【20套试卷合集】曲靖市第一中学2019-2020学年数学高一上期中模拟试卷含答案
- 格式:doc
- 大小:3.96 MB
- 文档页数:106
云南省曲靖市2020版高一上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分) (2019高二上·温州期中) 设集合,,,则()A .B .C .D .2. (2分) (2017高二下·芮城期末) 设,则使函数的定义域为R且为奇函数的所有值为()A .B .C .D .3. (2分)已知函数是R上的偶函数,且在上是减函数,若,则a 的取值范围是()A .B .C . 或D .4. (2分) (2017高二下·兰州期中) 已知f(x)=x3﹣3x,则函数h(x)=f[f(x)]﹣1的零点个数是()A . 3B . 5C . 7D . 95. (2分) (2019高一上·工农月考) 已知函数,若,则a的值是A . 3或B . 或5C .D . 3或或56. (2分) (2019高三上·平遥月考) 设,,,则a,b,c的大小关系是()A .B .C .D .7. (2分) (2020·梧州模拟) 函数的部分图象大致为()A .B .C .D .8. (2分) (2017高一上·乌鲁木齐期中) 已知函数满足对任意 ,都有成立,则的范围是()A .B .C .D .9. (2分)函数的零点个数为()A . 0B . 1C . 2D . 310. (2分)函数是()A . 奇函数且在上是减函数B . 奇函数且在上是增函数C . 偶函数且在上是减函数D . 偶函数且在上是增函数11. (2分) (2019高一上·宜昌期中) 当时,不等式恒成立,则实数m的取值范围是()A . (−1,2)B . (−4,3)C . (−2,1)D . (−3,4)二、多选题 (共1题;共3分)12. (3分) (2019高一上·厦门期中) 已知函数与(且)的图象上存在关于轴对称的点,则的取值可以是下列数据中的()A .B .C .D .三、填空题 (共4题;共4分)13. (1分)已知函数f(x)=ax2+x﹣b(a,b均为正数),不等式f(x)>0的解集记为P,集合Q={x|﹣2﹣t<x<﹣2+t},若对于任意正数t,P∩Q≠∅,则﹣的最大值是________.14. (1分) lg0.01+log216的值是________15. (1分)(2020·攀枝花模拟) 已知定义在上的函数满足,且在单调递增,对任意的,恒有,则使不等式成立的取值范围是________.16. (1分) (2019高一下·上海月考) 若函数的定义域为,则实数的取值范围是________.四、解答题 (共6题;共65分)17. (10分) (2019高一上·昌吉月考) 设集合A={x|-3≤x≤2},B={x|2k-1≤x≤k+1}且B⊆A,求实数k的取值范围.18. (10分) (2017高一上·青浦期末) 已知A、B是函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)上任意一点,过M(x,y)作MN⊥x轴交直线AB于N,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.(1)若f(x)=x+ ,x∈[ ,2],证明:f(x)在[ ,2]上“ 阶线性近似”;(2)若f(x)=x2在[﹣1,2]上“k阶线性近似”,求实数k的最小值.19. (10分) (2019高一上·杭州期中) 已知函数.(1)判断的单调性,并根据函数单调性的定义证明;(2)解关于的不等式.20. (10分)已知m、n∈R+, f(x)=|x+m|+|2x﹣n|.(1)求f(x)的最小值;(2)若f(x)的最小值为2,证明:4(m2+ )的最小值为8.21. (10分) (2018高二下·如东月考) 已知函数,(1)当时,求函数的单调区间;(2)若函数在区间上有1个零点,求实数的取值范围;(3)是否存在正整数,使得在上恒成立?若存在,求出k的最大值;若不存在,说明理由.22. (15分) (2017高一上·深圳期末) 已知函数f(x)=lg (a>0)为奇函数,函数g(x)= +b (b∈R).(Ⅰ)求a;(Ⅱ)若b>1,讨论方徎g(x)=ln|x|实数根的个数;(Ⅲ)当x∈[ , ]时,关于x的不等式f(1﹣x)≤log(x)有解,求b的取值范围.参考答案一、单选题 (共11题;共22分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、二、多选题 (共1题;共3分)12-1、三、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、四、解答题 (共6题;共65分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、第11 页共11 页。
2024-2025学年高一数学上学期期中模拟卷01
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教A版2019必修第一册第一章~第三章。
5.难度系数:0.65。
第一部分(选择题共58分)
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
或C或D
由图知:()040f x x >⇒-<<.故选D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部
选对的得6分,部分选对的得部分分,有选错的得0分.
第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
四、解答题:本题共5小题,共77分。
解答应写出文字说明、证明过程或演算步骤。
15.(13分)
的取值范围为.
16.(15分)
17.(15分)
18.(17分)
19.(17分)。
2020-2021曲靖市实验中学高中必修一数学上期中模拟试题附答案一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.若35225a b ==,则11a b +=( ) A .12B .14C .1D .24.函数()111f x x =--的图象是( ) A . B .C .D .5.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .16.已知函数)245fx x x =+,则()f x 的解析式为( )A .()21f x x =+ B .()()212f x x x =+≥C .()2f x x =D .()()22f x xx =≥7.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-8.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x =为奇函数,且在(0,)+∞上单调递增,则实数a 的值是( ) A .1,3-B .1,33C .11,,33-D .11,,33210.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2-- B .3(3,)2-C .3(1,)2D .3(,3)211.函数2y 34x x =--+ )A .(41)--,B .(41)-,C .(11)-,D .(11]-, 12.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭二、填空题13.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.14.若函数()f x 满足()3298f x x +=+,则()f x 的解析式是_________. 15.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .16.函数6()12log f x x =-__________.17.已知2a =5b =m ,且11a b+=1,则m =____. 18.关于下列命题:①若函数2xy =的定义域是{|0}x x ≤,则它的值域是{|1}y y ≤;② 若函数1y x =的定义域是{|2}x x >,则它的值域是1|2y y ⎧⎫≤⎨⎬⎩⎭;③若函数2y x =的值域是{|04}y y ≤≤,则它的定义域一定是{|22}x x -≤≤; ④若函数2log y x =的值域是{|3}y y ≤,则它的定义域是{|08}x x <≤.其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上). 19.若4log 3a =,则22a a -+= .20.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数)三、解答题21.已知函数()()221+0g x ax ax b a =-+>在区间[2,3]上有最大值4和最小值1.(1)求a 、b 的值; (2)设()()2g x f x x =-,若不等式()0f x k ->在x ∈(]2,5上恒成立,求实数k 的取值范围.22.已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =. (1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 23.已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><,在同一周期内,当12x π=时,()f x 取得最大值4:当712x π=时,()f x 取得最小值4-. (1)求函数()f x 的解析式; (2)若,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()()21h x f x t =+-有两个零点,求实数t 的取值范围. 24.设函数()()()22log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)若2log t x =,求t 的取值范围;(2)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.25.我校高一年级某研究小组经过调查发现:提高北环隧道的车辆通行能力可有效改善交通状况,在一般情况下,隧道内的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米,车流密度指每千米道路上车辆的数量)的函数.当隧道内的车流密度达到210辆/千米时,将造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为60千米/小时,研究表明:当30210x ≤≤时,车流速度v 是车流密度x 的一次函数. (1)求函数()v x 的表达式;(2)当车流密度为多大时,车流量(单位时间内通过某观测点的车辆数,单位:辆/小时) ()()f x x v x =⋅可以达到最大,并求出最大值. 26.已知函数()2(0,)af x x x a R x=+≠∈. (1)判断()f x 的奇偶性;(2)若()f x 在[)2,+∞是增函数,求实数a 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果.【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩, 所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.A解析:A 【解析】 【分析】由指数式与对数式的转化,结合换底公式和对数的运算,即可求解. 【详解】由题意3225,5225a b==根据指数式与对数式的转化可得35log 225,log 225a b == 由换底公式可得lg 2252lg15lg 2252lg15,lg 3lg 3lg 5lg 5a b ==== 由对数运算化简可得11lg 3lg 52lg152lg15a b +=+ lg3lg52lg15+=lg1512lg152== 故选:A 【点睛】本题考查了指数式与对数式的转化,对数的运算及换底公式的应用,属于中档题.4.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象, 把11y x =--的图象向上平移一个单位得到()111f x x =--的图象, 故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.5.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.6.B解析:B 【解析】 【分析】利用换元法求函数解析式,注意换元后自变量范围变化. 【详解】2t =,则2t ≥,所以()()()()2224t 251,2,f t t t t =-+-+=+≥即()21f x x =+ ()2x ≥.【点睛】本题考查函数解析式,考查基本求解能力.注意换元后自变量范围变化.7.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2,即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.8.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.10.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.11.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<< 故选C12.B【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<,则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.二、填空题13.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2.本题考查分段函数求值,考查对应性以及基本求解能力.14.【解析】【分析】设带入化简得到得到答案【详解】设代入得到故的解析式是故答案为:【点睛】本题考查了利用换元法求函数解析式属于常用方法需要学生熟练掌握解析:()32f x x =+ 【解析】 【分析】设32t x =+,带入化简得到()32f t t =+得到答案. 【详解】()3298f x x +=+,设32t x =+ 代入得到()32f t t =+故()f x 的解析式是() 32f x x =+ 故答案为:()32f x x =+ 【点睛】本题考查了利用换元法求函数解析式,属于常用方法,需要学生熟练掌握.15.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值16.【解析】要使函数有意义则必须解得:故函数的定义域为:点睛:常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零(2)偶次根式函数的被开方式大于或等于0(3)一次函数二次函数的定义域均为R(4解析:(【解析】要使函数()f x 有意义,则必须6012log 0x x >⎧⎨-≥⎩,解得:0x ≤<故函数()f x的定义域为:(. 点睛:常见基本初等函数定义域的基本要求 (1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x0的定义域是{x|x≠0}.(5)y =ax(a>0且a≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =logax(a>0且a≠1)的定义域为(0,+∞). (7)y =tan x 的定义域为π{|π,}2x x k k ≠+∈Z . 17.10【解析】因为2a=5b=m 所以a=log2mb=log5m 由换底公式可得=logm2+logm 5=logm10=1则m=10点睛:(1)在对数运算中先利用幂的运算把底数或真数进行变形化成分数指数解析:10 【解析】因为2a =5b =m ,所以a =log 2m ,b =log 5m , 由换底公式可得11a b+=log m 2+log m 5=log m 10=1,则m =10. 点睛:(1)在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法则化简合并,在运算中要注意化同底或指数与对数互化.(2)熟练地运用对数的三个运算性质并配以代数式的恒等变形是对数计算、化简、证明常用的技巧.18.①②③【解析】【分析】通过定义域和值域的相关定义及函数的增减性即可判断①②③④的正误【详解】对于①当时故①不正确;对于②当时则故②不正确;对于③当时也可能故③不正确;对于④即则故④正确【点睛】本题主解析:①②③ 【解析】 【分析】通过定义域和值域的相关定义,及函数的增减性即可判断①②③④的正误. 【详解】对于①,当0x ≤时,01y <≤,故①不正确;对于②,当2x >时,则1102x <<,故②不正确;对于③,当04y ≤≤时,也可能02x ≤≤,故③不正确;对于④,即2log 3x ≤,则08x <≤,故④正确.【点睛】本题主要考查定义域和值域的相关计算,利用函数的性质解不等式是解决本题的关键,意在考查学生的计算能力.19.【解析】【分析】【详解】∵∴∴考点:对数的计算【解析】 【分析】 【详解】∵4log 3a =,∴432a a =⇒=222a-+== 考点:对数的计算20.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.三、解答题21.(1)1,0a b ==;(2)4k <. 【解析】 【分析】(1)函数()g x 的对称轴方程为1x =,开口向上,则在[]2,3上单调递增,则可根据最值列出方程,可解得,a b 的值.(2)由题意只需()min k f x <,则只需要求出()f x 在(]2,5上的最小值,然后运用基本不等式求最值即可. 【详解】解:(1)()g x Q 开口方向向上,且对称轴方程为 1x =,()g x ∴在[]2,3上单调递增()()()()min max2441139614g x g a a b g x g a a b ⎧==-++=⎪∴⎨==-++=⎪⎩.解得1a =且0b =.(2)()0f x k ->Q 在(]2,5x ∈上恒成立 所以只需()min k f x <.有(1)知()221112224222x x f x x x x x x -+==+=-++≥=--- 当且仅当122x x -=-,即3x =时等号成立. 4k ∴<. 【点睛】本题考查二次函数的最值的求法,注意讨论对称轴和区间的位置关系,考查不等式恒成立问题的解法,注意运用参数分离和基本不等式的应用,属于中档题.22.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃.【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故220a a b =⎧⎨+=⎩, 又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+;(2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+- ⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥, 解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立;④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<, 综上,实数m 的取值范围是{}0[1,4)⋃. 考点:函数的解析式;函数的单调性及其应用.23.(1)()4sin 23f x x π⎛⎫=+ ⎪⎝⎭(2)19t +< 【解析】 【分析】(1)根据三角函数性质确定振幅、周期以及初相,即得解析式; (2)先确定23x π+范围,再结合正弦函数图象确定实数t 满足的条件,解得结果.【详解】(1)解:由题意知74,212122T A πππ==-=,得周期T π= 即2ππω=得,则2ω=,则()()4sin 2f x x ϕ=+当12x π=时,()f x 取得最大值4,即4sin 2412πϕ⎛⎫⨯+= ⎪⎝⎭,得πsin φ16骣琪+=琪桫得2()62k k Z ππϕπ+=+∈,,得23()k k Z πϕπ=+∈,,ϕπ<∴Q 当0k =时,=3πϕ,因此()4sin 23f x x π⎛⎫=+⎪⎝⎭(2)()()210h x f x t =+-=,即()12t f x -= 当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,则220,33x ππ⎡⎤+∈⎢⎥⎣⎦当232x ππ+=时,4sin42π=要使()12t f x -=有两个根,则142t -≤<,得19t +≤<即实数t 的取值范围是19t +< 【点睛】本题考查三角函数解析式以及利用正弦函数图象研究函数零点,考查综合分析求解能力,属中档题.24.(1)[]22-,;(2)x =,最小值14-,4x =,最大值12 .【解析】试题分析:(1)根据定义域为1,44⎡⎤⎢⎥⎣⎦,利用对数函数的单调性确定函数2log t x =的取值范围;(2)根据对数的运算法则化简函数()()()()()2222log 4log 221f x x x log x log x =⋅=++利用换元法将函数()y f x =转化为关于t 的一元二次函数,利用二次函数的性质求函数的最值. 试题解析:(1)的取值范围为区间][221log ,log 42,24⎡⎤=-⎢⎥⎣⎦(2)记()()()()()()()22log 2log 12122y f x x x t t g t t ==++=++=-≤≤.∵()23124y g t t ⎛⎫==+- ⎪⎝⎭在区间32,2⎡⎤--⎢⎥⎣⎦是减函数,在区间3,22⎡⎤-⎢⎥⎣⎦是增函数 ∴当23log 2t x ==-即32224x -==时,()y f x =有最小值23124f g ⎛⎫=-=- ⎪⎝⎭⎝⎭; 当2log 2t x ==即224x ==时,()y f x =有最大值()()4212f g ==.25.(1) 60,030()170,302103x v x x x ≤≤⎧⎪=⎨-+≤≤⎪⎩;(2) 当车流密度为105辆/小时车流量达到最大值3675 【解析】 【分析】(1)根据题意可知, ()v x 为分段函数,且当030x ≤≤时()60v x =,再根据当30x =与210x =时()v x 的值,设()v x ax b =+代入求解即可.(2)根据(1)中的分段函数解析式,求出()()f x x v x =⋅的解析式,再分段求解函数的最大值分析即可. 【详解】(1)由题意可知, 当030x ≤≤时()60v x =,当210x =时, ()0v x =,又当30210x ≤≤时,车流速度v 是车流密度x 的一次函数,故设()v x ax b =+,所以02106030a b a b =+⎧⎨=+⎩,解得1370a b ⎧=-⎪⎨⎪=⎩ ,故当30210x ≤≤时,1()703v x x =-+. 故60,030()170,302103x v x x x ≤≤⎧⎪=⎨-+≤≤⎪⎩.(2)由题, 260,030()()170,302103x x f x x v x x x x ≤≤⎧⎪=⋅=⎨-+≤≤⎪⎩,故当030x ≤≤时,()f x 最大值为(30)1800f =. 当30210x ≤≤时, 21703()f x x x -+=开口向下且对称轴为70105123x =-=⎛⎫⨯- ⎪⎝⎭,故此时()f x 最大值为2(105)10517031053675f -⨯+⨯==.综上,当车流密度为105辆/小时车流量达到最大值3675 【点睛】本题主要考查了分段函数与二次函数在实际中的模型运用,需要根据题意设函数方程求解参数,再根据二次函数性质求最值,属于中档题. 26.(1)当时,为偶函数,当时,既不是奇函数,也不是偶函数,;(2)(16]-∞,.【解析】 【分析】 【详解】 (1)当时,,对任意(0)(0)x ∈-∞+∞U ,,,,为偶函数.当时,2()(00)af x x a x x=+≠≠,, 取,得(1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,函数既不是奇函数,也不是偶函数.(2)设122x x ≤<,,要使函数在[2)x ∈+∞,上为增函数,必须恒成立.121204x x x x -<>Q,,即恒成立. 又,.的取值范围是(16]-∞,.。
2019年曲靖市高中必修一数学上期中一模试卷(及答案)一、选择题1.函数()sin lg f x x x =-的零点个数为( )A .0B .1C .2D .32.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,,B .{}123,,C .{}234,,D .{}134,, 3.设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x)=e +1(e 是自然对数的底数),则f (ln1.5)的值等于( ) A .5.5B .4.5C .3.5D .2.54.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]5.函数sin21cos xy x=-的部分图像大致为A .B .C .D .6.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>7.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<8.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a 9.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( )A .b a c <<B .a c b <<C .b c a <<D .c b a <<10.方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)11.已知函数()()()ln 1ln 1f x x x =+--,若实数a 满足()()120f a f a +->,则a 的取值范围是( ) A .()1,1-B .()0,1C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭12.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<二、填空题13.设25a b m ==,且112a b+=,则m =______.14.函数的定义域是 .15.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.16.函数()f x 的定义域是__________.17.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 18.若42x ππ<<,则函数3tan 2tan y x x =的最大值为 .19.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x -1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.20.已知函数1)4f x +=-,则()f x 的解析式为_________.三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式22.已知函数f (x )=4x -2·2x +1-6,其中x ∈[0,3]. (1)求函数f (x )的最大值和最小值;(2)若实数a 满足f (x )-a ≥0恒成立,求a 的取值范围.23.设集合222{|40},{|2(1)10}A x x x B x x a x a =+==+++-=,若A ∩B=B ,求a 的取值范围.24.近年来,雾霾日趋严重,雾霾的工作、生活受到了严重的影响,如何改善空气质量已成为当今的热点问题,某空气净化器制造厂,决定投入生产某型号的空气净化器,根据以往的生产销售经验得到下面有关生产销售的统计规律,每生产该型号空气净化器x (百台),其总成本为()P x (万元),其中固定成本为12万元,并且每生产1百台的生产成本为10万元(总成本=固定成本+生产成本),销售收入()Q x (万元)满足20.522,016(){224,16x x x Q x x -+≤≤=>,假定该产品销售平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)求利润函数()y f x =的解析式(利润=销售收入-总成本); (2)工厂生产多少百台产品时,可使利润最多? 25.函数是奇函数.求的解析式;当时,恒成立,求m 的取值范围.26.已知函数()()2log 1f x x -A ,函数()0(11)2xg x x ⎫-⎛=⎪⎭≤ ≤⎝的值域为集合B . (1)求A B I ;(2)若集合{}21C x a x a =≤≤-,且C B B =U ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.2.A解析:A 【解析】由题意{1,2,3,4}A B U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.3.D解析:D 【解析】 【分析】利用换元法 将函数转化为f (t )=e+1,根据函数的对应关系求出t 的值,即可求出函数f (x )的表达式,即可得到结论 【详解】 设t=f (x )-e x ,则f (x )=e x +t ,则条件等价为f (t )=e+1, 令x=t ,则f (t )=e t +t=e+1, ∵函数f (x )为单调递增函数, ∴t=1, ∴f (x )=e x +1,即f (ln5)=e ln1.5+1=1.5+1=2.5, 故选:D . 【点睛】本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.4.A解析:A【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.5.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.6.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.7.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.8.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.9.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3xy =Q 在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<, 0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.10.C解析:C【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.11.B解析:B 【解析】 【分析】求出函数()y f x =的定义域,分析函数()y f x =的单调性与奇偶性,将所求不等式变形为()()21f a f a >-,然后利用函数()y f x =的单调性与定义域可得出关于实数a 的不等式组,即可解得实数a 的取值范围. 【详解】对于函数()()()ln 1ln 1f x x x =+--,有1010x x +>⎧⎨->⎩,解得11x -<<,则函数()y f x =的定义域为()1,1-,定义域关于原点对称,()()()()ln 1ln 1f x x x f x -=--+=-,所以,函数()y f x =为奇函数,由于函数()1ln 1y x =+在区间()1,1-上为增函数,函数()2ln 1y x =-在区间()1,1-上为减函数,所以,函数()()()ln 1ln 1f x x x =+--在()1,1-上为增函数, 由()()120f a f a +->得()()()1221f a f a f a >--=-,所以,11112121a a a a -<<⎧⎪-<-<⎨⎪>-⎩,解得01a <<.因此,实数a 的取值范围是()0,1. 故选:B. 【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.12.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.二、填空题13.【解析】【分析】变换得到代入化简得到得到答案【详解】则故故答案为:【点睛】本题考查了指数对数变换换底公式意在考查学生的计算能力【解析】 【分析】变换得到2log a m =,5log b m =,代入化简得到11log 102m a b+==,得到答案. 【详解】25a b m ==,则2log a m =,5log b m =,故11log 2log 5log 102,m m m m a b+=+==∴=【点睛】本题考查了指数对数变换,换底公式,意在考查学生的计算能力.14.【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义域解析:[]3,1-【解析】试题分析:要使函数有意义,需满足2232023031x x x x x --≥∴+-≤∴-≤≤,函数定义域为[]3,1- 考点:函数定义域15.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.16.【解析】由得所以所以原函数定义域为故答案为 解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞.17.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值.【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭. 【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.18.-8【解析】试题分析:设当且仅当时成立考点:函数单调性与最值解析:-8 【解析】 试题分析:2tan 1tan 1,42xx x ππ∴∴Q设2tan t x =()()()2221412222142248111t t t y t t t t -+-+∴==-=----≤-⨯-=----当且仅当2t =时成立考点:函数单调性与最值19.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2]. 【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集. 易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.20.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】【分析】利用换元法求解析式即可【详解】令11t =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥故答案为2()23(1)f x x x x =--≥【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点 三、解答题21.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式.【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2, 则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.·(3)当x >0时,-x <0,()111f x x -=-+ 由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++ 【点睛】本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式.22.(1)f (x )min =-10,f (x )max =26;(2)(-∞,-10].【解析】试题分析:(1)由题意可得,f (x )=4x -2·2x +1-6,令t=2x ,从而可转化为二次函数在区间[1,8]上的最值的求解(2)由题意可得,a≤f (x )恒成立⇔a ≤f (x )min 恒成立,结合(1)可求试题解析:(1)f (x )=(2x )2-4·2x-6(0≤x ≤3).令t =2x ,∵0≤x ≤3,∴1≤t ≤8.则h (t )=t 2-4t -6=(t -2)2-10(1≤t ≤8).当t ∈[1,2]时,h (t )是减函数;当t ∈(2,8]时,h (t )是增函数.∴f (x )min =h (2)=-10,f (x )max =h (8)=26.(2)∵f (x )-a ≥0恒成立,即a ≤f (x )恒成立,∴a ≤f (x )min 恒成立.由(1)知f (x )min =-10,∴a ≤-10.故a 的取值范围为(-∞,-10].23.a=1或a≤﹣1【解析】试题分析:先由题设条件求出集合A ,再由A∩B=B ,导出集合B 的可能结果,然后结合根的判别式确定实数a 的取值范围.试题解析:根据题意,集合A={x|x 2+4x=0}={0,﹣4},若A∩B=B,则B 是A 的子集,且B={x|x 2+2(a+1)x+a 2﹣1=0},为方程x 2+2(a+1)x+a 2﹣1=0的解集,分4种情况讨论:①B=∅,△=[2(a+1)]2﹣4(a 2﹣1)=8a+8<0,即a <﹣1时,方程无解,满足题意; ②B={0},即x 2+2(a+1)x+a 2﹣1=0有两个相等的实根0,则有a+1=0且a 2﹣1=0,解可得a=﹣1,③B={﹣4},即x 2+2(a+1)x+a 2﹣1=0有两个相等的实根﹣4,则有a+1=4且a 2﹣1=16,此时无解,④B={0、﹣4},即x 2+2(a+1)x+a 2﹣1=0有两个的实根0或﹣4,则有a+1=2且a 2﹣1=0,解可得a=1,综合可得:a=1或a≤﹣1.点睛:A ∩B=B 则B 是A={0,﹣4}的子集,而B={x|x 2+2(a+1)x+a 2﹣1=0}为方程x 2+2(a+1)x+a 2﹣1=0的解集,所以分四种情况进行讨论①B=∅,②B={0},③B={﹣4},④B={0、﹣4},其中①B=∅不要忘记. 24.(Ⅰ)20.51212,016(){21210,16x x x f x x x -+-≤≤=-> ;(Ⅱ)12 . 【解析】试题分析:(1)先求得()P x ,再由()()()f x Q x P x =-,由分段函数式可得所求;(2)分别求出各段的最大值,注意运用一次函数和二次函数的单调性求最值法,然后比较两个最值即可得到结果.试题解析:(1)由题意得()1210P x x =+∴()()()20.51212,016{21210,16x x x f x Q x P x x x -+-≤≤=-=-> . (2)当16x >时, 函数()f x 递减,∴()()1652f x f <=万元当016x ≤≤时,函数()()20.51260f x x =--+当12x =时,()f x 有最大值60万元所以当工厂生产12百台时,可使利润最大为60万元 .【方法点睛】本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).25.(1);(2). 【解析】【分析】根据函数的奇偶性的定义求出a 的值,从而求出函数的解析式即可;问题转化为在恒成立,令,,根据函数的单调性求出的最小值,从而求出m 的范围即可. 【详解】 函数是奇函数,, 故, 故; 当时,恒成立, 即在恒成立, 令,, 显然在的最小值是, 故,解得:. 【点睛】本题考查了函数的奇偶性问题,考查函数恒成立以及转化思想,指数函数,二次函数的性质,是一道常规题.对于恒成立问题一般要分离参数,然后利用函数单调性求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会.26.(1){}2;(2)3,2⎛⎤-∞ ⎥⎝⎦. 【解析】【分析】(1)求出集合A 、B ,然后利用交集的定义可求出A B I ;(2)由C B B =U ,可得出C B ⊆,然后分C =∅和C ≠∅两种情况讨论,结合C B ⊆得出关于实数a 的不等式组,解出即可.【详解】(1)要使函数()f x ()2log 10x -≥,得11x -≥,解得2x ≥, [)2,A ∴=+∞.对于函数()12x g x 骣琪=琪桫,该函数为减函数,10x -≤≤Q ,则1122x⎛⎫≤≤ ⎪⎝⎭,即()12g x ≤≤,[]1,2B ∴=,因此,{}2A B ⋂=;(2)C B B =Q U ,C B ∴⊆.当21a a -<时,即当1a <时,C =∅,满足条件;当21a a -≥时,即1a ≥时,要使C B ⊆,则1212a a ≥⎧⎨-≤⎩,解得312a ≤≤. 综上所述,实数a 的取值范围为3,2⎛⎤-∞ ⎥⎝⎦. 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数的取值范围,涉及了对数函数的定义域以及指数函数的值域问题,考查分类讨论思想的应用,属于中等题.。
云南省曲靖市2019-2020学年高一上学期期中数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2016高二下·南城期末) 设集合A={x|x>a},集合B={﹣1,1,2},若A∩B=B,则实数a的取值范围是()A . (1,+∞)B . (﹣∞,1)C . (﹣1,+∞)D . (﹣∞,﹣1)2. (2分)(2017·天津) 设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=()A . {2}B . {1,2,4}C . {1,2,4,6}D . {1,2,3,4,6}3. (2分)(2018·浙江学考) 已知函数则()A . 1B .C . 3D .4. (2分) (2019高一上·成都期中) 设,则()A . y3>y1>y2B . y2>y1>y3C . y1>y2>y3D . y1>y3>y25. (2分)设,则的大小关系是()A .B .C .D .6. (2分)(2020·吉林模拟) 已知函数,则()A .B . 的定义域为C . 为偶函数D . 在上为增函数7. (2分) (2019高一上·河南月考) 已知f(x)=x7+ax5+bx-5,且f(-3)=5,则f(3)=()A . -15B . 15C . 10D . -108. (2分) (2016高一上·襄阳期中) 已知函数y=f(x)与y=ex互为反函数,函数y=g(x)的图象与y=f (x)图象关于x轴对称,若g(a)=1,则实数a的值为()A . ﹣eB . ﹣C .D . e9. (2分)(2018·台州模拟) 定义在R上的偶函数,当时,,且在上恒成立,则关于的方程的根的个数叙述正确的是()A . 有两个B . 有一个C . 没有D . 上述情况都有可能10. (2分) (2018高一上·漳平月考) 函数y=ax-3+1(a>0且a≠1)图象一定过点()A . (0,1)B . (3,1)C . (0,2)D . (3,2)11. (2分)若函数f(x)=(m2﹣m﹣1)x 是幂函数,在(0,+∞)是增函数,则实数m=()A . ﹣1B . 2C . 2或﹣1D . 0或2或﹣112. (2分)已知函数f(x)=,若存在x1 , x2 ,当0≤x1<4≤x2≤6时,f(x1)=f(x2),则x1•f(x2)的取值范围是()A . [0,1)B . [1,4]C . [1,6]D . [0,1]∪[3,8]二、填空题 (共4题;共5分)13. (1分)已知函数f(x)=的图象与函y=g(x)的图象关于直线y=x对称,令h(x)=g(1﹣x2),则关于h(x)有下列命题:①h(x)的图象关于原点对称;②h(x)为偶函数;③h(x)的最小值为0;④h(x)在(0,1)上为增函数.其中正确命题的序号为________ .(将你认为正确的命题的序号都填上)14. (2分) (2016高一上·金华期中) 已知方程x2+mx+3=0的一个根是1,则它的另一个根是________,m 的值是________.15. (1分)(2020·宿迁模拟) 设是定义在区间上的奇函数,且为单调函数,则的取值范围是________.16. (1分) (2016高一上·镇海期末) 已知函数f(x)= (a≠0,b∈R,c>0),g(x)=m[f(x)]2﹣n(mn>0),给出下列四个命题:①当b=0时,函数f(x)在(0,)上单调递增,在(,+∞)上单调递减;②函数f(x)的图象关于x轴上某点成中心对称;③存在实数p和q,使得p≤f(x)≤q对于任意的实数x恒成立;④关于x的方程g(x)=0的解集可能为{﹣3,﹣1,0,1}.则正确命题的序号为________.三、解答题 (共6题;共60分)17. (5分) (2016高一上·哈尔滨期中) 设集合A={x|x2+ax﹣12=0},B={x|x2+bx+c=0},且A≠B,A∪B={﹣3,4},A∩B={﹣3},求实数b,c的值.18. (10分) (2020高一上·南开期末) 求值:(1);(2)已知,,求的值.19. (10分)已知函数f(x)=ex+be﹣x ,(b∈R),函数g(x)=2asinx,(a∈R).(1)求函数f(x)的单调区间;(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范围.20. (15分) (2016高一上·启东期末) 已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.(1)求f(1)的值;(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);(3)若f(lga)+2<0,求实数a的取值范围.21. (10分) (2018高一上·东台月考) 已知函数(且),(1)若,解不等式;(2)若函数在区间上是单调增函数,求常数的取值范围.22. (10分) (2016高一上·武城期中) 已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共60分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、。
云南省曲靖市2020版高一上学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共12分)1. (1分) (2018高三上·晋江期中) 已知集合,集合,则下列关系中正确的是A .B .C .D .2. (1分) (2018高三上·黑龙江月考) 命题“ ”的否定为()A .B .C .D .3. (1分) (2017高一上·沙坪坝期中) f(x)满足对任意的实数a,b都有f(a+b)=f(a)•f(b),且f (1)=2,则 =()A . 1006B . 2016C . 2013D . 10084. (1分) (2019高二上·黄陵期中) 已知 ,则“ ”是“ ”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件5. (1分) (2018高一上·河北月考) 已知集合,,则()A . A⊆BB . B⊆AC . A∩B=D . A∪B=R6. (1分)设,则下列不等式中不成立的是()A .B .C .D .7. (1分)(2018·浙江模拟) 设函数,则的值为A .B .C .D . 28. (1分)若奇函数在上为增函数,且有最小值0,则它在上()A . 是减函数,有最小值0B . 是增函数,有最小值0C . 是减函数,有最大值0D . 是增函数,有最大值09. (1分)已知函数f(x)=,且f(a)=-3, 则f(6-a)=()A .B .C .D .10. (1分)二次函数的对称轴为,则当x=1时,y的值为()A . -7B . 1C . 17D . 2511. (1分) (2019高二上·延吉期中) 若关于x的不等式x2+ax-2>0在区间[1,5]上有解,则实数a的取值范围为()A .B .C . (1,+∞)D . (-∞,-1)12. (1分)设f(x)是定义在R上的奇函数,且当时,,若对任意的,不等式恒成立,则实数t的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高一上·苏州期中) 函数y= 的定义域为________.14. (1分) (2017高一下·彭州期中) 若关于x的不等式﹣ +2x>﹣mx的解集为 {x|0<x<2},则m=________.15. (1分)已知f(x)=x3+ln,且f(3a﹣2)+f(a﹣1)<0,则实数a的取值范围是________16. (1分)如果方程ax2+bx+c=0(a≠0)的两根是x1、x2 ,那么x1+x2= ________,x1•x2=________.三、解答题 (共6题;共12分)17. (2分)计算下列各式的值:(1)(2).18. (2分) (2018高二上·淮北月考) 已知,, .(1)若是的充分不必要条件,求实数的取值范围;(2)若,“ ”为真命题,“ ”为假命题,求实数的取值范围.19. (3分)设函数f(x)在R上是偶函数,在区间(﹣∞,0)上递增,且f(2a2+a+1)<f(2a2﹣2a+3),求a的取值范围.20. (1分) (2018高二下·绵阳期中) 已知命题:函数在上单调递增;命题:关于的不等式的解集为 .若为真命题,为假命题,求的取值范围.21. (2分)(2020·湖南模拟) 已知函数 .(1)求不等式的解集;(2)若,对,不等式恒成立,求的最小值.22. (2分) (2017高一上·巢湖期末) 据环保部通报,2016年10月24日起,京津冀周边雾霾又起,为此,环保部及时提出防控建议,推动应对工作由过去“大水漫灌式”的减排方式转变为实现精确打击.某燃煤企业为提高应急联动的同步性,新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对大气环境的污染,已知过滤后废气的污染物数量N(单位:mg/L)与过滤时间t(单位:小时)间的关系为N(t)=N0e﹣λt (N0 ,λ均为非零常数,e为自然对数的底数)其中N0为t=0时的污染物数量,若经过5小时过滤后污染物数量为 N0 .(1)求常数λ的值;(2)试计算污染物减少到最初的10%至少需要多少时间?(精确到1小时)参考数据:ln3≈1.10,ln5≈1.61,ln10≈2.30.参考答案一、单选题 (共12题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共12分)17-1、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、。
云南省曲靖市2020版高一上学期数学期中考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017高一上·廊坊期末) 设全集U={1,2,3,4,5,6},集合A={1,3,5},B={4,5,6},则(∁UA)∩B=()A . {2}B . {2,4}C . {4,6}D . {2,4,6}2. (2分)函数,的定义域为()A .B .C .D .3. (2分)已知,则为()A . 2B . 3C . 4D . 54. (2分)(2019·十堰模拟) 设集合,,则()A .B .C .D .5. (2分) (2017高一上·天津期中) 设函数f(x)=ln(1﹣x)﹣ln(1+x),则f(x)是()A . 奇函数,且在(0,1)上是增函数B . 奇函数,且在(0,1)上是减函数C . 偶函数,且在(0,1)上是增函数D . 偶函数,且在(0,1)上是减函数6. (2分) (2018高二下·泸县期末) 设函数.若为奇函数,则曲线在点处的切线方程为()A .B .C .D .7. (2分)设f(x)=2x−3,g(x)=f(x+2),则g(x)等于()A . 2x+1B . 2x-1C . 2x-3D . 2x+78. (2分)函数f(x)=2|x﹣1|的图象是()A .B .C .D .9. (2分)下列函数中,既是偶函数又在单调递增的是()A .B .C .D .10. (2分) (2019高一上·南宁月考) 若函数则的值是A .B .C .D .11. (2分) (2019高一上·大名月考) 已知,若为奇函数,且在上单调递增,则实数的值是()A .B .C .D .12. (2分)函数在区间上递减,则实数a的取值范围是()A .B .C .D .二、填空题 (共4题;共18分)13. (1分)已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.14. (15分) (2018高一上·雅安月考) 已知函数,且.(1)求m的值,并用分段函数的形式来表示;(2)在如图给定的直角坐标系内作出函数的草图(不用列表描点);(3)由图象指出函数的单调区间.15. (1分)(2017·齐河模拟) 关于x的不等式|x﹣2|+|x﹣8|≥a在R上恒成立,则a的最大值为________.16. (1分)(2017·齐河模拟) 现有12张不同的卡片,其中红色、黄色、蓝色、绿色卡片各3张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.三、解答题 (共6题;共70分)17. (10分) (2017高一上·南通开学考) 设集合A={x|x2<9},B={x|(x﹣2)(x+4)<0}.(1)求集合A∩B;(2)若不等式2x2+ax+b<0的解集为A∪B,求a、b的值.18. (10分) (2019高一上·海林期中) 已知幂函数的图象过点 .求(1)解析式;(2)的值.19. (10分) (2015高一下·金华期中) 已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=log3x,(1)求f(x)的解析式;(2)解不等式f(x)≤2.20. (5分) (2018高一下·佛山期中) 解关于的不等式.21. (20分)对于二次函数y=﹣4x2+8x﹣3,(1)指出图象的开口方向、对称轴方程、顶点坐标;(2)画出它的图象,并说明其图象由y=﹣4x2的图象经过怎样平移得来;(3)求函数的最大值或最小值;(4)分析函数的单调性.22. (15分)已知函数f(x)对一切实数x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(3)=﹣2.(1)试判定该函数的奇偶性;(2)试判断该函数在R上的单调性;(3)求f(x)在[﹣12,12]上的最大值和最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共18分)13-1、14-1、14-2、14-3、15-1、16-1、三、解答题 (共6题;共70分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、21-3、21-4、22-1、22-2、22-3、第11 页共11 页。
云南省曲靖市2019-2020年度高一上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高一上·黄陵期末) 以下元素的全体不能够构成集合的是()A . 中国古代四大发明B . 周长为的三角形C . 方程的实数解D . 地球上的小河流2. (2分) (2017高一上·长春期中) 若全集U=R集合A={x|1<x≤3},则∁UA=()A . {x|x<1或x≥3}B . {x|x≤1或x>3}C . {x|x<1或x>3}D . {x|x≤1或x≥3}3. (2分)已知全集A={x∈N|x<2},B={0,1,2},则A∩B=()A . {1,2}B . {0,1,2}C . {1}D . {0,1}4. (2分) (2018高二上·六安月考) 下列说法正确的是()A . ,y R,若x+y 0,则x 且yB . a R,“ ”是“a>1”的必要不充分条件C . 命题“ x R,使得”的否定是“ R,都有”D . “若,则a<b”的逆命题为真命题5. (2分)命题“”的否定是()A .B .C .D .6. (2分)条件p:|x+1|>2,条件q:,则是的()A . 充分非必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要的条件7. (2分)设第一象限内的点满足若目标函数的最大值是4,则的最小值为()A . 3B . 4C . 8D . 98. (2分) (2016高一上·景德镇期中) 已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x ﹣a2|+|x﹣2a2|﹣3a2),若对于任意x∈R,都有f(x﹣2)≤f(x),则实数a的取值范围是()A . [﹣, ]B . [﹣, ]C . [﹣, ]D . [﹣, ]9. (2分) (2019高一上·峨山期中) 函数在区间上的最大值是()A .B .C . 4D . -410. (2分) (2015高一上·衡阳期末) 已知集合A={1,2,3,4},B={2,3,4},则A∩B的元素个数是()A . 0个B . 1个C . 2个D . 3个11. (2分) (2016高一下·大同期末) 对于任意a∈[﹣1,1],函数f(x)=x2+(a﹣4)x+4﹣2a的值恒大于零,那么x的取值范围是()A . (1,3)B . (﹣∞,1)∪(3,+∞)C . (1,2)D . (3,+∞)12. (2分) (2017高一上·平遥期中) 函数f(x)=log2 (2x)的最小值为()A . 0B .C .D .二、填空题 (共4题;共4分)13. (1分) (2016高一上·灌云期中) 函数f(x)= +lg(3﹣2x)的定义域为________.14. (1分) (2019高一上·罗庄期中) 已知函数,其中如果函数恰有两个零点,那么a的取值范围是________.15. (1分)定义一种新运算:a⊗b=,已知函数f(x)=(1+)⊗log2x,若函数g(x)=f(x)﹣k恰有两个零点,则k的取值范围为________16. (1分)已知f(x)=e2x , g(x)=lnx+ ,对∀a∈R,∃b∈(0,+∞),使得f(a)=g(b),则b ﹣a的最小值为________三、解答题 (共6题;共35分)17. (5分) (2018高一上·大石桥期末) 已知集合,.(1)若,求;(2)若,求实数的取值范围.18. (5分) (2017高一上·沛县月考) 已知集合 .(1)当时,求;(2)若,求实数的取值范围.19. (10分)已知函数f(x)=x2﹣4|x|+3.(1)试证明函数f(x)是偶函数;(2)画出f(x)的图象;(要求先用铅笔画出草图,再用中性笔描摹)(3)请根据图象指出函数f(x)的单调递增区间与单调递减区间;(不必证明)(4)当实数k取不同的值时,讨论关于x的方程x2﹣4|x|+3=k的实根的个数.20. (5分) (2018高三上·湖南月考) 已知中心在原点,焦点在轴上,离心率为的椭圆过点.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于点,两点,连接,求的面积的最大值.21. (5分) (2016高一上·襄阳期中) 某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入﹣管理费用)(1)求函数f(x)的解析式及其定义域;(2)当租金定为多少时,才能使一天的纯收入最大?22. (5分)商场销售某一品牌的羊毛衫,购买人数是羊毛衫标价的一次函数,标价越高,购买人数越少.把购买人数为零时的最低标价称为无效价格,已知无效价格为每件300元.现在这种羊毛衫的成本价是100元/件,商场以高于成本价的价格(标价)出售.问:(1)商场要获取最大利润,羊毛衫的标价应定为每件多少元?(2)通常情况下,获取最大利润只是一种“理想结果”,如果商场要获得最大利润的75%,那么羊毛衫的标价为每件多少元?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共35分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、19-4、20-1、21-1、21-2、22-1、。
2019-2020学年高一上数学期中模拟试卷含答案考试时间:120分钟 满分:150分一、选择题(共10小题,每小题5分)1、已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则U C A =( )A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,7 2、函数)1lg()(-=x x f 的定义域是( )A.),2(+∞B. ),1(+∞C. ),1[+∞D. ),2[+∞ 3、下列函数中,在区间(0,)+∞上是增函数的是( )A.2y x =- B.1y x= C.12xy ⎛⎫= ⎪⎝⎭ D.2log y x =4、已知指数函数xy a =的图象过点(2,9),则a 的值为( ) A. 3 B. 3- C.2log 9 D.135、函数2(13)y x x x =+-≤≤的值域是( ) A. [0,12] B.]12,41[- C. 1[,12]2- D . ]12,43[ 6、函数x xx f -=1)(的图像关于( ) A .y 轴对称 B. 直线y x =对称 C. 坐标原点对称 D. 直线y x =-对称7、方程330x x --=的实数解落在的区间是( )A. [1,0]-B. [0,1]C. [1,2]D. [2,3] 8、三个数23.0=a ,3.0log 2=b ,3.02=c 之间的大小关系是( )A .a < c < bB .a < b < cC . b < a < cD . b < c < a 9、若132log <a,则a 的取值范围是( ) A. )1,32( B. ),32(+∞ C. ),1()32,0(+∞ D. ),32()32,0(+∞10、设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2)f -,()f π,(3)f -的大小关系是( )A.()(3)(2)f f f π>->-B.()(2)(3)f f f π>->-C.()(3)(2)f f f π<-<-D.()(2)(3)f f f π<-<- 二、填空题(共4小题,每小题5分)11、幂函数()f x 的图象过点(3,则()f x 的解析式是_____________ 12、已知不等式062<-+px x 的解集为{|32}x x -<<,则p = .13、21,02(),2,2x x f x x x ⎧-≤≤=⎨>⎩已知函数若00()8,f x x ==则 .14、已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,则实数a 的值为 .(答卷)一.选择题(答案填涂在答题卡上,在试卷上作答无效)二.填空题(满分20分,共4题,每题5分)11 12 13 14 Array三、解答题(满分80分,共6题)第20题图17、解:(1)2220()20x x x f x x x x ⎧->=⎨+≤⎩(2)图像略 单调增区间为:()1,0-和()1,+∞;值域为:[1,)-+∞。
18、解:(1)(1)3132f a a =∴+=∴=(2)函数()f x在)+∞上是增函数,证明如下:任取12,)x x ∈+∞,不妨设12x x <, 则有1212121212211212121212121222()()()22()()()2()2()(1)()(2)f x f x x x x x x x x x x x x x x x x x x x x x x x x x -=+-+=-+--=-+=----=12,)x x ∈+∞且12x x <1212120,20,0x x x x x x ∴-<->> 12()()0f x f x ∴-< 即12()()f x f x <())f x ∴+∞函数在上是增函数.22400300007500400375000x x x x ∴-+=-∴-+=12250)(150)0250,150x x x x ∴--=∴==( 所以,商场要获取最大利润的75%,每件标价为250元或150元.20、解:(1)1C 对应的函数为3()g x x =,2C 对应的函数为()2xf x =.(2)证明:令3()()()2x x f x g x x ϕ=-=-,则1x ,2x 为函数()x ϕ的零点, 由于(1)10ϕ=>,(2)40ϕ=-<,93(9)290ϕ=-<,103(10)2100ϕ=->, 所以方程()()()x f x g x ϕ=-的两个零点1x ∈(1,2),2x ∈(9,10)[]2,11∈∴x ,[]10,92∈∴x(3)从图象上可以看出,当12x x x <<时,()()f x g x <,∴(6)f <(6)g . 当2x x >时,()()f x g x >,∴(2007)g <(2007)f ,(6)g <(2007)g ,∴(6)f <(6)g <(2007)g <(2007)f .2019-2020学年高一上数学期中模拟试卷含答案(本次考试不得使用计算器)一 、选择题:(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中有且只有一项是符合题目要求的)1、方程组⎩⎨⎧=-=+1323y x y x 解的集合是( )A {2,1}x y ==B {2,1}C {1,2}D {(2,1)} 2、已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则()U C A B 为( )A. {}1,2,4B.{}4C.{}0,2,4D.{}0,2,3,4 3、下列四组函数中,表示相等函数的一组是( )A. 0)1()(,1)(+==x x g x f B. 2)(24)(2-=+-=x x g x x x f , C. ⎩⎨⎧<->==0,0,)()(x x x x x g x x f , D.33)()(x x g x x f ==,4、下列函数中,在区间(0,1)上是增函数的是( )A. x y )31(= B. x y 4log = C. xy 1= D . 42+-=x y 5、设⎩⎨⎧<+≥-=)8()],4([)8(,2)(x x f f x x x f 则)5(f 的值为( )A .6B .7C .8D .96、若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“姊妹函数”, 那么函数解析式为y x =,值域为{}0,1,2的“姊妹函数”共有( )A .2个B .3个C .8个D .9个7、函数2)1(2)(2+-+=x a x x f 在区间(-∞,4]上递减,则a 的取值范围是( ) A [-3,+∞) B [3,+∞) C (-∞,5]D (-∞,-3]8、设0.213121log 3,,23a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .c b a <<C .c a b <<D . b a c << 9、当10<<a 时,在同一坐标系中,函数x y a y a x log ==-与的图象是( )10、已知奇函数()y f x =在(0)+∞,上为增函数,且(3)0f =,则不等式()()0f x f x x--<的 解集为( ) A .(30)(0,3)-, B .(3)(0,)-∞-,3 C .(3)(3)-∞-+∞,, D .(30)(3)-+∞,, 二、填空题:(本大题共7个小题,每小题4分,共28分) 11、函数12-+=x x y 的定义域为 . 12、已知函数)(x f 是R 上的奇函数,且当0x >时,2()21,f x x x =-+则)(x f 在R 上的表达式为 . 13、函数)10(22≠>+=-a a a y x 且的图像恒过定点,它的坐标为 .14、已知集合{}032|2=++-=x x x A ,}01|{=+=ax x B ,若AB B =,则实数a 的 值所组成的集合为_______________. 15、已知()2lg2lg lg x y x y -=+,则2logxy= . 16、已知()10)3(,33=-++=f bx ax x f ,则()=3f . 17、已知下列4个命题:①若()R f x 在上为减函数,则()R f x -在上为增函数; ②若()[)1+f x =∞那么它的的单调递增区间为,;③若函数()()1()422(1)xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩在R 上是增函数,则a 的取值范围是18a <<; ④函数()f x ,()g x 在区间[](),0a a a ->上都是奇函数,则()()f x g x ∙在区间[](),0a a a ->是偶函数; 其中正确命题的序号是 .三.解答题:(本题5小题,共52分.解答应写出文字说明,证明过程或演算步骤)18、计算题:(每小题5分,共10分) (1)3123201120.1(0.7)427--⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭(2)2(lg5)lg2lg50+⨯3.(本题满分10分)记函数2()lg(2)f x x x =--的定义域为集合A ,函数()g x =B 21. 求AB ;(2)若{|40},C x x p C A =+<⊆,求实数p 的取值范围.4.(本题满分10分) 已知函数2()lg(1)f x ax ax =++()1R a 若函数的定义域为,求实数的取值范围;()2R a 若函数的值域为,求实数的取值范围.21、(本小题满分10分)已知函数2()3g x x =--,()f x 是二次函数,当[]1,2x ∈-时()f x 的最小值为1,且()()f x g x +为奇函数,求函数()f x 的解析式.22、(本题满分12分) 已知函数2()1ax b f x x+=+是定义域为)(1,1-上的奇函数,且21)1(=f (1)求()f x 的解析式;(2)用定义证明:)(x f 在)(1,1-上是增函数;(3)若实数t 满足0)1()12(<-+-t f t f ,求实数t 的范围.()220.110R ax ax ∴++>解:函数的定义域为恒成立22.(1) 函数()f x xb ax 21++=是定义域为)(1,1-上的奇函数()000=∴=∴b f又1211101)1(2=∴=++⋅=a a f∴xx x f 21)(+=……4分2019-2020学年高一上数学期中模拟试卷含答案第Ⅰ卷 客观卷(共36分)一、选择题(每小题3分,共36分。