2*2nk E k E m 2h -0=; 半导体中电子的平均速度dEv hdk=; 有效质量的公式:222*11dk Ed h m n =。
§本征半导体的导电机构 空穴空穴的特征:带正电;p n m m **=-;n p E E =-;p n k k =-§ 回旋共振§ 硅和锗的能带结构 导带底的位置、个数; 重空穴带、轻空穴第二章 半导体中杂质和缺陷能级§ 硅、锗晶体中的杂质能级基本概念:施主杂质,受主杂质,杂质的电离能,杂质的补偿作用。
§ Ⅲ—Ⅴ族化合物中的杂质能级 杂质的双性行为第三章 半导体中载流子的统计分布热平衡载流子概念§状态密度定义式:()/g E dz dE =;导带底附近的状态密度:()()3/2*1/232()4n c c m g E VE E h π=-;价带顶附近的状态密度:()()3/2*1/232()4pv Vm g E V E E hπ=-§ 费米能级和载流子的浓度统计分布 Fermi 分布函数:()01()1exp /F f E E E k T =+-⎡⎤⎣⎦;Fermi 能级的意义:它和温度、半导体材料的导电类型、杂质的含量以及能量零点的选取有关。
1)将半导体中大量的电子看成一个热力学系统,费米能级F E 是系统的化学势;2)F E 可看成量子态是否被电子占据的一个界限。
3)F E 的位置比较直观地标志了电子占据量子态的情况,通常就说费米能级标志了电子填充能级的水平。
费米能级位置较高,说明有较多的能量较高的量子态上有电子。
半导体物理复习资料填空题半导体中的载流子主要受到两种散射,它们分别是 纯净半导体Si 中掺杂V 族元素,当杂质电离时释放 的半导体称 N 型半导体。
当半导体中载流子浓度的分布不均匀时,载流子将做 压情况下,载流子将做 漂移 运动。
n o p o =n 2标志着半导体处于热平衡状态,当半导体掺入的杂质含量改变时,乘积 n o p o 是 否改变? 不改变;当温度变化时,n o p o 改变否?改变。
硅的导带极小值位于布里渊区 <100>方向上,根据晶体对称性共有 6个等价能谷。
n 型硅掺 As 后,费米能级向 E C 或上 移动,在室外温度下进一步升高温度,费米能级向 E i 或下 移动。
半导体中的陷阱中心使其中光电导灵敏度 增加 ,并使其光电导衰减规律 衰减时间延 长。
若用氢取代磷化镓中的部分磷,结果是 禁带宽度 巳增大;若用砷的话,结果是 禁带宽 度 E g 减小 。
已知硅的E g 为1.12EV ,则本征吸收的波长限 为1.11微米;Ge 的曰为0.67eV ,则本征 吸收的波长限为 1.85 微米。
复合中心的作用是 促进电子和空穴的复合,起有效复合中心的杂质能级必须位于 E 或禁带中心线,而对电子和空穴的俘获系数 r n 或r p 必须满足r n =r p O 有效陷阱中心位置靠近 E F 或费米能级。
计算半导体中载流子浓度时,不能使用玻尔兹曼统计代替费米统计的判定条件 E c - E F < 2k o T 以及E F -E V W 2k o T ,这种半导体被称为 简并半导体。
PN 结电容可分为 扩散电容和势垒电容 两种。
纯净半导体Si 中掺杂川族元素的杂质,当杂质电离时在Si 晶体的共价键中产生了一 个空穴,这种杂质称受主杂质;相应的半导体称 P 型半导体。
半导体产生光吸收的方式 本征、激子、杂质、晶格振动 、半导体吸收光子后产生载流 子,在均匀半导体中是 电导率增加 ,可制成 光敏电阻 ;在存在自建电场的半导体中产 生光生伏特 ,可制成 光电池 ;光生载流子发生辐射复合时,伴随着 发射光子 ,这就是 半导体的 发光现象,利用这种现象可制成 发光管 。
如果电子从价带顶跃迁到导带底时波失 k 不发生变化,则具有这种能带结构的半导体称为直接禁带半导体,否则称为 间接禁带半导体,那么按这种原则分类,GaAs 属于直接禁带半导体。
简并半导体一般是 重掺杂半导体,这时 电离杂质 对载流子的散射作用不可忽略。
热平衡条件下,半导体中同时含有一种施主杂质和一种受主杂质情况下的电中性条件 是 p o +N d =n o +P A 。
有效质量概括了晶体内部势场对载流子的作用,可通过 回旋共振 实验来测量。
半导体中的载流子复合可以有很多途径,主要有两大类: 带间电子 -空穴直接复合 和通 过禁带内的复合中心进行复合 。
选择题 (我就只打答案了) 本征半导体是指( 不含杂质和缺陷 )的半导体。
在 P 型半导体中( 空穴是多数载流子,电子是少数载流子 )。
当PN 结外加反向电压时,扩散电流与漂移电流的关系及耗尽层宽度的变化为(1. 2. 3.4.5.6.7.8.9. 10. 11.12.13.14.15. 16. 17. 18. 19. 20. 1.2.3. 电离杂质散射 和 晶格震动散射 。
电子。
这种杂质称 施主 杂质;相应扩散 运动;在半导体存在外加电 扩散电流小于漂移电流、耗尽层变宽)。
4. PN结击穿主要有下列哪三种物理机制(雪崩击穿、隧道击穿、热电击穿)。
5. 某一处于热平衡状态下的非简并半导体掺有施主杂质浓度为N b=5X 1017cm3,当温度300K时杂质已全部电离。
已知本征载流子浓度为n i=1015cm-3,则电子和空穴浓度分别为17 -3 12 -3(n o=5X 10 cm , p o=2x 10 cm-)6. 在n 型半导体中(电子是多数载流子,空穴是少数载流子)。
7. 杂质半导体中的载流子运输过程的散射机构中,但温度升高时,电离杂质散射的概率和晶格振动声子的散射概率的变化分别是(变小,变大)。
8. 当PN结外加正向电压时,扩散电流与漂移电流的关系及耗尽层宽度的变化为(扩散电流大于漂移电流、耗尽层变窄)。
9. 如果杂质既有施主的作用又有受主的作用,则这种杂质称为(两性杂质)。
10. 半导体中少数载流子寿命的大小主要取决于(复合机构)11. 对大注入条件下,在一定的温度下,非平衡载流子的寿命与(非平衡载流子浓度成反比)12. 最有效的复合中心能级位置在(已)附近;最有利陷阱作用的能级位置在(&)附近,常见的是(少子)陷阱。
13. 电子在晶体中的共有化运动是指(电子在晶体各原胞对应点出现的几率相同)14. n - W族化合物半导体中的M空位V m是(点阵中的金属原子空位)15. 自补偿效应的起因是(材料中先已预存在某种深能级缺陷)16. 若某半导体导带中发现电子的几率为零,则该半导体必定(处于绝对零度)17. 半导体中的载流子扩散系数的大小取决于(散射机构)18. 硅中掺金的工艺主要用于制造(高频)器件19. 欲在掺杂适度的无表面态n 型硅上做欧姆电极,以下四种金属中最合适的是(A)A.ln (W=3.8eV)B.Cr (W=4.6eV)C.Au (W=4.8eV)D.Al (W=4.2V)20. 在光电转换过程中,硅材料一般不如GaAs量子效率高,其因是(禁带较窄)21. GaAs的导带极值位于布里渊区(中心)22. 重空穴指的是(价带顶附近曲率较小的等能面上的空穴)23. 对于川-V族化合物半导体,随着平均原子序数的增加(禁带宽度减小)24. 根据费米能级分布函数,电子占据(&+KT能级的几率(等于空穴占据(E F-KT)能级的几率)25. 对于只含一种杂质的非简并n型半导体,费米能级EF随温度上升而(经过一极大值趋近E1)26. 某种材料的电阻率随温度上升而先下降后上升,该材料是(掺杂半导体)27. 如果在神舟十号太空实验室里,生长的GaAs具有很高的载流子迁移率,这是因为(晶体生长完整性好)的缘故三.名词解释1. 非平衡载流子的寿命:非平衡载流子的平均生存时间2. 迁移率:单位场强下平均漂移速度3. 光生伏特效应:由于光子的吸收在非均匀半导体中形成内建电场,半导体内部产生电动势(光生电压),将半导体外部短路则出现电流(光生电流)。
这种由内建电场引起的光电效应,称为光生伏特效应。
4. 非平衡载流子的寿命:非平衡载流子的平均生存时间。
5. 载流子平均自由时间:载流子在电场中作漂移运动时,只有在连续两次散射之间的时间称为自由时间,取极多次而求平均值,则称之为载流子的平均自由时间。
6. 肖特基接触:金属与半导体的接触是整流接触,形成阻挡层,即肖特基接触。
7. 光子本征吸收:半导体吸收光子的能量使价带中的电子激发到导带,在价带中留下空穴,产生等量的电子与空穴,这种吸收过程叫本征吸收8. 电子有效质量:该参数将讲题导带中电子的加速度与外加的作用力联系起来,该参数包含了晶体中的内力。
9. 状态密度函数:有效量子态的密度。
它是能量的函数,表示单位体积代为能量中的量子态数量。
10. 杂质补偿半导体:同一半导体区域内既含有施主杂质又含有受主杂质的半导体。
11. 简并半导体:电子或空穴的浓度大于有效状态密度,费米能级位于导带中(n型)或价带中(P型)12. 非简并半导体:掺入相对较少的施主或(和)受主杂质,使得施主和(或)受主能级分离、无相互作用的半导体。
13. 本征半导体:没有杂质原子且晶体中无晶格缺陷的纯洁半导体材料。
14. 准费米能级:电子和空穴的主费米能级分别将电子和空穴的非平衡状态浓度与本征载流子浓度以及本征费米能级联系起来。
15. 线性缓变结:pn结一侧的掺杂浓度远大于另一侧的掺杂浓度。
四. 简答题1. 简述金属半导体肖特基接触的整流特性形成机制答:在金属半导体接触中,金属一侧势垒高度不随外加电压而变,半导体一侧势垒高度与外加电压相关。
因此,当外加电压使半导体一侧势垒高度降低时,形成从半导体流向金属的纯电流密度,且随外加电压而变化;反之,则是从金属到半导体的电流密度,该电流较小,且与外加电压无关。
这就是金属半导体接触整流特性。
2. 简述准费米能级的概念答:处于非平衡状态的半导体的导带和价带之间处于不平衡状态,而导带和价带带中的电子各自处于平衡态,这是系统无统一的费米能级,但费米能级和统计分布函数对导带和价带各自仍然是适用的。
为了描述统一能带内平衡而能带间非平衡的状态,引入导带费米能级和价带费米能级,即准费米能级概念,它们是局部的费米能级3. 简单讨论不同温度区间内p型半导体的载流子浓度(说明电中性条件)答:低温弱电离区:电中性条件为P O = P A。
受主杂质部分电离,空穴全部由杂质电离提供,空穴浓度等于电离杂质浓度。
强电离(饱和区):电中性条件为p o=N A, p a=D+N。
受主杂质全部电离,杂质电离对载流子浓度其主导作用,空穴浓度等于受主杂质浓度。
过渡区:电中性条件为:p o=N A+ n o。
本征激发和杂质电离对载流子浓度共同起作用,空穴浓度等于受主杂质浓度与本征载流子浓度之和。
高温本征激发区:电中性条件为p o=n o,本征激发对载流子浓度起主导作用,空穴浓度等于本征载流子浓度。
4. 分别画图说明平衡状态下,正向偏压和反向偏压下的pn结能带结构图答:平衡状态:pn结区p区、n区具有统一的费米能进,能带的弯曲量正好补偿了之n区和p区的费米能级差,即q“=E FL E Fp。
界PP '处为一水平线,在电子扩散区斜线下降,到注入电子为零处 能级间距E Fn -E Fp =qV,能带弯曲q ( r D -『)。
反向偏压下为准费米能级的变化规律与正向偏压情况正好相反, 了变化。
准费米能级间距 E FP -E Fn =qV ,能带弯曲q ( V D -V ) 5•什么是载流子散射?主要散射机制是什么?答:热运动中的载流子,由于晶格热振动或店里杂质以及其它因素的影响,不断地遭到散 射,其速度的大小和方向不断地在改变着,这就是载流子的散射,主要的散射机构是店里 杂质三者和晶格振动散射。
6. 简单讨论不同温度区间内那、型半导体的载流子浓度(要说明电中性条件)答:低温弱电离区:电中性条件为 n=n D +。
施主杂质部分电离,自由电子全部由杂质电离提供,自由电子浓度等于电离杂质浓度。
强电离(饱和区):电中性条件为n o =N D , n D =DN 。
施主杂质全部电离,杂质电离对载流子浓 度起主导作用,自由电子浓度等于施主杂质浓度。
过渡区:电中性条件为 n o =N b +p o ,本征激发对载流子浓度起主导作用,自由电子浓度等于施 主杂质浓度与本征载流子浓度之和。